
A Level Computer Science

Programming GUI in Python

Teaching London Computing

William Marsh
School of Electronic Engineering and Computer Science

Queen Mary University of London

Outline
•  A first program
•  Concepts in Graphical User Interface
•  Components / widgets and attributes
•  Events / actions
•  Layout

•  Practical examples
•  Challenges of GUI programming
•  Choosing a GUI library
•  Using Object-Oriented programming

First Program – Click the Button
•  Code provided but not yet explained
•  Use ‘pattern matching’ (i.e. intelligent guessing)

to modify it

Key Concepts

Explained Using the Button Example

Key Concepts
• A widget / component
•  E.g. a button, a frame
•  Attributes e.g. the button text

• Actions
•  E.g. what happens when you press the button

•  Layout
•  Positioning widgets

AppInventor

Widgets,
called

components
Attributes

called
properties

Code for
events Hierarchy of

components

Widgets
•  A GUI is made up

from widgets
•  A widget is created
•  Widget has attributes
•  One widget may contain

another:
•  Frame contains the button

button

frame

Create a Widget
•  Constructor
•  Name same as widget
•  Hierarchy of widget
•  Optional arguments

Create a main frame with
- a title
- size 200 by 200 pixels
app = Tk()
app.title("GUI Example 1")
app.geometry('200x200')

Create the button
- with suitable text
- a command to call when the button is pressed
button1 = Button(app, text="Click Here", command=clicked)

Constructor

Parent
widget

Optional
argument

Widgets have Attributes
•  E.g. a name, size
•  Any property of the

widget that makes it
specific

Create a main frame with
- a title
- size 200 by 200 pixels
app = Tk()
app.title("GUI Example 1")
app.geometry('200x200')

Create the button
- with suitable text
- a command to call when the button is pressed
button1 = Button(app, text="Click Here", command=clicked)

Attributes set by
constructor (note use of

keyword arguments)

Methods to
set attributes

How to Set / Get an Attribute
•  Method 1 (setting):
•  Set value with the constructor

•  Method 2 (setting and getting):
•  Widget is a dictionary

•  Method 3 (sometimes)
•  Call a suitable method

Change button text
mText = button1['text']
button1['text'] = mText.upper()

Other
methods exist

Aside: Dictionaries
•  Dictionary: a map from a key to a value
•  Unique key
•  Built in (Python) versus library (many other languages)

Standard Array Python Dictionary
Index by number Key can be a string, pair, …
Indices continuous e.g. 0 à 10 Gaps ok
Holds only number, character Any value – even a dictionary

Change button text
mText = button1['text']
button1['text'] = mText.upper()

Lookup

Update

Handle an Event

•  Events
•  Button, mouse click, key press

•  Action
•  Event ‘bound’ to function

This method is called when the button is pressed
def clicked():
 print("Clicked")

Create the button with
- a command to call when the button is pressed
button1 = Button(app, text="Click Here", command=clicked)

Name of a
Method

Layout the Widget

•  Where does the widget go?
•  Hierarchy
•  Top-level window

•  Layout manager
•  Several available
•  Problem of resizing

•  The ‘pack’ layout manager is simplest
•  Widget is not visible until packed

Make the button visible at the bottom of the frame
button1.pack(side='bottom')

A Minimal Application
Import the Tkinter package
Note in Python 3 it is all lowercase
from tkinter import *

Create a main frame
app = Tk()

Start the application running
app.mainloop() # Import the Tkinter package

Note in Python 3 it is all lowercase
import tkinter as tk

Create a main frame
app = tk.Tk()

Start the application running
app.mainloop()

Loop to
handle events

import with
prefix

(Some) tkinter Widgets
Widget Use

Button A button
Canvas For drawing graphics
Entry Entry a line of text
Frame A rectangular area containing other widgets
Label Display a single line of text
Menu A set of options shown when on a menu bar
Radiobutton Select one of a number of choices
Scrollbar Horizontal or vertical scrolling of a window
Text A multi-line text entry
Toplevel A top-level frame

Further Practical Exercises
•  See practical sheet
•  A sequence of exercises introduce other

widgets and apply the core concepts
•  Answers included
•  … probably too many to finish now

Further Concepts

•  Dialog
•  Top-level window
•  Control variables

Dialogs
•  You must respond to a dialog
•  Messages
•  File choosing

Top-Level Windows
•  At least one top-level window
•  Conveniently created using Tk()!
•  Like a frame but …

•  Menu bar
•  Standard buttons
•  Borders

Control Variables
•  Variables linking …
•  Entry widget to its text
•  Choices in a RadioButton

•  These are objects in the framework

Challenges in GUI
•  Which framework?
•  How to design a GUI
•  How much OOP?

GUI Framework
•  A GUI framework defines a set of widgets
•  Windows has it’s own GUI framework

•  Python uses a portable GUI framework
•  tkinter, depends on Tk and TCL
•  PyQT, depends on QT

•  Tkinter
•  Pro: simple, easy to install
•  Cons: a bit limited; documentation weak

•  PyQT: more complex

Designing a GUI
•  What am I trying to do?
•  What widgets do I need?
•  Where will they go?
•  How do they behave?

The OOP Problem
•  Why OO and GUI
•  Widgets are classes
•  Default behaviour

•  GUI programs are
often organised
using classes

•  Practical Problem: most examples use OOP

Pertinent references:

• Fredrik Lundh, who wrote Tkinter, has two versions of his An Introduction to Tkinter: a more complete
1999 version

3
and a 2005 version

4
that presents a few newer features.

• Python 2.7 quick reference
5
: general information about the Python language.

• For an example of a sizeable working application (around 1000 lines of code), see huey: A color and
font selection tool

6
. The design of this application demonstrates how to build your own compound

widgets.

We'll start by looking at the visible part of Tkinter: creating the widgets and arranging them on the
screen. Later we will talk about how to connect the face—the “front panel”—of the application to the
logic behind it.

2. A minimal application
Here is a trivial Tkinter program containing only a Quit button:

#!/usr/bin/env python 1

import Tkinter as tk 2

class Application(tk.Frame): 3
def __init__(self, master=None):

tk.Frame.__init__(self, master) 4

self.grid() 5
self.createWidgets()

def createWidgets(self):
self.quitButton = tk.Button(self, text='Quit',

command=self.quit) 6

self.quitButton.grid() 7

app = Application() 8

app.master.title('Sample application') 9

app.mainloop() 10

1 This line makes the script self-executing, assuming that your system has Python correctly installed.
2 This line imports the Tkinter module into your program's namespace, but renames it as tk.
3 Your application class must inherit from Tkinter's Frame class.
4 Calls the constructor for the parent class, Frame.
5 Necessary to make the application actually appear on the screen.
6 Creates a button labeled “Quit”.
7 Places the button on the application.
8 The main program starts here by instantiating the Application class.
9 This method call sets the title of the window to “Sample application”.
10 Starts the application's main loop, waiting for mouse and keyboard events.

3
http://www.pythonware.com/library/tkinter/introduction/4
http://effbot.org/tkinterbook/5
http://www.nmt.edu/tcc/help/pubs/python/6
http://www.nmt.edu/tcc/help/lang/python/examples/huey/

New Mexico Tech Computer CenterTkinter 8.5 reference4

Summary
•  Core concepts common to all framework
•  Understand principles
•  Learn about available widgets
•  Look up attributes and methods

•  After programming … interface design

