
CAS	London	CPD	Day	 	 February	16	

Page 1 of 4	

Little	Man	Computer		

Additional	Notes	on	Compiler	and	Interpreters	

1 Understanding	Compilers	and	Interpreters	

1.1 What	we	Learn	from	Assembly	Code	
Learning	about	assembly	code,	remind	us	that:	

1. Variables	correspond	to	memory	locations.	
2. The	memory	of	a	computer	contains	both	data	and	code.		
3. If	statements	and	loops	are	created	by	changing	the	Program	Counter.	

1.2 Compilers	
A	compiler	is	a	translator	from	a	high	level	language	to	the	assembly	code	of	a	particular	
CPU.	A	compiled	program	works	on	

• the	particular	CPU	and	
• Operating	System	

that	it	was	compiled	for.	Internally,	the	compiler	has	several	stages:	
1. A	parser	checks	that	the	source	code	follows	the	syntax	of	the	language.	A	tree	is	

constructed	representing	the	program	code.	At	this	stage,	syntax	errors	are	
generated.	

2. The	type	checker	checks	that	the	expressions	in	the	program	are	correctly	typed	
and	how	much	space	is	need	for	each	variable.	At	this	stage,	the	errors	generated	
concern	variables	(and	other	names)	that	are	not	declared	and	code	that	is	
incorrectly	types.	

3. The	code	generator	then	translates	the	program	to	assembly	code.	Compilers	
usually	include	an	assembler	so	the	output	is	usually	in	binary	(call	object	code)	
rather	than	assembly	code.	The	two	main	tasks	are	i)	deciding	which	register	to	
use	(as,	unlike	LMC,	modern	CPUs	have	many	registers)	and	ii)	choose	the	CPU	
instructions.	

The	first	two	steps	are	determined	by	the	language	being	compiled;	the	final	step	is	
determined	by	the	processor	being	targeted.	Modern	compilers	have	a	modular	
structure,	which	front-ends	for	different	source	languages	and	back-ends	for	different	
CPUs.	In	addition,	modern	compilers	include	optimisers	that	make	the	generated	code	
faster	without	changing	its	meaning.	These	optimisers	typically	operate	on	an	
intermediate	language,	which	is	used	for	all	source	languages	and	all	CPUs.	

1.3 Interpreter	
An	interpreter	is	simpler	than	a	compiler.	It	includes	the	parser	but	instead	of	the	code	
generator,	the	interpreter	goes	through	the	internal	representation	of	the	source	code	
(such	as	an	abstract	syntax	tree)	and	‘executes’	the	code	directly.		

Although	in	principle	any	language	can	be	compiled	or	interpreted,	languages	that	are	
usually	compiled	tend	to	be	dynamically	typed	and	scoped,	while	compiled	languages	
are	statically	typed	and	lexically	scoped.	

Dynamic	v	static	typing:	in	dynamic	typing,	the	type	of	a	variable	depends	on	its	
use	and	may	change	at	different	points	in	the	program.	Since	the	type	is	not	know	

CAS	London	CPD	Day	 	 February	16	

Page 2 of 4	

in	advance,	the	operation	(e.g.	integer	versus	floating	point	arithmetic)	can	not	be	
determined	either,	which	is	inconvenient	for	a	compiler.		
Dynamics	scoping:	scoping	is	about	matching	names	to	variables	(or	memory	
locations).	In	a	lexically	scoped	language,	such	as	C,	the	compiler	matches	names	
to	variables.	In	a	more	dynamic	language	like	Python,	names	are	‘resolved’	at	run	
time	and	the	process	depends	on	the	variables	that	exist	when	a	reference	to	a	
name	is	executed.	Many	languages	include	aspects	of	both	approaches.	

2 Writing	an	LMC	Interpreter	
One	way	to	understand	how	an	interpreter	works	is	to	write	one	for	the	LMC.	(Note:	an	
interpreter	for	a	CPU	is	often	called	an	emulator	or	a	simulator).	Below,	we	outline	how	
an	LMC	interpreter	can	be	written.	Here	is	an	example	of	a	possible	solution	being	used.	

Load (L) Run(R) Stop(S) > R
MAR = 0 MDR = 0 ACC = 0 PC = 0
Program halted
Load (L) Run(R) Stop(S) > L
Location = 0 Enter value (or '.') 504
Location = 1 Enter value (or '.') 105
Location = 2 Enter value (or '.') 306
Location = 3 Enter value (or '.') 0
Location = 4 Enter value (or '.') 11
Location = 5 Enter value (or '.') 17
Location = 6 Enter value (or '.') .
Load (L) Run(R) Stop(S) > R
MAR = 0 MDR = 0 ACC = 0 PC = 0
Press enter to continue
MAR = 4 MDR = 11 ACC = 11 PC = 1
Press enter to continue
MAR = 5 MDR = 17 ACC = 28 PC = 2
Press enter to continue
MAR = 6 MDR = 28 ACC = 28 PC = 3
Program halted
Load (L) Run(R) Stop(S) >

2.1 Design	Suggestions	
Here	are	some	fragments	of	such	a	program	to	illustrate	the	idea:	

Represent	the	state	of	the	system.	The	LMC	state	is	its	registers	and	memory.	
acc = 0
mdr = 0
mar = 0
pc = 0
memory = [504,105,306, 0, 11, 17,...]

Update	the	state:	this	means	following	the	rules	of	the	CPU.	In	the	LMC,	the	way	the	
data	moves	between	registers	depends	on	the	opcode:	

def execute(memory, opcode, arg):
 global acc, mar, mdr, pc
 if opcode == ADD:
 mar = arg
 readMem(memory)
 acc = acc + mdr
 elif opcode == SUB:
 mar = arg
 readMem(memory)

CAS	London	CPD	Day	 	 February	16	

Page 3 of 4	

 acc = acc - mdr
 elif opcode == STO:
 mar = arg
 mdr = acc
 writeMem(memory)
 elif opcode == LDA:
 mar = arg
 readMem(memory)
 acc = mdr
 elif opcode == BR:
 pc = opcode
 elif ...

Some	of	the	additional	functions	needed	to	complete	the	interpreter	are	shown	below:	
def readMem(memory):
 global mdr
 mdr = memory[mar]

def writeMem(memory):
 memory[mar] = mdr

def fetch(memory):
 global pc, mar
 mar = pc
 pc = pc + 1
 readMem(memory)

2.2 Java	and	Virtual	Machine	
Many	systems	combine	aspects	of	both	compilers	and	interpreters.	A	notable	example	is	
Java	and	the	similar	approach	taken	by	the	Microsoft	.net	language	family.		

Java	is	a	compiled	language	but	it	is	not	compiled	for	real	CPUs.	Instead,	the	compiled	
code	is	for	a	Java	Virtual	Machine	(JVM).	As	there	are	no	real	JVM	CPUs,	they	are	
emulated.	This	approach	has	many	advantages:	for	example,	only	one	compiled	version	
of	a	program	is	needed	and	it	can	be	run	on	any	machine	with	an	emulator,	but	it	is	
much	faster	than	a	pure	interpreter.		

3 Appendix	1:	LMC	Versions	
Little	Man	Computer	is	a	widely	used	simulator	of	a	(very	simple)	computer.	There	are	a	
number	of	implementations.		

1. An	excellent	version	in	java	script:	
a. Available	from	http://peterhigginson.co.uk/LMC/	
b. It	has	adequate	documentation	at	

http://peterhigginson.co.uk/LMC/help.html		
c. The	MDR	is	not	visible.	

	
2. A	MS	Windows	version,	requiring	.NET	and	functionally	the	same	as	1.	Excellent	

if	you	can	run	it.	
a. Available	from	http://www.gcsecomputing.org.uk/lmc/lmc.html	

	
3. A	web	applet,	using	Java,	with	instructions	and	examples	(see	home	page)	from	

York	University	in	Canada.	
a. Home	page:	http://www.yorku.ca/sychen/research/LMC/	

CAS	London	CPD	Day	 	 February	16	

Page 4 of 4	

b. Web	applet:	http://www.yorku.ca/sychen/research/LMC/LittleMan.html	
c. The	applet	is	good	if	it	will	run	in	your	browser;	I	find	that	only	one	digit	

of	the	memory	is	displayed.	The	word	‘compile’	is	used	instead	of	
assemble.	Increasing	incompatible	with	modern	browsers.	

	
4. Another	Java	version	from	the	University	of	Minnesota;	also	available	as	a	web	

applet:	
a. See	from	http://www.d.umn.edu/~gshute/cs3011/LMC.html	
b. A	minor	issue:	this	version	does	no	show	the	MAR	and	MDR	registers	and	

does	not	simulate	the	separate	stages	of	the	fetch-execute	cycle.	
	

5. A	version	from	Durham	University	for	Mac	or	Windows	
a. See	http://www.dur.ac.uk/m.j.r.bordewich/LMC.html		
b. This	version	calls	the	‘assembler’	a	‘compiler’	which	is	unfortunate,	but	it	

is	otherwise	good.	
	

6. A	spread	sheet	version	
a. http://www.ictcool.com/2011/12/16/download-lmc-simulation-v-1-5-2-

requires-microsoft-excel/		
b. This	version	does	not	include	an	assembler:	you	can	enter	the	3-digit	

codes	instead.	
	

7. A	flash	version	
a. Available	as	a	CAS	resource	from	

http://community.computingatschool.org.uk/resources/1383	
b. This	version	is	mainly	used	for	demonstration	rather	than	programming;	

there	is	no	assembler.	The	web	page	is	useful.	

There	is	also	an	informative	Wikipedia	page	
http://en.wikipedia.org/wiki/Little_man_computer		

	
Applet	version	 	 	 	 	 	 Java	version	

	
Important	note:	the	applet	uses	the	mnemonic	'STA'	whereas	the	Java	version	uses	
'STO'	for	store	accumulator.	

	

Enter	
program	
here	

Enter	
program	
here	

