
CAS London CPD Day 2016

Little Man Computer

Teaching London Computing

William Marsh
School of Electronic Engineering and Computer Science

Queen Mary University of London

Overview and Aims
•  LMC is a computer simulator

•  … understanding how a computer work

•  To program the LMC, must understand:
•  Memory addresses
•  Instructions
•  Fetch-execute cycle

•  Practical exercises
•  What we can learn from LMC

What is in a Computer?

•  Memory
•  CPU
•  I/O

Simple Computer
•  Processor

•  CPU

•  Memory
•  Data
•  Program

instructions

•  I/O
•  Keyboard
•  Display
•  Disk

Memory

Keyboard
I/F

CPU

Disk
I/F

Display
I/F

data

data

addresses

Memory
•  Each location

•  has an address
•  hold a value

•  Two interfaces
•  address – which

location?
•  data – what

value?

address

data

Quiz – What is the
Memory?

Registers (or Accumulators)
•  A storage area inside the CPU
•  VERY FAST
•  Used for arguments and results to one calculation

step

Control
lines

Register – 1 memory location

data

Read
register

Write to
register

Memory I/O

I/O

CPU
Write a

program
here

LMC CPU Structure •  Visible registers
shown in red

•  Accumulators
•  Data for

calculation
•  Data

•  Word to/from
memory

•  PC
•  Address of next

instruction
•  Instruction
•  Address

•  For memory
access

Program
Counter

Mem
Address

Instruction

MEM Data

ALU

Accumulator

Control
Unit

memory
address

data

Control Unit

ALU

Instructions

The primitive language of a computer

Instructions

•  Instruction
•  What to do: Opcode
•  Where: memory address

•  Instructions for arithmetic
•  Add, Multiply, Subtract

•  Memory instructions
•  LOAD value from memory
•  STORE value in memory

OpCode Address

•  The instructions are
very simple

•  Each make of
computer has
different instructions

•  Programs in a high-
level language can
work on all
computers

Instructions

•  Opcode: 1
decimal
digit

•  Address:
two decimal
digits – xx

•  Binary
versus
decimal

OpCode Address

Code Name Description
000 HLT Halt
1xx ADD Add: acc + memory à acc
2xx SUB Subtract: acc – memory à acc
3xx STA Store: acc à memory
5xx LDA Load: memory à acc
6xx BR Branch always
7xx BRZ Branch is acc zero
8xx BRP Branch if acc > 0
901 IN Input
902 OUT Output

Add and Subtract Instruction

•  One address and accumulator (ACC)
•  Value at address combined with accumulator value
•  Accumulator changed

•  Add: ACC ß ACC + Memory[Address]
•  Subtract: ACC ß ACC – Memory[Address]

ADD Address

SUB Address

Load and Store Instruction

•  Move data between memory and accumulator
(ACC)

•  Load: ACC ß Memory[Address]
•  Store: Memory[Address] ß ACC

LDA Address

STA Address

Input and Output

•  Input: ACC ß input value
•  output: output area ß ACC

•  It is more usual for I/O to use special memory
addresses

INP 1 (Address)

OUT 2 (Address)

Branch Instructions

•  Changes program counter
•  May depend on accumulator (ACC) value

•  BR: PC ß Address
•  BRZ: if ACC == 0 then PC ß Address
•  BRP: if ACC > 0 then PC ß Address

BR Address

Assembly Code
•  Instructions in text
•  Instruction name: STA,

LDA
•  Address: name using

DAT

Numbers
•  Memory holds numbers
•  Opcode: 0 to 9
•  Address: 00 to 99

ASSEMBLE INP!
 STA x!
 INP !
 STA y!
 HLT!
x DAT!
y DAT!

1
2
3
4
5
6
7

Line
9 01!
3 05!
9 01!
3 06!
0 00!
(used for x)
(used for y)

00
01
02
03
04
05
06

Location

LMC Example

Simple Program
•  x = y + z LDA y

ADD z

STA x

HLT

x

y

z

Running the Simple Program
PC

IR

ACC

LDA!

LDA y

ADD z

STA x

HLT

x

y 17

z 9

17

Running the Simple Program
PC

IR

ACC

ADD!

LDA y

ADD z

STA x

HLT

x

y 17

z 9

17 26

Running the Simple Program
PC

IR

ACC

STA!

LDA y

ADD z

STA x

HLT

x

y 17

z 9

26

26

Running the Simple Program
PC

IR

ACC

HLT!

LDA y

ADD z

STA x

HLT

x

y 17

z 9

26

26

Practice Exercises
•  Try the first three exercises on the practical sheet

Fetch-Execute Cycle

How the Computer Processes Instructions

Fetch-Execute
•  Each instruction cycle consists on two subcycles
•  Fetch cycle

•  Load the next instruction (Opcode + address)
•  Use Program Counter

•  Execute cycle
•  Control unit interprets the opcode
•  ... an operation to be executed on the data by the ALU

Start
Decode &

execute
instruction

Fetch next
instruction Halt

Fetch Instruction
1.  Program

counter to
address register

2.  Read memory at
address

3.  Memory data to
‘Data’

4.  ‘Data’ to
instruction
register

5.  Advance
program
counter

Program
Counter

Address

Instruction

Data

Accumulators

memory
address

data

Control Unit

ALU

1

2

3

4

ALU

Control
Unit

Execute Instruction
1.  Decode instruction
2.  Address from

instruction to
‘address register’

3.  Access memory
4.  Data from memory

to ‘data register’
5.  Add (e.g.) data and

accumulator value
6.  Update

accumulator

Program
Counter

Address

Instruction

Data

Accumulators

memory
address

data

Control Unit

ALU

1

2

3

4 5

5 6

ALU

Control
Unit

What We Can Learn from LMC

1.  How programming language work
2.  What a compiler does
3.  Why we need an OS

Understanding Variables and Assignment
•  What is a variable?
•  What is on the left hand side of:

x = x + 1

Variable is
an address in

memory

Value from
memory

(at address x)

Understanding Variables and Assignment
•  What is a variable?
•  What is on the left hand side of:

A[x+1] = 42

Calculated
address in
memory

Value from
memory, used to
calculate address

Understanding If and Loops
•  Calculate the address of the next instruction

if x > 42:
 large = large + 1
else:
 small = small + 1

Instructions
at address L1

Instructions at
address L2

Choose PC (L1 or L2)
from comparison

Compiler
•  Compiler translates high level program to low

level

•  Compiled languages
•  Statically typed
•  Close to machine
•  Examples: C, C++, (Java)
•  Compiler for each CPU

LDA y!
ADD z!
STA x!
HLT!

x = y + z!
11010101!
10010111!
01110100!
10000000!

source code
assembly code

object code

Why We Need An OS
LMC
•  Only one program
•  Program at fixed

place in memory
•  No

•  Disk
•  Screen
•  …

Real Computer
•  Many programs at

once
•  Program goes

anywhere in memory
•  Complex I/O

Summary of CPU Architecture
•  Memory contains data and program

•  Program counter: address of next instruction
•  Instructions represented in binary
•  Each instruction has an ‘opcode’

•  Instructions contain addresses
•  Addresses used to access data

•  Computer does ‘fetch-execute’
•  ‘Execute’ depends on opcode

•  Computer can be built from < 10,000 electronic
switches (transistors)

Project: Writing an LMC
Interpreter

Write a Simple LMC Emulator

def fetch(memory):!
 global pc, mar!
 mar = pc!
 pc = pc + 1!
 readMem(memory)!

def readMem(memory):!
 global mdr!
 mdr = memory[mar]!

acc = 0!
mdr = 0!
mar = 0!
pc = 0!
memory = [504,105,306, 0,!
 11, 17,...]!

State of the
LMC: registers

and memory

def execute(memory, opcode, arg):!
 global acc, mar, mdr, pc!
 if opcode == ADD:!
 mar = arg!
 readMem(memory)!
 acc = acc + mdr!
 elif opcode == SUB:!
 mar = arg!
 readMem(memory)!
 acc = acc – mdr!
 ...!

Update state
following rules

