
CAS	London	CPD	Day	 	 February	16	

Page 1 of 4	

Practical	Sheet:	Little	Man	Computer		
All	materials	are	at	http://www.eecs.qmul.ac.uk/~william/CAS-London-2016.html		

1 Introduction	
This	session	introduces	the	Little	Man	Computer,	a	simple	compute	simulator	used	in	
both	GCSE	and	A	level	syllabuses.		

There	are	several	versions	available.	We	are	using:	http://peterhigginson.co.uk/LMC/		

1.1 LMC	Registers	
1. Program	counter:	this	register	holds	the	address	of	the	next	instruction	to	be	

executed.		
2. Accumulator	(or	calculator):	this	is	the	computer	working	memory.	Arithmetic	

operations	and	load/store	use	it	as	one	of	the	operands.	
3. Memory	address	register	(MAR):	this	register	holds	the	address	at	which	the	

memory	is	accessed.	In	the	fetch	part	of	the	cycle,	it	has	the	address	of	the	
instruction;	in	the	execute	stage	it	has	the	address	of	the	data	value.		

4. Instruction	register	(IR):	this	holds	the	opcode	of	h	current	instruction.		
5. Memory	data	register	(MDR):	this	register	holds	the	data	passing	to	or	from	the	

memory.	Not	visible	in	the	version	we	are	using.	
Only	the	accumulator	is	used	directly	by	the	programmer.	The	other	registers	help�	to	
show	the	fetch-execute	cycle	in	action.		
The	memory	has	100	locations,	numbered	00	to	99.	It	holds	values	in	denary	(not	
binary),	with	three	digits.	(Some	versions	allow	negative	numbers).	

1.2 Instructions	
The	following	table	shows	the	available	instructions:	

Name	 Op	Code	 Operand	(or	n/a)	 Description	
ADD	 1xx	

xx	=	address	of	data	

Calculate	Acc	+	data		
SUB	 2xx	 Calculate	Acc	–	data		
STO	 3xx	 Store	Acc	at	the	address	
LDA	 5xx	 Load	data	from	the	address	to	Acc	
BR	 6xx	 xx	=	program	

address	

Branch	to	new	address	
BRZ	 7xx	 Branch	if	Acc	is	zero	
BRP	 8xx	 Branch	if	Acc	is	positive	
IN	 901	 n/a	 Input	from	user	to	Acc	
OUT	 902	 n/a	 Output	from	Acc	to	user	
HLT	 000	 n/a	 Halt	or	Stop	
DAT	 n/a	 Initial	value	 Storage	location	

	
The	mnemonics	are	used	in	the	assembly	code.	The	format	is:	

	 LABEL			<tab>		OPCODE		<tab>		OPERAND	
The	label	is	optional.	The	operand	is	either	a	label	or	the	initial	value	of	data.	Note	that	
‘DAT’	is	not	an	instruction	but	rather	a	directive	to	the	assembler	to	reserve	space	for	a	
variable.	This	is	why	it	does	not	have	an	opcode.	 	

CAS	London	CPD	Day	 	 February	16	

Page 2 of 4	

2 Simple	Programming	Exercises	
Exercise	2.1:	Enter	a	Program	in	LMC	

Consider	the	following	Python	program:	
z = x + y

This	can	be	compiled	(note:	you	are	the	compiler)	into	the	follow	LMC	program	
 LDA x
 ADD y
 STA z or STO z
 HLT
x DAT 11
y DAT 17
z DAT

Enter	this	program	and	assemble	it.	Answer	the	following	questions:	
1. What	is	the	memory	location	for	the	variable	'x'?	
2. The	first	memory	location	has	value	'504'.	Explain	how	this	value	represents	the	

first	instruction	in	the	program.	
3. Describe	the	program	in	words.	

Exercise	2.2:	How	Registers	are	Used	in	the	LMC	
The	program	of	Exercise	2.1	has	4	instructions.	Run	the	program,	step	by	step	and	
complete	the	following	table	to	show	the	state	of	the	system	after	each	step:	
	

Step	 Program	
Counter	

Memory	
Address	
Register	

Instruction	
Register	

Accumulator	
(Calculator)	

0	 00	 ---	 ---	 000	
1	 	 	 	 	
2	 	 	 	 	
3	 	 	 	 	

	
In	addition,	look	at	which	memory	location	is	change.	Note:	the	names	of	the	registers	
vary	a	bit	between	different	LMC	versions	

Exercise	2.3:	Simple	Programming	Challenge	
We	wish	to	input	two	numbers	and	output	their	sum.	Here	is	some	‘pseudo	assembly	
code’	(like	Python)	for	this	problem:	
 acc = input
 A = acc
 acc = input
 acc = acc + A
 Output acc

Write	the	program	using	the	following	steps	

1. Chose	to	the	operation	name	required	for	each	step	
2. Write	the	textual	assembly	code,	using	the	LMC	software	
3. Work	out	the	translations	
4. Use	the	LMC	software	to	assemble	your	code	and	check	the	answer		
5. Test	it!	

	 	

CAS	London	CPD	Day	 	 February	16	

Page 3 of 4	

Exercise	2.4:	Further	Simple	Programming	Challenges	

Try	any	of	the	following:	
1. Input	three	numbers	and	output	the	sum	
2. Input	a	number,	double	it	twice	and	output	(e.g.	7	input	gives	28	out).	
3. Input	two	numbers	and	calculate	the	difference.	What	happens	if	the	answer	is	

negative?	

Before	writing	the	assembly	code,	write	a	'Python	version',	as	shown	above.	Consider	
what	other	techniques	you	could	use	(e.g.	flowcharts)	as	a	stepping-stone	to	the	
assembly	code.	

3 LMC	Programs	with	Branches	
We	have	not	yet	used	the	LMC	with	BR,	BRZ	and	BRP	opcodes.	These	allow	us	to	write	
program	with	if-statements	and	loops,	though	it	is	much	less	convenient	than	in	a	high-
level	language.		

3.1 Writing	IF-Statements	in	Assembly	Code	
Consider	the	following	Python-like	program:	

input x
input y
if x > y:
 output x
else :
 output y

The	problem	here	is	how	to	translate	x > y	into	LMC	instructions.	The	following	
Python-like	program	shows	the	principles,	using	an	accumulator:	

Equivalent Python LMC Assembly Code
acc = input IN
x = acc STA x
acc = input IN
y = acc STA y
acc = acc – x SUB x
if acc <= 0: BRP yGTx
 acc = x LDA x
 output acc OUT
 HLT
else :
 acc = y yGTx LDA y
 output acc OUT
 HLT

Check	that	you	understand	this	step	of	the	translation.		

3.2 If	Statements	Exercises	

Exercise	3.1:	Largest	of	Two	
Enter	the	‘largest	of	two’	program	described	in	the	reference	notes	and	test	it	with	
different	values.	Step	through	it	and	look	at	the	value	of	the	program	counter.		

Can	you	explain	how	the	‘if	statement’	has	been	compiled	using	the	BRP	instruction?	
Note:	if	you	know	about	flowcharts,	you	might	find	it	useful	to	draw	a	flowchart	of	the	
program.	

CAS	London	CPD	Day	 	 February	16	

Page 4 of 4	

Exercise	3.2:	LMC	Challenge	Problems	Write	a	MC	program	to	solve	the	following	
problems:	

1. Input	two	numbers	and	output	the	smaller	one	
2. Input	three	numbers	and	output	the	largest.	

You	are	recommended	to	write	the	program	in	simplified	Python	(as	above)	and/or	
draw	a	flowchart	before	attempting	to	write	the	assembly	code.	

3.3 Writing	Loops	in	Assembly	Code	
Like	If-statements,	loops	are	created	using	branches.	Consider	the	following	program	in	
Python-like	language.	If	the	input	is	5,	the	program	outputs	5,	4,	3,	2,	1	

input x
while x > 0 :
 output x
 x = x – 1

The	following	Python-like	program	shows	the	principles	of	implementing	this	in	LMC,	
using	an	accumulator.	We	have	used	a	‘goto’	statement,	which	of	course	Python	does	not	
have.	The	lines	have	line	numbers	on	the	left:	

1: acc = input
2: if acc == 0 : goto line 6
3: output acc
4: acc = acc – 1
5: goto line 2
6: halt

The	final	code	is:	
 IN
loop BRZ end
 OUT
 SUB one
 BR loop
end HLT
one DAT 1

In	general,	loops	correspond	to	backward	jump.	In	the	example	above:	

• An	unconditional	branch	(BR	opcode)	jumps	back	to	the	start	of	the	loop.	
• A	conditional	branch	(opcode	BRZ)	exits	the	loop	when	the	condition	given	in	the	

while	statement	is	no	longer	true.	

3.4 Exercises	with	Loops	

Exercise	3.3:	LMC	Counting	Down	
Enter	the	‘down	counter’	loop	program	described	above	and	test	it	with	different	values.	
Step	through	it	and	look	at	the	value	of	the	program	counter.	Again,	explain	how	the	
loop	is	translated	to	LMC	using	a	flowchart.	

Exercise	3.4:	LMC	Looping	Challenge	Problems	Try	any	of	the	following:	

1. Enter	two	numbers	C,	N:	C	is	a	counter	and	N	is	a	number.	Output	the	first	C	
multiples	of	N,	starting	with	0.	So	if	C	is	5	and	N	is	3,	the	output	is	0,	3,	6,	9,	12.	

2. LMC	does	not	have	a	multiply	instructions	but	multiplication	can	be	done	by	
repeatedly	adding.	For	example	3	x	4	is	equal	to	4	+	4	+	4.	

