Teaching London Computing

A Level Gomputer Science

Programming GUI in Python

- ING'S
W Queen Mary NG COMPUTING AT SCHOOL
Unive'sity Of LOﬂdon EDUCATE - ENGAGE - ENCOURAGE
é‘@g . ¢ SUPPORTED BY 4, NETWORK OF covrures
r XCELLENC Ha
Pl MAYOROFLONDON »

William Marsh
School of Electronic Engineering and Computer Science
Queen Mary University of London

* A first program

* Concepts in Graphical User Interface
* Components / widgets and attributes
* Events / actions

* Layout
* Practical examples

* Challenges of GUI programming

* Choosing a GUI library
* Using Object-Oriented programming

* Code provided but not yet explained

* Use ‘pattern matching’ (1.e. intelligent guessing)
to modify it

title

e —

.
% GUI Example..,

the frame the button

Key Concepts

Explained Using the Button Example

e
Key Concepts

* A widget / component

* E.g. a button, a frame
 Attributes e.g. the button text

* Actions
* E.g. what happens when you press the button
* Layout

* Positioning widgets

Save | Save As | Checkpoint

Palette Viewer
Baslc
| Button Screenl
I, Canvas Text for CheckBoxl
v CheckBox Text for Buttonl |
 mage
Label
1stPickar

PasswordTextBox
TaxtBox COdC fOr
InyDB eVeIltS

w
O

Meca

Animation

. Widgets,
o called

Sensors

components

Screen Arrangement

Ml & s5:.09PMm

Open the Blocks Edtor § Package for Phone ~
Cgmponents Properties

b D Screenl Screen

v CheckBoxl

BackgroundColor
D white

Backgroundimage |

None...

Title

Screenl

Hierarchy of
components

Attributes
called

properties

* A GUI 1s made up
from widgets

<« frame

* A widget 1s created
¢ Wldget has attributes | Click Here |

* One widget may contain
another:

button

 Frame contains the button

* Constructor # Create a main frame with
« Name same as widget # -attle |
. . # - size 200 by 200 pixels
* Hierarchy of widget app = Tk ()
app~title ("GUI Example 1")

* Optional argument

s/ app.geometry ('200x200")

1onal

[Parent gp ;11(;12?1 ¢
widget S

Create the button
- with suitable text
- a command to call W}] en the buttonAs pressed

buttonl = Button (app, text="Click Here", command=clicked)

° Eg d Name, S12¢C # Create a main frame with
- a title
* Any property of the 4 -size 200 by 200 pixels
widget that makes it app = Tk ()
. app.title ("GUI Example 1")
specnﬁc app.geometry ('200x200")

J

Attributes set by Methods to

constructor (note use of

set attributes
keyword arguments)

Create the button

- with suitable text

- a command to call when the button is pressed

buttonl = Button (app, text="Click Here", command=clicked)

e
How to Set / Get an Attribute

* Method 1 (setting):

e Set value with the constructor

* Method 2 (setting and getting):
* Widget is a dictionary

Change button text
mText = buttonl['text']
buttonl['text'] = mText.upper ()

* Method 3 (sometimes) Other
* Call a suitable method methods exist

* Dictionary: a map from a key to a value
* Unique key
* Built in (Python) versus library (many other languages)

Standard Array Python Dictionary

Index by number Key can be a string, patr, ...
Indices continuous e.g. 0 = 10 Gaps ok

Holds only number, character Any value — even a dictionary

Change button text /

mText = buttonl['text']
buttonl['text'] = mText.upper()///_ Update

This method is called when the button 1s pressed
def clicked() :
print ("Clicked")

Create the button with
- a command to call when the button is pressed
buttonl = Button (app, text="Click Here", commandzcliqﬁed)

e Events \

* Button, mouse click, key press Name of a
Method

e Action

 Event ‘bound’ to function

e
Layout the Widget

Make the button visible at the bottom of the frame
buttonl.pack (side="bottom')

* Where does the widget go?
* Hierarchy
* Top-level window

* Layout manager
* Several available
* Problem of resizing

* The ‘pack’ layout manager 1s simplest
* Widget is not visible until packed

Import the Tkinter package

Note in Python 3 it is all lowercase

from tkinter import *

Create a main frame
app = Tk{()

Start the application running
app.mainloop ()

import with

prefix

Loop to

handle events

Import the Tkinter packaﬁe
Note in Python 3 it 1s all lowercase
import tkinter as tk

Create a main frame
app = tk.Tk()

Start the application running
app.mainloop ()

Use

Button A button

Canvas For drawing graphics

Entry Entry a line of text

Frame A rectangular area containing other widgets
Label Display a single line of text

Menu A set of options shown when on a menu bar
Radiobutton Select one of a number of choices

Scrollbar Horizontal or vertical scrolling of a window
Text A multi-line text entry

loplevel A top-level frame

* See practical sheet

* A sequence of exercises introduce other
widgets and apply the core concepts

* Answers included
... probably too many to finish now

* Dialog
* Top-level window
e (Control variables

* You must respond to a dialog

* Messages
* File choosing

7% Choose a file to open Y
Lookin: |} completedExamples ~| - EerEr
> OK
b2 Name Date modified Type
~ %
o afile 6/29/20153:19PM Text Docu
Recent Places)
| afile_KEEP_THIS_ONE 6/29/2015 3:19 PM Text Docu
Desktop
uE_;J
Libraries
A
Computer
@
Network
<« | m y »
File name: I Ll Open
Files of type: ITad (* i) LI Cancel |

e
Top-Level Windows

* At least one top-level window
* Conveniently created using Tk ()
» Like a frame but ...

e Menu bar
e Standard buttons
e Borders

* Variables linking ...
* Entry widget to its text
* Choices in a RadioButton

* These are objects 1n the framework

* Which framework?
* How to design a GUI
* How much OOP?

* A GUI framework defines a set of widgets
* Windows has 1t’s own GUI framework

* Python uses a portable GUI framework
* tkinter, depends on Tk and TCL
* PyQT, depends on QT

* Tkinter
* Pro: simple, easy to install

e Cons: a bit limited; documentation weak

* PyQT: more complex

* What am I trying to do?

* What widgets do I need?

* Where will they go?
* How do they behave?

The 00P Problem

#!1/usr/bin/env python 1
° Why 910) and (GUJ |import Tkinter as tk 2
® : class Application(tk.Frame): 3
Wldgets arc classes def init (self, master=None):
. .. 4
e Default behaviour tk.Framg.__lnlt__(self, master)
self.grid() 3
self.createWidgets()
* GUI programs are)
. def createWidgets(self):
Often Organlsed self.quitButton = tk.Button(self, text='Quit',
. command=self.quit) 6
USH'Ig ClaSSGS self.quitButton.grid() 7
app = Application() 8
app.master.title('Sample application') 9
app.mainloop() 10

* Practical Problem: most examples use OOP

e
simmary

* Core concepts common to all framework
* Understand principles

* Learn about available widgets

* Look up attributes and methods

* After programming ... interface design

