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Abstract—Performance-score synchronization is an integral
task in signal processing, which entails generating an accurate
mapping between an audio recording of a performance and
the corresponding musical score. Traditional synchronization
methods compute alignment using knowledge-driven and stochas-
tic approaches, and are typically unable to generalize well to
different domains and modalities. We present a novel data-driven
method for structure-aware performance-score synchronization.
We propose a convolutional-attentional architecture trained with
a custom loss based on time-series divergence. We conduct
experiments for the audio-to-MIDI and audio-to-image alignment
tasks pertained to different score modalities. We validate the
effectiveness of our method via ablation studies and comparisons
with state-of-the-art alignment approaches. We demonstrate that
our approach outperforms previous synchronization methods for
a variety of test settings across score modalities and acoustic
conditions. Our method is also robust to structural differences
between the performance and score sequences, which is a
common limitation of standard alignment approaches.

Index Terms—Performance-score synchronization, audio-to-
score alignment, convolutional neural networks, multimodal data,
time-series alignment, stand-alone self-attention

I. INTRODUCTION

THE alignment of time-series data corresponding to differ-
ent sources of information is an important task in signal

processing, with applications in a variety of scenarios such
as subtitle synchronization, performance analysis and speech
recognition. Performance-score synchronization is one such
alignment task that is aimed at computing the optimal mapping
between a performance and the score for a given piece of
music. Depending upon the task, the alignment computation
is either carried out online, known as score following, or
offline, known as performance-score synchronization or audio-
to-score alignment. In this paper, we focus on the offline
alignment task, i.e. performance-score synchronization. Tra-
ditional alignment methods are generally based on Dynamic
Time Warping (DTW) [1] or Hidden Markov Models (HMMs)
[2]. A particular limitation of DTW-based methods is the
inability to capture structural differences between the two input
sequences, since the alignments computed using DTW are con-
strained to progress monotonically through both the sequences.
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Similarly, the Markov assumption in HMMs limits contextual
modelling necessary for efficient alignment in the presence of
anomalies. Data-driven approaches have shown promise for
various signal processing tasks, including alignment [3], [4].
Recent methods have proposed the use of neural networks for
the similarity computation [5], [6], coupled with DTW for the
alignment computation. This paper furthers the development of
data-driven alignment approaches and proposes a neural archi-
tecture for learnt alignment computation, thereby eschewing
the limitations of DTW-based alignment.

We present a novel neural method for performance-score
synchronization, which is also robust to structural differ-
ences between the performance and the score. We propose
a convolutional-attentional encoder-decoder architecture, with
the encoder based on a convolutional stem and the decoder
based on a stand-alone self-attention block [7]. Our motivation
behind employing the stand-alone self-attention block, as
opposed to the more commonly used approach of an attention
computation on top of the convolution operation, is that the
stand-alone self-attention layers have proven to be effective
at capturing global relations in vision tasks when employed
in later stages of a convolutional network [7]. In addition
to proposing a novel architecture, we employ a customized
divergence loss function based on the differentiable soft-DTW
computation [8] to train our models. We conduct experiments
for two synchronization tasks involving different score modal-
ities, namely audio-to-MIDI alignment, i.e. aligning audio
to symbolic music representations, and audio-to-image align-
ment, i.e. aligning audio to scanned images of sheet music.
Our results demonstrate that the proposed method generates
robust alignments in both settings. The primary contributions
of this paper are summarized below:
• We present a novel neural architecture for learning

structure-aware performance-score synchronization.
• We demonstrate that combining stand-alone self-attention

layers with a convolutional stem outperforms multiple
alignment methods across different test settings.

• We demonstrate that our method effectively handles per-
formances containing structural deviations from the score.

• We demonstrate that the custom soft-DTW based di-
vergence is an effective loss function for training
performance-score synchronization models.

II. RELATED WORK

Traditional performance-score synchronization approaches
relied mainly on DTW [1], [9]–[11] or HMMs [12]–[15].
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Fig. 1: Schematic diagram illustrating our model architecture.
The output alignment path is plotted against the distance matrix for a simple example to aid visualization.

Methods were subsequently proposed that modified DTW
for optimizing alignment performance across various settings
[16]–[21]. With the advent of data-driven approaches, recent
methods have demonstrated the efficacy of learnt represen-
tations coupled with DTW-based alignment computation for
performance synchronization [5], [6], [22], [23]. A step further
are fully learnt methods, which have been explored for generic
multiple sequence alignment. These include Deep Canonical
Time Warping [24], the first deep temporal alignment method
for simultaneous feature selection and alignment; NeuMATCH
[25], an alignment method based on LSTM blocks, and more
recently, Neural Time Warping [26] that models multiple
sequence alignment as a continuous optimization problem.
While neural methods have recently been explored for score
following [27], [28], their application to performance-score
synchronization remains relatively unexplored.

An approach related to our method is the audio-conditioned
U-net for position estimation in sheet images [29], later
adapted for score following by addressing the temporal aspects
of the task [28]. While they employ a U-net architecture and
focus on score following, we present a hybrid convolutional-
attentional architecture and focus on performance-score syn-
chronization. We also employ a custom loss to train our
models. Additionally, our method is able to handle struc-
tural deviations from the score, which is a limitation of
their model. Approaches to specifically tackle structural dif-
ferences in audio-to-score alignment include JumpDTW
[30], Needleman-Wunsch Time Warping [31] (NWTW ) and
progressively dilated convolutional neural networks [4]. Our
method differs from these in that we do not explicitly model
the structural deviations, and our architecture learns to model
them inherently while predicting the alignment. Additionally,
the alignment computation is performed by our network itself,
rather than relying on a dynamic programming framework.

III. PROPOSED METHOD

We model the performance-score synchronization task as
a sequence prediction task, given the two input sequences
corresponding to the performance and score respectively.
However, rather than relying on recurrent neural networks

or Transformers [32] and predicting the output sequence
one token at a time, we propose a convolutional-attentional
architecture that predicts the entire alignment path in a one-
shot fashion. This allows the model to capture long-term
dependencies and also handle structural differences between
the performance and score sequences. The architecture of
our model is depicted in Figure 1. Our network operates
on the cross-similarity matrix between the performance and
score feature sequences and predicts the (x, y) co-ordinates
corresponding to the frame indices that make up the optimal
alignment path. Since the X-axis of the matrix corresponds to
the performance, it progresses linearly in the alignment and
the goal is essentially to predict the sequence of y co-ordinates
(i.e. frame indices in score axis) that determine the alignment
path. Formally, let X= (x1, x2, ..., xp) and Y = (y1, y2, ..., yq)
be the feature sequences corresponding to the performance
and score respectively. The network is trained to predict the
sequence of frame indices Ŷp= (ŷ1, ŷ2, ..., ŷp), denoting the
path taken by the performance X through the score Y .

Our network has an encoder-decoder architecture, with
the encoder comprising four convolutional and downsampling
blocks, and the decoder comprising an upsampling block,
a stand-alone self-attention (hereafter abbreviated as SASA)
block and a fully connected block. It must be noted that the
SASA block employed by our decoder is different from the
commonly explored combination of an attention computation
applied on top of a convolution operation [33], or the self-
attention layer from the sequence to sequence Transformer
architecture [32]. The SASA block borrows ideas from both
convolution and self-attention, and is able to replace spatial
convolutions completely and effectively integrate global in-
formation, especially when deployed in the later stage of a
convolutional neural network [7]. As part of our upsampling
strategy, we employ the max-unpooling operation [34] as
opposed to the transposed convolution, which has been shown
to result in artifacts [35]. We store the indices of the highest
activations during pooling and pass these recorded locations to
the upsampling block, where the max-unpooling places each
element in the unpooled map according to the mask, instead
of assigning it to the upper-left pixel.
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The upsampled output is passed on to the attentional block,
comprising two SASA layers. For each pixel (i, j) in the
upsampled output, we compute the self-attention relative to
the memory block Mk(i, j), which is a neighbourhood with
spatial extent k centered around (i, j), as follows:

yij =
∑

a,b∈Mk(i,j)

softmaxab(q
ᵀ
ijkab + qᵀijra−i,b−j) vab (1)

where qij =Wqxij are the queries, kab =Wkxab the keys and
vab = Wvxab the values computed as linear transformations
from the activations at the (i, j)th pixel and its memory
block. The displacements from the current position (i, j) to
the neighborhood pixel (a, b) are encoded by row and column
offsets, given by ra−i and rb−j respectively. We employ four
attention heads and split the pixel features depthwise into four
groups of the same size. The attention is then computed on
each group individually with different matrices W and the
results are concatenated to yield the pixel-wise attention values
yij . This computation is repeated twice and the output is
passed through a fully connected block with two dense layers
to predict the alignment path. A graphic elaboration can be
found in Figure 2 in the supplementary material.

We employ a time-series divergence loss function to train
our models, as opposed to using a cross entropy loss. The
primary motivation behind this loss is that it allows us to
minimize the overall cost of aligning the performance and
score feature sequences by comparing the paths rather than the
feature sequences using a positive definite divergence. Our loss
function captures the divergence between the predicted and
ground truth alignment sequences, based on the soft-DTW [8]
distance. We employ soft-DTW since it offers a differentiable
measure of the discrepancy between the two sequences. Given
the predicted alignment sequence Ŷ = (ŷ1, ŷ2, ..., ŷp) and the
ground truth alignment sequence Y = (y1, y2, ..., yr), we
compute the soft-DTW distance Dλ(p, r) as follows:

Dλ(p, r) = e(p, r) +minλ


Dλ(p, r − 1)

Dλ(p− 1, r)

Dλ(p− 1, r − 1)

(2)

where e(p, r) is the Euclidean distance between points ŷp
and yr, and minλ is the soft-min operator parametrized by a
smoothing factor λ, as follows:

minλ{m1,m2, ...,mn} =

{
min{m1,m2, ...,mn} λ = 0

−λ log
∑i=n
i=1 e

−mi/λ

(3)
We then normalize Dλ(p, r) in order to make it a positive
definite divergence [36], as follows:

SDλ(Ŷ , Y ) = Dλ(Ŷ , Y )− 1/2(Dλ(Ŷ , Ŷ )+Dλ(Y, Y )) (4)

This ensures that SDλ(Ŷ , Y ) > 0 for Ŷ 6= Y and
SDλ(Ŷ , Y ) = 0 for Ŷ = Y , yielding a completely learnable
framework since SDλ(Ŷ , Y ) is non-negative and differen-
tiable at all points. Note that we only employ the distance
metric Dλ(p, r) from the soft-DTW computation in Equation
2, and not the alignment path itself. The alignment computa-
tion is carried out by our neural framework, by minimizing
the custom divergence loss SDλ(Ŷ , Y ).

IV. EXPERIMENTS AND RESULTS

We conduct experiments for two alignment tasks pertinent
to different score modalities, namely audio-to-MIDI align-
ment and audio-to-image alignment. For each performance-
score pair, the cross-similarity matrix is computed using the
Euclidean distance between the chromagrams for audio-to-
MIDI alignment, and the Euclidean distance between learnt
cross-modal embeddings [5] for audio-to-image alignment.
We employ librosa [37] for computing the chromagrams and
the cross-similarity matrices. We employ a sampling rate of
22050 Hz, a frame length of 2048 samples and a hop length
of 512 samples for the chromagram computation. On the
encoder side, the output of each 2D convolution is batch
normalized [38] and passed through a Rectified Linear Unit
(ReLU) non-linearity, before being passed on to max-pooling.
We employ a dropout of 0.4 for the fully connected layers to
avoid overfitting. The output of the final layer is a vector of
length 2048, encoding the y-indices making up the alignment
path. During training and testing, each performance feature
sequence is scaled to length 2048, and the score feature
sequence is padded accordingly. These are then rescaled back
to the original dimensions for comparing the predicted align-
ment with the ground truth. It must be noted that the output
vector is sufficient to capture the length of all pieces in the
data, since the audio-to-MIDI task has beat-level annotations
(less than 2048 per piece), and the audio-to-image task has
notehead-level annotations (also less than 2048 per piece).
Since the entire vector is predicted in a one-shot manner, we
do not encounter instability issues and hence do not explore
smoothing for refining the predicted alignment path.

We employ two publicly available datasets for our ex-
periments on the two alignment tasks. For the audio-to-
MIDI alignment task, we employ the Mazurka-BL dataset
[39]. This dataset comprises 2000 recordings with annotated
alignments at the beat level. The recordings correspond to
performances of Chopin’s Mazurkas dating from 1902 to the
early 2000s, and span various acoustic settings. We randomly
divide this set into sets of 1500, 250 and 250 recordings
respectively, forming the training, validation and testing sets.
We compare the results obtained by our models with MATCH
[1], JumpDTW [30], SiameseDTW [6], DilatedCNN [4], and
the Deep Canonical Time Warping (DeepCTW) method [24].
We also conduct ablative studies to analyze the specific
improvements obtained by employing SASA and the custom
loss function in our architecture. To this end, we replace the
SASA layers in our model with convolutional layers keeping
the input and output dimensionalities constant. The resulting
Conv-Deconv models are abbreviated as CDx, with x denoting
the loss function employed, i.e. CE for the cross-entropy loss
and custom for the custom loss. Our convolutional-attentional
models are similarly abbreviated as CAx. We compute the
percentage of beats aligned correctly within error margins
of 50, 100 and 200 ms respectively for each piece, and
report the alignment accuracy [40] obtained by each model
averaged over the entire test set in Table I. We also conduct
significance testing using the Diebold-Mariano test [41] and
perform pairwise comparisons of all model predictions with
the CAcustom predictions for each error margin (Table I).
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Model Overall Structure
<50 ms <100 ms <200 ms <100 ms

MATCH [1] 74.6* 79.5* 85.2* 67.4*

JumpDTW [30] 75.2* 80.4* 86.7* 76.2*

SiameseDTW [6] 77.9 83.3* 89.5* 72.8*

DeepCTW [24] 76.1* 81.6* 88.9* 75.6*

DilatedCNN [4] 77.5* 82.4* 90.4* 80.3

CDCE 72.8* 80.1* 85.3* 71.9*

CDcustom 74.1* 81.7* 87.5* 74.2*

CACE 76.4* 84.1* 90.9* 76.8*

CAcustom 78.7 85.2 92.6 79.5

TABLE I: Audio-to-MIDI alignment accuracy in % on the
Mazurka-BL dataset. Best in bold, second best underlined.
∗: significant differences from CAcustom, p < 0.05

For the audio-to-image alignment task, we employ the
Multimodal Sheet Music Dataset [27], a standard dataset for
sheet image alignment analysis. It comprises polyphonic piano
music for 495 classical pieces, with notehead-level annotations
linking the audio files to the sheet images. We divide this set
randomly into sets of 400, 50 and 45 recordings respectively,
forming the training, validation and testing sets. We compare
the results obtained by our model with contemporary audio-to-
image alignment methods Dorfer et al. [5], [3], Henkel et al.
[28], and the DilatedCNN model [4]. For comparison with
Henkel et al. [28], we interpolate their predicted sheet im-
age co-ordinates to the time domain from the ground truth
alignment between the note onsets and the corresponding
notehead co-ordinates in the sheet images. We then compute
the alignment accuracy obtained by each model by calculating
the percentage of onsets aligned correctly within the error
margins of 500 ms, 1 s and 2 s respectively, and report the
results averaged over the test set along with the significance
tests in Table II. Note that we employ the same feature
representation [5] for all audio-to-image methods.

In addition to the overall accuracy on the test sets, we also
report alignment results for structurally different performance-
score pairs for both datasets. In order to specifically test
the model performance on structure-aware alignment for both
the tasks, we generate 20% additional samples that contain
structural differences between the score and the performance.
These are generated using a randomized split-join operation
using the audio from the respective datasets. We append 50%
of these samples to our training sets and employ the other
50% as our testing sets. The ground truth alignments are
extrapolated from the original alignments using the split-join
locations. The two best performing models for each evaluation
setup are highlighted in Tables I and II.

V. DISCUSSION AND CONCLUSION

The results obtained by our method for audio-to-MIDI
alignment are given in Table I. Overall accuracy on the
Mazurka-BL dataset suggests that our best model outper-
forms the DTW-based frameworks MATCH, JumpDTW and
SiameseDTW by up to 7% (Table I, rows 1-3) as well as
the neural frameworks DeepCTW and DilatedCNN ) by
up to 4% (Table I, rows 4-5) for all error margins. The

Model Overall Structure
<0.5 s <1 s <2 s <1 s

Dorfer et al. 2017 [5] 73.5* 81.2* 84.7* 67.8*

Dorfer et al. 2018 [3] 76.4* 84.5* 89.3* 70.3*

DilatedCNN [4] 82.8* 87.6* 90.8* 78.5

Henkel et al. 2020 [28] 84.6 88.4* 90.1* 72.1*

CAcustom 85.2 91.5 92.9 77.4

TABLE II: Audio-to-Image alignment accuracy in % on the
MSMD dataset. Best in bold, second best underlined.
∗: significant differences from CAcustom, p < 0.05

comparison with contemporary approaches reveals that our
method yields higher improvement over the state-of-the art for
coarse alignment (Error margins > 50ms) than for fine-grained
alignment (Error margin < 50ms). Moreover, the ablative
studies suggest that the convolutional-attentional architecture
(CA) outperforms the conv-deconv architecture (CD) by 3-
5%, with higher improvement (4-6%) observed on structurally
different pieces (Table I, column 4). Additionally, the custom
loss yields an improvement of 1-3% over the cross-entropy
loss, for both the CD and CA architectures (Table I, rows 6-9),
with the CAcustom model yielding the best overall performance.
The experimentation for audio-to-image alignment similarly
reveals that CAcustom outperforms Dorfer et al. [3], [5] and
DilatedCNN [4] in overall alignment accuracy by 2-10% and
Henkel et al. [28] by 1-4% for all error margins (Table II,
columns 1-3). A further advantage of our method over Henkel
et al. [28] is the ability to work with pieces containing several
pages of sheet music, as opposed to only one. Our model
is also able to handle structural deviations from the score,
which is a limitation of the majority of alignment approaches,
including Henkel et al. [28] (Table II, column 4).

Experiments specifically on structure-aware alignment
demonstrate that our method outperforms all approaches ex-
cept DilatedCNN [4] for both the tasks by 3-12% (Tables
1, 2, column 4). Our model CAcustom demonstrates compa-
rable results to DilatedCNN [4], without explicitly modeling
structure, and while being trained on limited structure-aware
data. The ablative analysis demonstrates that the CAx models
yield better structure-aware alignment than the CDx models
(Table I, rows 6-9, column 4), confirming that the stand-
alone self-attention layers in the decoder facilitate long-term
contextual incorporation. Manual inspection of the alignment
plots corroborated that CAcustom was able to capture structural
deviations such as jumps and repeats. The reader can find such
examples in Figure 3 in the supplementary material.

To conclude, we demonstrate that the proposed
convolutional-attentional architecture trained with a custom
time-series divergence loss is a promising framework
for performance-score synchronization. Our approach is
compatible with both multi-modal and uni-modal data,
since the similarity and alignment computations are done
separately. Our method is also robust to structural differences
between the performance and score sequences without explicit
structure modeling. In the future, we would like to explore
multi-modal methods that work directly with raw data, and
dynamic neural methods that can adjust to the alignment
granularity needed for the task at hand.



SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS, OCTOBER 2021 5

REFERENCES

[1] Simon Dixon, “An on-line time warping algorithm for tracking musical
performances,” in International Joint Conference on Artificial Intelli-
gence (IJCAI), 2005, pp. 1727–1728.

[2] Meinard Müller, Fundamentals of Music Processing: Audio, Analysis,
Algorithms, Applications, Springer, 2015.

[3] Matthias Dorfer, Florian Henkel, and Gerhard Widmer, “Learning to
listen, read, and follow: Score following as a reinforcement learning
game,” in International Society for Music Information Retrieval Con-
ference (ISMIR), 2018.

[4] Ruchit Agrawal, Daniel Wolff, and Simon Dixon, “Structure-aware
audio-to-score alignment using progressively dilated convolutional neu-
ral networks,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 571–575.

[5] Matthias Dorfer, Andreas Arzt, and Gerhard Widmer, “Learning
audio-sheet music correspondences for score identification and offline
alignment,” Proceedings of the 18th International Society for Music
Information Retrieval Conference (ISMIR), 2017.

[6] Ruchit Agrawal and Simon Dixon, “Learning frame similarity using
Siamese networks for audio-to-score alignment,” in 28th European
Signal Processing Conference (EUSIPCO). IEEE, 2020, pp. 141–145.

[7] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello,
Anselm Levskaya, and Jonathon Shlens, “Stand-alone self-attention in
vision models,” 33rd Conference on Neural Information Processing
Systems (NeurIPS), 2019.

[8] Marco Cuturi and Mathieu Blondel, “Soft-DTW: A differentiable loss
function for time-series,” in International Conference on Machine
Learning. PMLR, 2017, pp. 894–903.

[9] Meinard Müller, Frank Kurth, and Tido Röder, “Towards an efficient al-
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