
CAS	London	CPD	Day	 	 February	16	

Page 1 of 6	

Practical	Sheet:	GUI	Programming	

This	sheet	is	a	set	of	exercises	for	introducing	GUI	programming	in	Python	using	Tkinter,	
assuming	knowledge	of	basic	Python	programming.		

All	materials	are	at	http://www.eecs.qmul.ac.uk/~william/CAS-London-2016.html	You	
need	to	download	the	zip	file	of	sample	programs.		

Contents	

1	 Exercise	1:	A	First	GUI	Program	...	1	
2	 Exercise	2:	Label	Widget	..	2	

3	 Exercise	3:	Adding	an	Entry	Widget	...	3	

4	 Exercise	4:	Managing	Layout	..	4	
5	 Exercise	5:	The	Drawing	Canvas	and	Events	...	4	

	
These	notes	are	a	shortened	version	of	the	materials	available	at	
http://teachinglondoncomputing.org/free-workshops/minicpd-gui-programming-in-
python/	(scroll	down	from	the	resources).	If	you	complete	all	the	exercises	here,	there	are	
more	…	

1 Exercise	1:	A	First	GUI	Program	
The	following	program	is	available	for	download	(called	exercise1.py).	Find	the	program,	
open	it	using	IDLE	and	run	it.		

# Import	the	Tkinter	package
# Note	in	Python	3	it	is	all	lowercase
from tkinter import *

# This	method	is	called	when	the	button	is	pressed
def clicked():
 print("Clicked")

# Create	a	main	frame	with	
# -	a	title	
# -	size	200	by	200	pixels
app = Tk()
app.title("GUI Example 1")
app.geometry('200x200')

# Create	the	button	with	
# -	suitable	text
# -	a	command	to	call	when	the	button	is	pressed
button1 = Button(app, text="Click Here", command=clicked)

# Make	the	button	visible	at	the	bottom	of	the	frame
button1.pack(side='bottom')

# Start	the	application	running
app.mainloop()

CAS	London	CPD	Day	 	 February	16	

Page 2 of 6	

Exercise	1.1:	Run	the	Program	

Find	the	program	(or	type	it	in),	open	it	using	IDLE	and	run	it.	It	should	look	like	this:	

	
Also	experiment	with	‘usual’	windows	operation	such	as	resizing	the	window,	
minimising	it	and	closing	it.	

Exercise	1.2:	Modify	the	Program	
Although	it	has	not	been	explained	yet,	see	if	you	can	figure	out	how	to	make	the	
following	modifications:	

• Change	the	title	
• Change	the	text	in	the	button	
• Change	the	text	printed	when	the	button	is	pressed	
• Change	the	size	(geometry)	of	the	rectangular	frame	
• Move	the	button	to	the	top	of	the	frame		

2 Exercise	2:	Label	Widget	
This	exercise:	

• Introduces	the	label	widget	
• Practices	getting	and	setting	attributes.		

Run	the	given	program:	exercise2.py.	It	should	display	the	following:	

	
The	widgets	are:	

• Label:	a	single	line	text	that	is	displayed	
• Button:	(see	exercise	1)	

The	intended	behaviour	is:	

• Text	is	entered	in	entry	widget	

CAS	London	CPD	Day	 	 February	16	

Page 3 of 6	

• When	the	button	is	pressed	the	text	changes,	toggling	between	two	messages.	
	

Exercise	2.1:	Getting	and	Setting	Attributes	

In	the	given	code,	pressing	the	button	only	changes	the	label	text	once.	Change	it	so	that	
it	toggles,	as	described	above.	

Exercise	2.2:	Further	Attributes	
The	background	colour	of	the	button	is	determined	by	an	attribute	‘bg’	or	‘background’	
(the	two	are	equivalent).	Further	enhance	the	program	to	cycle	the	background	colour	
of	the	button	through	3	different	colours,	as	well	as	changing	the	txt.	

3 Exercise	3:	Adding	an	Entry	Widget	
This	exercise	adds	an	‘entry’	widget	to	the	previous	exercise.	Run	the	given	program	
exercise3.py,	displaying:		

	
The	widgets	are:	

• Label:	a	single	line	text	that	is	displayed	(see	exercise	2)	
• Button:	(see	exercise	1)	
• Entry:	a	single	line	text	that	can	be	entered	

The	intended	behaviour	is:	

• Text	is	entered	in	entry	widget	
• When	the	button	is	pressed	the	label	text	is	updated	with	the	entered	text	

Exercise	3.1:	Complete	Program	

In	the	provided	program,	when	you	enter	text	in	the	box	(the	Entry	widget)	and	press	
the	button,	it	only	prints	the	text	from	the	entry.	Complete	it	to	give	the	intended	
behaviour	described	above.	

Exercise	3.2:	Elaborations	

• When	the	button	is	pressed,	check	if	the	entered	text	is	blank	(i.e.	has	zero	
length).	If	so,	do	not	copy	it	but	instead	set	the	background	of	the	button	red.	
Restore	the	original	background	colour	when	the	button	is	pressed	and	some	text	
has	been	entered.	

• After	the	button	has	been	pressed	and	the	label	changed,	make	the	next	press	of	
the	button	clear	the	text	in	the	entry	widget.	Change	the	button	text	so	that	the	
user	understands	what	is	happening.	

	 	

CAS	London	CPD	Day	 	 February	16	

Page 4 of 6	

4 Exercise	4:	Managing	Layout	
The	aim	of	this	exercise	is	to	learn	more	about	layout	using	the	‘pack’	layout	manager.	
The	principles	of	packing	are	described	in	the	additional	notes	at	the	end.	

The	program	exercise4.py	displays	the	following	(left	hand	picture	shows	the	original	
display	and	the	right	hand	side	shows	what	happens	when	the	window	is	resized):	

	
The	desired	behaviour	is	shown	below.	The	four	labels	are	positioned	at	the	corners	and	
the	labels	fill	the	space	when	the	window	is	resized.	

	
Exercise	4.1:	Arrange	the	labels	is	a	square	grid	
With	the	pack	layout	manager	this	means	introduces	extra	frames	so	that	the	labels	are	
in	the	frames	and	the	frames	are	in	the	top-level	window.	In	the	diagram	above,	the	
frames	have	a	border	so	they	can	be	seen.	
Exercise	4.2:	Support	resizing	

Use	the	‘expand’	and	‘fill’	attributes	of	the	pack	method	to	make	the	labels	grow	and	
expand	into	the	available	space.	There	is	more	guidance	in	code	comments.	

5 Exercise	5:	The	Drawing	Canvas	and	Events	
The	aim	of	this	exercise	is	to	learn	about	the	drawing	canvas	and	also	to	use	two	new	
types	of	events:	

1. Key	press	events	
2. Mouse	click	events	

CAS	London	CPD	Day	 	 February	16	

Page 5 of 6	

The	program	exercise5.py	displays	a	canvas	with	some	shapes:	

	
In	addition,	two	events	are	bound:		

• Pressing	the	key	‘h’		
• Clicking	the	left	mouse	button	

Exercise	5.1:	Draw	a	Square	where	the	mouse	is	clicked	
Instead	of	always	drawing	the	same	shapes,	use	the	mouse	to	draw	a	square:	the	top-left	
corner	of	the	square	goes	where	the	mouse	is	clicked.	

Exercise	5.2:	Change	the	shape,	colour	and	fill	
Use	keys	to	specify	the	shape,	colour	and	whether	the	shape	is	filled.	For	example:	

• Shape:	‘s’	for	square,	‘c’	for	circle	
• Filling:	‘F’	for	filled,	‘f’	for	unfilled	
• Colour:	‘y’	for	yellow,	‘r’	for	red	

Exercise	5.3:	Interface	Design	

Using	a	pencil	and	paper,	sketch	some	better	interfaces	to	draw	shapes.	Consider	either	
a)	how	to	show	what	the	current	drawing	options	are	or	b)	alternative	ways	to	specify	
the	shape,	colour	and	filling,	plus	other	features	that	could	be	useful.		

6 Additional	Notes	on	Layout	
When	a	widget	is	created	it	needs	to	be	positioned	inside	its	parent.	The	positioning	also	
needs	to	consider	the	possibility	that	the	window	may	be	resized.	Layout	is	the	
responsibility	of	a	layout	manager:	Tkinter	offers	a	choice	of	layout	managers.	

These	notes	consider	the	‘pack’	layout	manager.	It	is	simplest	to	get	started	with	and	
also	behaves	ok	for	resizing.	Other	layout	managers	are	‘place’	and	‘grid’;	the	latter	is	
often	recommended	for	more	complex	layouts.		

	 	

CAS	London	CPD	Day	 	 February	16	

Page 6 of 6	

The	following	two	example	program	fragments	illustrate	the	principles:	

Create three labels of given width

bA = Label(app, text="A", width=12, bg='red')
bB = Label(app, text="B", width=12, bg='yellow')
bC = Label(app, text="C", width=12, bg='blue')

Pack horizontally

Horizontal packing with
side = "left"
side = "right"
bA.pack(side='left')
bB.pack(side='left')
bC.pack(side='left')

gives	the	display:	

	
Whereas	the	vertical	packing		

Pack vertically

Vertical packing with
side = "top"
side = "bottom"
bA.pack(side='top')
bB.pack(side='top')
bC.pack(side='top')

displays:	

	
There	are	two	ways	to	control	layout	further	using	pack:	

1. Create	extra	frames	to	hold	widgets.	For	example,	to	position	widget	in	the	four	
quadrants	of	a	square,	create	frames	for	the	two	and	bottom	halves	and	pack	
these	vertically,	then	pack	the	widgets	horizontally	into	the	two	frames.			

2. Use	the	‘expand’	and	‘fill’	attributes	of	pack.		
a. Fill	(values	X,	Y,	BOTH)	determines	the	direction	in	which	a	widget	can	

grow	to	fill	available	space.	
b. Expand	(integer	value)	determines	whether	the	containing	frame	gives	

more	space	to	the	widgets	it	contains.	A	zero	value	means	no	expansion.	A	
positive	value	determine	the	relative	expansion	of	each	widget.	

