
Objected	Orient	Programming	

Version	1:	30/05/2017	 	 Page	1	

Notes	on	Object-Oriented	Python	Programming	

1. Introduction	
A	limited	and	haphazard	survey	of	the	extensive	literature	on	teaching	object-
orientation	has	suggested	three	papers	to	read.	Sanders	et	al.	[1]	give	two	lists,	one	of	
OO	concepts	and	the	other	of	misconceptions.	These	lists,	reworded,	form	the	most	
important	part	of	these	notes	in	Section	3.	Miller	et	al.	[2]	identify	some	problem	
specific	to	Python:	these	are	addressed	in	Section	2	and	also	used	to	adapt	the	checklists.	
Finally,	Sanders	et	al.	[3]	(the	same	team	as	[1])	use	concepts	maps	to	assess	the	depth	
of	understanding	of	OO	concepts:	the	technique	is	interesting	and	provides	further	
support	for	the	existence	of	misconceptions.	
Most	of	the	literature	relates	to	teaching	OO	at	University	and	assumes	that	the	
objective	is	to	achieve	proficiency	writing	OO	programs.	This	may	not	be	the	objective	
for	all	A-level	syllabuses.	

2. Issues	for	Teaching	OOP	
2.1 General	Issues	
Some	general	issues	for	teaching	OOP	are	described	below.	
1. Relationship	to	computational	thinking.	

a. OO	achieves	decomposition	in	the	form	of	program	organisation.	OO	can	
therefore	be	presented	as	an	extension	to	program	organisation	using	
functions	/	methods	(so	called	‘functional	decomposition’).	It	has	the	same	
difficulties:	the	additional	organisation	is	a	barrier	at	first	before	becoming	
an	enabling	capability.				

b. Abstraction	is	relevant,	as	a	class	should	represent	a	concept	from	the	
problem.	See	next	point	and	also	notes	on	encapsulation	issue	in	Python.		

	
2. OO	modelling	and	OO	programming.	

a. A	major	advantage	claimed	for	OO	for	programming	(OOP)	is	that	both	the	
problem	can	be	analysed	using	object	concepts	(OOA)	and	the	program	can	
be	structured	using	the	same	concepts.	However,	there	are	some	practical	
implications	of	this.	

b. The	vocabulary	differs	between	OOP	and	OOA.	For	example,	attribute,	fields	
and	member	variables	are	all	roughly	the	same.		

c. Statements	we	can	make	about	OO	have	to	be	understood	in	context,	either	
OOA,	OOP	or	both.	For	example:	

i. An	object	is	a	real-world	entity	in	the	problem	domain	(OOA).	
ii. An	attribute	belongs	to	a	class	(mostly	OOP).	

Since	the	context	is	not	always	apparent,	this	can	cause	confusion.	Some	
statements	can	be	ambiguous:	for	example	‘A	book	is	a	relevant	object	in	this	
domain’	suggests	that	‘Book’	is	a	suitable	class.	

d. To	what	extent	and	how	do	we	teach	OO	modelling	with	programming?	The	
modelling	could	be	taught	first	or	afterwards.	Including	some	modelling	(or	
analysis)	may	help	to	develop	problem	solving	and	abstraction.	However,	it	is	
very	abstract	if	taught	independently	of	programming.	An	intermediate	



Objected	Orient	Programming	

Version	1:	30/05/2017	 	 Page	2	

approach	is	to	include	some	OOA	alongside	programming	(e.g.	ideas	of	class	
responsibility	and	identity)	but	without	developing	OOA	fully.		

	

2.2 Python	Specific	Issues	
Python’s	lack	of	static	checks	means	that	there	are	fewer	errors,	and	most	errors	are	
runtime.	See	[2,	section	3.2.2]	for	an	example	of	what	can	happen.	Some	specific	
difficulties	are	described	below.		
1. Definition	versus	declaration.	

a. In	Python,	variables	are	defined	rather	than	declared.	A	common	pattern	is	to	
assign	default	values	to	all	attributes	in	the	constructor,	so	the	constructor	in	
effect	‘declares’	the	attributes.	The	constructor	should	be	introduced	early	
therefore.		

b. Giving	types	to	attributes	(in	a	static	language,	not	Python)	underlines	the	
possibility	of	using	an	object	(of	another	class)	as	a	value	of	an	attribute	to	
create	a	‘has-a’	relationship	between	classes	(also	called	a	‘peer’	class).	The	
same	relationships	exist	in	Python	but	without	declaration	they	can	easily	be	
overlooked.		

	
2. Use	of	self.		

a. A	method	called	with	one	parameter	is	declared	using	two:	conventionally	
the	first	is	called	‘self’.	This	creates	a	gap	between	the	syntax	of	the	call	and	
declaration.		

b. In	a	method	of	a	class	C,	an	attribute	of	C	must	be	referenced	using	self,	again	
creating	a	gap.	Unfortunately,	omitting	this	may	just	create	a	local	variable	in	
the	function	and	the	error	may	not	be	obvious.	

	
3. Lack	of	encapsulation.	

a. Encapsulation	is	the	flip	side	of	abstraction	and	often	presented	as	an	
advantage	of	OO	programming.	However,	Python	does	not	enforce	any	
encapsulation	and	the	intended	use	of	variables	(or	methods)	can	only	be	
shown	using	naming	conventions.	Understanding	that	a	variable	is	intended	
to	be	‘private’	can	help	develop	an	understanding	of	abstraction.	

b. Python	classes	are	entirely	open;	when	you	understand	how	it	works	you	
find	not	just	that	the	attributes	can	always	be	accessed	by	the	‘user’	of	an	
object,	but	new	attributes	can	be	added	too.	This	can	be	ignored	but	the	
practical	implication	is	that	there	are	more	ways	to	‘get	it	wrong’	without	
getting	an	error.			

	
4. Functions	as	members.	

a. In	Python,	functions	are	members	of	the	class	and	therefore	can	be	accessed	
like	attributes.	This	is	usually	done	by	accident	when	the	brackets	are	
omitted	from	a	function	call,	and	this	does	not	give	an	error.	See	[2,	Section	
3.2.3]	for	an	example.	

	



Objected	Orient	Programming	

Version	1:	30/05/2017	 	 Page	3	

3. Concepts	and	Misconceptions	
3.1 Concepts	
The	following	table	of	concepts	is	adapted	from	[1].	
	

Concept	 Prerequisite	
Knowledge	

Basic	
mechanics	

Calling	a	method	of	an	object.	 Calling	a	function	
Class	as	a	template	for	data:	“what	the	object	
knows”.	

Variables	

Class	as	a	collection	of	methods:	“what	the	object	
does”	

Functions	and	
parameters	

Constructors	 Definition	and	use	of	constructors	 Functions	and	
parameters	

Interaction	

Objects	as	values,	including	in	a	list	(etc)	
Class	declaration	
and	construction	

Object	as	attribute	value	(has-a	relationship)	
Object	passed	as	parameter	to	constructor	
Object	passed	as	parameter	to	method	

Abstraction	
and	

modelling	

A	classes	represents	an	abstract	concept	in	the	
problem	domain	 Class	declaration	

and	construction	Methods	have	parameters	
Constructor	has	parameters		

Inheritance	

Subclasses	defined.	Attributes	and	methods	added.	
Class	declaration	
and	construction	

Superclass	constructor	called	
Common	code	moved	up	hierarchy	
Methods	overridden	

	
3.2 Misconceptions	
The	following	table	of	misconceptions	is	adapted	from	[1].	
	

Misconception	 Possible	Evidence	
Attributes	defined	or	
referenced	in	the	wrong	scope	
	
Note:	use	of	self	is	mostly	
done	by	following	rules	rather	
than	a	deep	understanding.	

Incorrect	use	of	self,	usually	omission.	
	

Confusion	between	class	and	
object	(or	instance)	

The	program	is	run	without	any	objects	being	
created.	Confusion	that	nothing	happens.	
	
Classes	always	have	only	a	single	instance	(object)	
	
Inheritance	used	instead	of	object	creation:	e.g.	Bob	
as	a	subclass	of	person	rather	than	an	instance.		

Confusion	between	class	and	
attribute	

Many	classes,	all	very	simple.	



Objected	Orient	Programming	

Version	1:	30/05/2017	 	 Page	4	

Misconception	 Possible	Evidence	
Objects	only	contain	data	 No	classes	with	methods	other	than	constructors	

or	get	and	set.	
Objects	do	not	interact	 Code	in	single	class	instead	of	several	classes		

Classes	defined	but	not	imported		
Work	in	methods	always	done	by	assignment	
Objects	never	passed	as	parameters	
Objects	passed	as	parameters	but	not	used	

Believing	objects	are	copied	
not	referenced		

Aliasing	errors	
Constructing	a	new	instance	rather	than	updating	
an	existing	one	

Not	understanding	that	a	class	
creates	a	scope	

Methods/variables	in	different	classes	always	have	
different	names	

	
	

4. Bibliography	
1. Sanders	K,	Thomas	L,	Sanders	K,	Thomas	L.	Checklists	for	grading	object-oriented	

CS1	programs.	In	proceedings	of	the	12th	annual	SIGCSE	conference	on	
Innovation	and	technology	in	computer	science	education	-	ITiCSE	'07.	City:	New	
York,	New	York,	USA.	Publisher:	ACM	Press.	2007	vol:	39	(3)	pp:	166,	DOI	
10.1145/1268784.1268834	

2. Miller	C,	Settle	A,	Lalor	J.	Learning	Object-Oriented	Programming	in	Python.	In	
proceedings	of	the	16th	Annual	Conference	on	Information	Technology	
Education	-	SIGITE	'15,	City:	New	York,	New	York,	USA.	Publisher:	ACM	Press,	
2015	pp:	59-64,	DOI	10.1145/2808006.2808017	

3. Sanders	K,	Boustedt	J,	Eckerdal	A,	McCartney	R,	Moström	J,	Thomas	L,	Zander	C.	
Student	understanding	of	object-oriented	programming	as	expressed	in	concept	
maps.	ACM	SIGCSE	Bulletin,	2008	vol:	40	(1)	pp:	332,	DOI	
10.1145/1352322.1352251	

	


