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ABSTRACT
This paper presents an investigation into musicians’ ability
to control sound synthesiser parameters using various inter-
faces. The principal aim was to compare separate, 1D param-
eter controls (touchscreen sliders) to multidimensional con-
trollers (an XY touchpad for 2D, the Leap Motion for 3D).
Subjects had to match a target sound as quickly and accu-
rately as possible. Results show that after about two hours
of practice, the XY pad is 9% faster than two sliders for
no accuracy loss, and the Leap is 17% faster than 3 sliders
with 9% accuracy loss. The multidimensional controllers im-
proved most with practice. A new perspective on Fitts’ in-
dex of difficulty is presented: “Index of Search Space Reduc-
tion” (ISSR). ISSR and retrospective accuracy thresholds on
the search trajectory are used to obtain straight line plots and
throughput values. These plots reveal that the Leap’s speed
improvement was mainly due to reaction time, but the XY
pad traversed the space faster.
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INTRODUCTION
Human-computer interaction is generally carried out in a se-
rial fashion. Predominant interaction models tend to assume
a single action at a time. However, some domains require
more parallelism in the communication channel between the
human and machine. One such field is music. To watch the
performance of a concert pianist is to witness a virtuoso dis-
play of “space-multiplexed” [8] user input. The throughput
of this interaction has been estimated at 300 bit/s, contrasting
with about 50 bit/s for a good typist, and 5 bit/s for mouse
pointing [4]. The increase in speed that comes with virtuosity
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is obvious, but usually comes at a cost in training time: some
tens of thousands of hours in the pianist’s case [6]. So a key
question is how much practice is required to reach a through-
put greater than that of a standard serial interface? This ex-
periment investigates this issue by looking at interaction with
a synthesiser, based on a simplified version of a sound design
task. Controllers with 1, 2 and 3 DOF (degrees of freedom)
are compared for speed, accuracy and throughput.

Sound Design and the Digital Musical Instrument (DMI)
The task of sound design in music, film, or computer games
is a challenging one. Synthesisers and effects processors of-
ten have tens or hundreds of parameters, leading to a huge
combinatorial search space. Artists search these large spaces
to hand-craft instruments with complex timbres and textures.
Often, only a small subset of the parameter space produces
pleasing output. Parameters may interact in non-linear and
unpredictable ways, and the perceived value of certain sound
will change with context. This poses a challenge to interface
designers: how to make the search as productive as possible?

The majority of computer music production is carried out
using a Digital Audio Workstation (DAW). Despite the in-
creasing sophistication of the sound generators, most DAW
interfaces are built around metaphors that hark back to mid-
20th century studio technology, namely potentiometer knobs,
faders and switches. When operated with a mouse, these
GUI items necessitate one at a time adjustments. DAWs
are extremely powerful and flexible, but acknowledged to be
less musically “expressive” than traditional instruments [17],
hence the interest in using high DOF [26] controllers for Dig-
ital Musical Instruments (DMIs). This is one focus of the
“New Instruments for Musical Expression” research field [20,
2]. Expressiveness is a difficult term to define, but gener-
ally implies real-time control of the dynamics and timbre of
notes. The more complexity and nuance that can be imparted
to a musical event, the greater the expressive range. This im-
plies a link between expressiveness and information transfer
rate. Information “throughput” has been discussed in relation
to synthesiser interfaces [19], but has not yet been measured
experimentally.

Synthesis parameters often correspond to, or at least affect,
“perceptual dimensions”. Perceptual dimensions have been
shown to lie along a continuum between “integral” and “sep-
arable” [9]. Integral dimensions tend to be perceived and pro-
cessed holistically [14] and not analysed in isolation, for in-



Figure 1. Screen shot of 3 slider interface during the search task. The
“Target” button plays the target sound, the “Current” button plays
the sound that is being adjusted using the sliders. When the user has
matched the two sounds, “Submit” is pressed.

stance hue and brightness. Separable dimensions are those
dimensions that are perceived and most easily manipulated
separately, for instance size and colour. Timbre dimensions
are highly integral. This structure of perceptual space has
been shown to be important for HCI by Jacob et al. [13]. This
experiment revealed that the integral dimensions were best
controlled by multidimensional controllers, and separate one-
dimensional controllers suited separable dimensions. They
also proposed a general principle that the structure of the in-
terface must match the perceptual structure of the task do-
main. This has ramifications for timbre navigation and DMI
design, as it implies that multidimensional controllers will be
more suitable. This was tested in [22], but inaccuracies of
early 3-D controllers made results inconclusive. Another in-
fluential result is [12], showing that complex many-to-many
mappings produced better results in a sound matching task
than one-to-one mappings. These complex mappings also
showed more improvement with practice. A good qualitative
analysis of a 4D bimanual timbre controller is found in [1].

In [23] recommendations are made for improving DMI re-
search by borrowing tools from HCI. Fitts’ law is men-
tioned as having potential, but has not yet been fully inves-
tigated, perhaps due to lack of a easily applicable methodol-
ogy. Whilst there are many analogies between visual target
pointing and sound target matching tasks, there are a number
of differences and extra challenges with an auditory search.
These differences must be considered when finding an ana-
logue of Fitts’ law for sound target acquisition:

1. Delayed Assessment. Differences in position can be as-
sessed virtually instantaneously. Sounds, however, take
time to listen to. Some control adjustments may have de-
layed effects, particularly time envelope controls. Differ-
ences between two sounds cannot be easily assessed with
them playing simultaneously (with the exception of pitch:
identifying intervals is a core part of musical training).

Figure 2. XY pad trial. A successfully located sound has been submitted.

2. Anisotropy. Timbre space does not look the same in all
directions. Pitch, timbre and temporal features are all
very different perceptual qualities. In contrast, 3D space
can be considered isotropic, although evidence for some
anisotropy in pointing tasks has been found [18].

3. Low sightedness: Differences in sounds are harder to
judge, and take far more effort to process that differences
in position. Parameter spaces could be said to vary be-
tween being “sighted”, where the distance and direction to
the target is predictable, and “blind” where it is impossible
to know which direction to move in, or how far away one
is from the target. This may depend on the user’s expertise.

4. Timbre space possesses a dimensionality far higher than
that of ordinary space.

Research into this problem may also be applicable to many
other areas where large numbers of unpredictable parame-
ters need to be adjusted to obtain creatively satisfying results:
graphic design, animation, architecture and so on.

EXPERIMENTAL METHOD
The study was a within-subjects repeated measure design. 8
subjects carried out 8 blocks of 94 sound matches. Whilst it
is generally better to use more subjects for less trials, a pi-
lot study revealed that performance was still improving after
numerous runs, so a more longitudinal study was required.
“Expert” participants were selected, with at least 5 years ex-
perience of music, sound synthesis or working with audio.
They were paid 30 GBP for participating. To avoid fatigue,
participants completed four blocks on one day, and four the
following day. Table 1 shows the sequence of trials for a
single block. All users conducted the trials in this order,
which was designed to ramp up in difficulty, whilst balanc-
ing the multidimensional and separate slider conditions. The
sequence could have been better balanced or randomised, but
at the expense of a coherently gamified user experience. It
was assumed that after 8 blocks the order effects would have
balanced out, but this could be a limitation of the study.



REP DIM UI PRC VIS MEM PIT DEC FLT
1 1 Slidr Y - - 1 - -
1 2 XY Y - Y 1 2 -
1 3 Leap Y Y - 1 2 3
2 1 Slidr - - - 1 - -
2 1 Slidr - - - - - 1
2 1 Slidr - - - - 1 -
4 2 Slidr - - - 1 2 -
4 2 XY - - - 1 2 -
4 2 XY - - - - 1 2
4 2 Slidr - - - - 1 2
8 3 Leap - - - 1 2 3
8 3 Slidr - - - 1 2 3
1 1 Slidr - Y - 1 - -
1 1 Slidr - Y - - - 1
1 1 Slidr - Y - - 1 -
2 2 XY - Y - 1 2 -
2 2 Slidr - Y - 1 2 -
4 3 Slidr - Y - 1 2 3
4 3 Leap - Y - 1 2 3
2 1 Slidr - - Y 1 - -
2 1 Slidr - - Y - - 1
2 1 Slidr - - Y - 1 -
4 2 XY - - Y 1 2 -
4 2 Slidr - - Y 1 2 -
4 2 Slidr - - Y - 1 2
4 2 XY - - Y - 1 2
8 3 Slidr - - Y 1 2 3
8 3 Leap - - Y 1 2 3

Table 1. The trial sequence for one block. All blocks for all users ran
in this order. REP column gives the number of repetitions of this trial.
PRC indicates a practice run, not scored and not included in results.
Controlled conditions were: DIM: number of parameters, UI: interface
type, VIS: Visible target, MEM: only one listen to target sound. PIT:
indicates which control (if any) operated pitch, DEC: decay time, FLT:
filter cut-off. For Multi-D controls 1, 2 and 3 correspond to X,Y and Z
dimensions respectively.

The sound generator was a basic digital subtractive synthe-
sizer, constructed in Pure-Data [21]. The sound could be de-
scribed as a short “pluck” with varying pitch, duration and
brightness, as often heard from classic synths such as the
Minimoog. The application ran on a multi-touch tablet, the
hand’s coordinates being sent from the Leap via a MIDI con-
nection. The following parameters were sent to the synth as
7-bit MIDI CC1 values:

1. Pitch: a one octave range, midi note 40 (E3) to 52 (E4).

2. Decay time: this affected both the decay of the amplitude,
and also the rate of decay of high frequencies. Maximum
note length was 500ms.

3. Filter cut-off: the cut-off frequency for the resonant low-
pass filter.

The Leap Motion is a device that can track the position and
shape of hands and fingers. It appears to be the most spa-
tially and temporally accurate consumer device for this pur-
pose [24]. Skeletal hand tracking can generate at least 20
DOF, however the number of parameters was limited to 3:
the XYZ position of the hand. More parameters would likely
have increased the difficulty of the search beyond many par-
ticipant’s capabilities.
1Musical Instrument Digital Interface, Continuous Control

For each trial, after an initial 3 second countdown the user
was presented with two sounds: the “target” and the “ad-
justable” sound. Both sounds parameters were randomised,
but with a minimum Euclidean distance between the two2.
The task was to alter their adjustable sound so that it matched
the target sound. For example, the simplest trial featured a
single slider controlling pitch: the user had to move this slider
up or down until the pitches matched, and then press the sub-
mit button. Participants were told that speed and accuracy
were equally important, and this was reflected in the scoring
system. Controls were adjusted with the right hand, and the
results heard by retriggering the sounds with the left3. In the
standard test, either sound could be triggered whenever the
user wished. In the target sound memorisation test (Table 1,
MEM condition) the target button would disappear after a sin-
gle listen. The intention behind this test was to more closely
approximate a realistic sound design task, where the user may
have a sound “in their head” that they wish to create, but was
assumed to be a more difficult condition due to memory fade.

When the user was happy that their settings matched the tar-
get, they would press the “submit” button (centre bottom Fig.
1) and were given a score and a visual indication of where the
target really was (Fig. 2). A small prize was offered for the
best score for one block. Participants stated that “gamifica-
tion” of the task increased their motivation and engagement.

A number of tests were control tests with a visual target (Ta-
ble 1, VIS condition). The user simply had to line the controls
up with this visual indicator, the sound being irrelevant. This
was to test for interface effectiveness independent of the more
complex perceptual aspects of sound matching. In the Leap
motion case a 3D scene was displayed on the touch-screen,
with moveable “jack” crosshairs to be aligned.

For the 3D trials, parameters 1-3 were always assigned to the
x (left/right), y (forward/backward) and z (up/down) axes re-
spectively. The 2D tests alternated between pairs of param-
eters 1 & 2 and 2 & 3. The 1D tests alternated between all
3 parameters. There were an equal number of trials for 2D
vs. 3D tasks, sliders vs. multidimensional control types, and
normal vs. target memorisation conditions.

The 1D controls were 10cm vertical sliders on the tablet
screen. The 2D XY pad’s height and width was also 10cm.
Users did not have to pick up the position indicator from its
current position before moving it. Unfortunately this meant
losing data in the VIS scenario, as users could just tap the tar-
get and hardly any of the trajectory would be recorded. The
iPad was directly in front of the user, and the Leap was po-
sitioned 20cm to the right of the top right corner of the iPad.
The size of the Leap’s active volume was 30cm cubed, 15cm
above the device/table. All interaction movements and events
were logged at a sample rate of 50Hz.

2For the Leap, the initial settings would correspond to wherever the
users hand was when the test started. This start position was taken
into account when calculating ISSR from distance ratios.
3In the pilot test the sounds played automatically in alternation (re-
ducing variability in this part of the task), but people found it too
hard to determine which sound was which.



INTERPRETING THE DATA: FITTS’ LAW
Fitts’ law applies to rapid aimed movements in a single di-
mension towards a visible target. This law has been extended
for more than one dimension [16, 18, 10], but it has not been
investigated in non-visuospatial parameter spaces. It is a lin-
ear relation between movement time, MT , and an “index of
difficulty”, ID :

MT = a+ b× ID . (1)

The ID is a measure of task difficulty in bits. It is calculated
from the target width W , and the distance moved to reach the
target D. Fitt’s original formula for ID [7] can be derived (or
at least motivated) by considering the movement as a series
of smaller movements with iterative corrections [3, p. 53].
However, there are alternative formulae, and even power laws
fit the data well in many cases. The debate continues [5, 25],
but the currently accepted standard is derived by considering
the nervous system as a noisy communication channel [15]:

ID = log2

(
D

W
+ 1

)
(2)

Fitts’ law can be used to predict the time taken for various
common interaction tasks, such as moving a cursor to a GUI
button. It can also be used to compare the effectiveness of
input devices, via the “throughput”: the rate at which a user
can input information to the system, TP = ID/MT .

Throughput seems like it should be a useful measure of
progress in this target acquisition task. The question is if
the prerequisites for Fitts law apply for this experiment. The
search is certainly not “rapid”, and may not be “aimed”,
due to low sightedness. The size of a sonic target is im-
possible to specify to the user, therefore they cannot imple-
ment different accuracy levels to provide a range of values
for a regression line. One can calculate W from the stan-
dard deviation of the results to obtain the “effective width”
We = 4.133σ. However, the high variance in accuracy gener-
ates extremely low ID values (for the 3D search in this study
σ ≈ 10, D/We ≈ 64/40, ID ≈ 2bits), and this single error
distribution would not provide a range of difficulties. On the
other hand, we carried out a large number of trials, and have
a record of all the search paths, many resulting in high ac-
curacies. Therefore, it would be helpful to have a method of
extracting useful information from these accurate trials with-
out artificially selecting unrepresentative data.

Rather than taking the index of difficulty as a independent
variable set by the experimenter, we need an equivalent
quantity that can quantify, post-hoc, the amount of success
achieved at a certain task in a certain time. How can we
measure the information input without recourse to an end
point noise distribution, and how can we extend it to an n-
dimensional control space? Can we meaningfully compare
information input across different control dimensionalities?
We approach these problems by deriving an information mea-
sure from “search volume reduction”, presented in the next
section.

V1

V2

xt

x1

x2
path a

d1

d2

Pn

path b

Figure 3. Search space reduction. The target is xt, x1 and x2 are the
start and end points of the movement along path a. V1 and V2 are the
volumes associated with distances to target d1 and d2. The logarithm of
the ratio between these two volumes gives a measure of information gain.
Summing over all the steps of b gives the same amount of information
gain as a (Eq. 5).

Index of Search Space Reduction (ISSR)
Both Fitts’ and Hick’s law [11] are motivated by an assump-
tion of constant information flow through the nervous system.
For a human interacting with a computer, this information
then flows into the interface, and ultimately to the data arti-
fact that is to be manipulated. The main motivation for devel-
oping ISSR is that, for content creation tasks, the ideal point
at which to measure information flow is “where the rubber
hits the road”: precisely how it alters the data toward some
desired state. Rather than looking at the capacity of the mo-
tor channel, we look at the reduction in the entropy of the
point(s) in parameter space.

For an n-dimensional parameter space Pn, a start point x1,
an end point x2 and a target point xt we first calculate the
distances to the target before and after a movement,
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Figure 4. Time-to-threshold is calculated from the last crossing of a dis-
tance threshold. In this 1D case search space is effectively quartered,
ISSR = 2 bits, MT = 260 samples (5.2 seconds).



d1 = ‖xt − x1‖, d2 = ‖xt − x2‖.

We define the search space reduction factor R as the ratio
of the n-volumes corresponding to radii of the distances (see
Fig. 3). Volume is calculated as V = Cdn. The exact shape
and size of the volume does not in fact matter, as the multi-
plier C cancels:

R =
V1
V2

=
d1

n

d2
n .

For a path through a space towards a target, the remaining
search space will be whatever volume the remaining search
path is restricted to.

In general, any search task can be said to be a reduction of a
set of possibilities. For an task involving a fixed number of
options, the entropy reduction (or information conveyed) by
a choosing of a subset of these possibilities will be the loga-
rithm of the number of possible states before the choice was
made divided by the number of possible states afterwards. If
the remaining search volume is reduced by a factor of two,
then we have successfully completed one bit of the search.
This gives the “index of search space reduction” (renamed
from index of difficulty to avoid confusion),

ISSR = log2 (R) = log2

(
d1

n

d2
n

)
= n log2

(
d1
d2

)
. (3)

Whilst a negative “difficulty” seems meaningless, it seems
reasonable to say that moving away from the target results
in lost information, and ISSR < 0 when d1 < d2. If no
progress is made and d1 = d2, then ISSR = 0. For MT , de-
pendence on dimensionality is simple: a constant multiplier
of the gradient b,

MT = a+ bn log2

(
d1
d2

)
. (4)

In fact this alternative derivation, for the one dimensional
case, gives us Fitts’ original equation [7]: substituting n = 1,
D = d1 and taking the target width as twice the final distance
to the target centre, W = 2d2 we get

MT = a+ b log2

(
2D

W

)
.

Interestingly, in 3D it is also yields a very similar equation
to the change in entropy of a isothermally compressed gas,
∆S = −Nk log (V2/V1), N and k being constants. So we
might consider our interaction data set, a coalescing cloud of
search paths, as analogous to the paths of a gas particles in a
shrinking box.

A further reassuring property of the ISSR is that it conserves
information, i.e. the total information gain of a search path
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Figure 5. Average time taken to reach a given Euclidean distance thresh-
old for each interface condition, day 2. Whilst different dimensionalities
may not be directly comparable here, they are shown on the same plot
for brevity. Whiskers display 95% confidence ratios at points where dif-
ference between interfaces is significant.

can be considered as the sum of the information of all its sub-
paths, irrespective of how it is divided. The sum of informa-
tion for M steps is

ISSR =

M−1∑
m=1

n log2

(
dm
dm+1

)

= n

M−1∑
m=1

(
log2 (dm)− log2 (dm+1)

)
.

All the terms cancel except the first dm and the last dm+1

term, giving

ISSR = n log2

(
d1
dM

)
. (5)

This is identical to Eq. 3 for the start and end points of the
whole path. It is difficult to see how the ID in Eq. 2 can
conserve information in this way.

What difference will this formula give when navigating the
search space using one parameter at a time rather than with
a multidimensional controller? In the separate case, the total
navigation time will be just the sum of navigation times for
each 1D control, from Eq. 4:

MT tot = nasep + nbsep log2

(
d1
d2

)
. (6)
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Figure 6. Distributions of log speed and accuracy results for the two
parameter case, on the second day of the test. The XY-pad is as accurate
as the sliders, but has more fast results under 5 seconds, resulting in a
small but significant difference.

In the multidimensional case, however,

MT tot = aint + nbint log2

(
d1
d2

)
. (7)

If we assume the difficulty of progress through the space is
the same bsep = bint, then the only difference between the
two formulae will be an offset due to acquisition time. If
aint < nasep, then integral controllers will be faster. In other
words, any slow down seen in the separate case should be
entirely explained by a constant offset time, for instance, how
long it takes people to swap between sliders.

Alternatively, in light of the result in [13], it seems possi-
ble that diagonal movements require quite different cognitive
processes, and bint 6= bsep.

Time-To-Threshold Plots
We would like a throughput measure that also makes use of all
the search path trajectory data, rather than just its end point.
As an example of this approach, Jacob et. al. [13] performed
a retroactive analysis of the search trajectory that measured
the time taken to reach various accuracy thresholds (or stop-
ping criteria). This produces a series of simulated experi-
ments with different target sizes. Figure 4 shows a plot of
Euclidean distance to target for an example trial, and shows
the last crossing of an accuracy threshold. We can set as many
of these levels as we wish, and average many trials to get a
mean time-to-threshold. One can then produce plots of time
against accuracy (e.g. Fig. 5). For our purposes, these plots
have a number of issues:
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Figure 7. Speed and accuracy results for the three parameter case (day
2). Accuracy is slightly less with the leap but it yields more results under
7 seconds.

1. The lines often curve up steeply at smaller thresholds.
Straight lines would be preferable, in order to obtain Fitts’
law constants a and b.

2. The starting point is not taken into account: if the user
starts close to the target, then achieving an absolute dis-
tance threshold will be easier.

3. In more dimensions the search space is larger, therefore
achieving a given threshold will be harder.

We can avoid these issues by expressing the stopping criterion
in terms of the ISSR. If sub-sections of the search path also
obey Eq. 4 then plotting average MT against ISSR should give
straight lines, and reflect the relative difficulties in different
dimensionalities.

There is a statistical dilemma with this multiple threshold
technique, however. One can include all the trials, but poor
performances never reach high bit levels, and will not be rep-
resented towards the right of the plot. This will tend to make
the lines curve downwards, and become unreliable at high
ISSR. On the other hand, if the tests where the threshold was
never reached are omitted entirely, the good performances
are over-represented and significance decreases due to the
smaller sample size. The policy here is to use the best half
of all the trials for a given condition, i.e. set a threshold at the
median ISSR achieved. Any trial that did not reach the me-
dian no. of bits are discarded. Whilst this means the final TP
values may underestimate the task difficulty as a whole, they
should at least provide a relative comparison between exper-
imental conditions. Higher ISSRs for the successful tests are
not featured on the plot, therefore sample size is the same for
every point along the line. This should not unfairly favour
any particular control device, though it will favour the re-
sults from users more comfortable with the task. If the ISSR



Pitch Decay Cut-off
1S 5.28 9.21 9.75
2S 4.49 13.94 12.99
XY 6.13 13.76 13.34
3S 6.67 14.79 14.24
LM 7.93 16.07 15.21

Table 2. Inaccuracies (standard deviation from the target in CC units)
of individual parameters for all trials. Pitch is always most accurate.

version of Fitts’ law holds, then this technique should give
straight lines across a range of bit values.

RESULTS

Speed and Accuracy
Scatter plots of speed (time to submit) and accuracy (Eu-
clidean distance to target at submission) for all 2D and 3D
trials are shown in figures 6 and 7. Both axes display approx-
imately log-normal distributions. No correlation between
speed and accuracy is seen.

Overall, the decrease in completion time compared to equiv-
aluent numbers of sliders is around 8 percent for the XY
and 13 percent for the leap. However, people significantly
improved across the two days (see later). If we look at
results for the last 4 blocks (day 2), post practice the XY
was 9% faster (paired T-test between interfaces t(527) =
5.22, p < 0.01). The leap was 17% faster than 3 sliders
(t(527) = 9.61, p < 0.01), for an accuracy reduction of 9%
(t(527) = −2.36, p < 0.05). Individual analyses for each
user reveal similar patterns. Here we assume that different
dimensionalities are not comparable, but if 2-way ANOVA
is run for both dimensionality and interface type, speed-up
is still significant (F (1, 1) = 192.4, p < .01) and there is a
significant interaction (F (1) = 5.58, p < 0.05).

Accuracy errors for all trials are given in Table 2, in the form
of the standard deviation of the difference between the tar-
get value and the value of the parameter at submission. Not
surprisingly, the accuracy for each parameter decreases the
more sliders need to be set (the one exception being the good
result for pitch in the 2D case). Timbre errors were around
twice the size of pitch, despite a pitch range of only 1 octave,
illustrating the “anisotropy” mentioned earlier.

We may already conclude that the higher DOF controllers are
marginally more effective, but it would be preferable to have
a single measure of throughput, and trajectory progress plots
giving more insight into the cause of the differences.

Throughput
Figure 5 shows the average time taken to reach a given Eu-
clidean distance threshold for all 2 and 3 dimensional trials.
The Leap and XY pad are faster than the corresponding num-
ber of sliders for thresholds > 5CC. Figure 8 shows ISSR
plots for day 1 and day 2. Most lines now appear straighter,
supporting the idea that a Fitts style law applies. Table 3
shows that if a regression is fit to the raw data, the wide dis-
tributions generate low R2 values, but confidence bounds for
the slope and intercept are reasonable.

On day 1 the leap was faster up to 3bits, but the gradient bLM
is obviously steeper than for 3 sliders. Day two, the gradients
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(a) Day 1

TP (1S) = 0.56
TP (2S) = 0.46
TP (XY) = 0.49
TP (3S) = 0.44
TP (LM) = 0.39
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(b) Day 2

TP (1S) = 0.72
TP (2S) = 0.61
TP (XY) = 0.73
TP (3S) = 0.56
TP (LM) = 0.66

Figure 8. ISSR vs. MT, day 1 and day 2. Colors and markers consistent
with Fig. 5. The gradient for the Leap improves with practice to match
the sliders, but is about 1 second faster at all bit levels. To obtain cleaner
plots, only trials that scored above the median ISSR for that condition
are included. TP values are calculated from the average of MT/ISSR
for every point along the line.

1S 2S XY 3S LM
Intercept 1.6±0.2 1.8±0.1 2.0 ± 0.1 2.2±0.1 1.2±0.15
Slope (b) .51±.04 .79±.03 .70±.02 .85±.02 .87±.02
TP (1/b) 1.96 1.26 1.42 1.17 1.14
R2(all) 0.123 0.204 0.156 0.175 0.156
R2(mean) 0.984 0.999 0.997 0.990 0.994

Table 3. Results of regression line fitting for each interface on day 2.
Throughput here is taken as the reciprocal of the slope.

bLM and b3S appear the same, but the intercept a is lower for
the Leap. This pattern is not seen in the 2D case, here aXY

and a2S appear equal but bXY is shallower than b2S . The XY
pad is faster even on day 1. Throughput values on the plots
are calculated by averaging ISSR/MT for all data points.

The intercepts can be largely explained by calculating reac-
tion times, these are shown in Table 5. Firstly, RT is the
average time from the presentation of the test until the sound
is triggered. Second, listening time, LT , is taken as the time
taken from the first sound trigger until the first control adjust-
ment. RT s are the same for all interfaces (around 1s). LT
is more variable. With the Leap, people start moving within
0.25s, even before they have time to listen to the sound they
are adjusting. This could be just random hand waver trigger-
ing the movement threshold (set at 10CC/s), but the advantage
carries through to higher accuracies, so it would appear to be
real progress. The quick start also seems to explain the lower
intercept on the Leap’s plots. The question then becomes:
what was it about the Leap that enabled people to start mak-
ing progress sooner? One hypothesis is that people can cate-
gorise a sound quickly, and associate it with an approximate
region in 3D space. On hearing the target, they can move
in roughly the right direction without even listening to their
current position or considering individual parameters. This

1S 2S XY 3S LM
Time -22? -21† -28† -21† -37†

Median Acc. -6 4 9? -3 8
Throughput 27 32? 48† 28? 70†

Table 4. Percentage difference for time taken, accuracy, and throughput
between day 1 and day 2 (See Fig. 8). Two sample t-test, ?P < 0.05,
†P < 0.01.



1S 2S XY 3S LM
RT 0.99 0.99 0.98 0.96 1.03
LT 0.85 1.26 1.05 1.39 0.24

Table 5. Reaction times (RT) and initial listening times (LT) for differ-
ent interfaces. People seem to start moving much faster with the leap,
explaining the lower intercepts.
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1 Slider

2 Sliders

XY

3 Sliders

Leap

Figure 9. ISSR plot for the visible target condition (left) the kinks in the
plots for the sliders are caused by having to swap controls. If we imagine
the curves extrapolated onwards to higher accuracies, it seems that the
3 sliders will overtake the Leap. The right hand plot uses MacKenzie’s
ID, introducing sharp drops at low IDs.

would indicate a completely distinct learning process from
that occurring with separate controls, certainly worth investi-
gating further. Alternatively, one could argue that differences
in reaction times reveal a flawed methodology, in which case
some way of eliminating this effect should be found.

Table 4 summarises the effects of practice. The sliders show
around a 21% speed improvement from day 1 to day 2, the
XY improves by 28%, the Leap improves 37%. Participants
keep their accuracy threshold relatively steady.

Comparisons with Visual Target Acquisition
Figure 9 shows the results for acquisition of the visual tar-
gets. Around twice the speed and twice the bit accuracy was
achieved compared to the sound task. The only interface that
gives a straight line is the Leap. The mostly flat lines for the
1 slider and XY plots are because users could simply tap the
target, so the movement data was not recorded until their fin-
ger was on the screen for the final adjustments. The kinks in
the 2 and 3 sliders’ plots are probably caused by swapping
time (as predicted in 6). Initial reaction times are similar to
the sound task. The second plot shows the lines when a +1
is incorporated in the ID calculation (i.e. Eq. 2). This results
in a sharp curve when ID < 1bit. If a regression line is fitted
to the data, this reduces R2 from 0.32 to 0.24 in the Leap’s
case. So the ISSR formula does seem more appropriate for
handling this time-to-threshold data.

People quite often needed to revisit a slider once the others
were closer to the correct values. In theory, setting 3 param-
eters necessitates 2 slider swaps, in fact the mean number of
swaps was 3.3, indicating that adjustments became more dif-
ficult if the other parameters were not set. The mean time for
a swap was 0.9s. In the 2D case, number of swaps = 1.7 and
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(a) Normal

TP (1S) = 0.69
TP (2S) = 0.59
TP (XY) = 0.7
TP (3S) = 0.52
TP (LM) = 0.63
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(b) single target listen

TP (1S) = 0.72
TP (2S) = 0.64
TP (XY) = 0.77
TP (3S) = 0.65
TP (LM) = 0.72

Figure 10. ISSR vs. MT, for MEM and nonMEM case, day 2 only. Not
surprisingly, final accuracy has decreased, but the speed up for a given
accuracy is quite surprising.

1S 2S XY 3S LM
Mean Accuracy -6? -15† -10† -21† -18†

Time to mean acc. −14? −26† −17† −33† −29†
Throughput 8 17 8 26? 22

Table 6. Percentage change from normal to MEM condition (See Figure
10). ?P < 0.05, †P < 0.01

swap time = 0.86s. When a visible target was present the
swap times were faster: 0.65s. So an extra 0.2s was required
to re-orient to another perceptual dimension in the sound task,
probably to re-compare the sounds. This complicates the the-
ory behind Eq. 6 somewhat.

Integration: Diagonal Movement
Another quantity of interest is whether people really did op-
erate more than one dimension at a time, i.e. move diago-
nally in the integral controller case. Diagonal travel is also
referred to as “coordination” [26] and “controller integration”
[22]. The former is calculated from the correlation of differ-
ent dimensions, but here, as in [13], integration was calcu-
lated from as being the ratio between the amount of time that
more than one dimension was moving to the time only one
dimension was moving. The speed threshold distinguishing a
moving/stationary dimension was set at 10CC/s. Integration
values were heavily dependent on the threshold value, but re-
sults comparing experimental conditions were not. A scat-
ter plot of diagonality vs. completion speed (Fig. 11) shows
that the amount of diagonal travel did slightly correlate with
speed, however most navigation was being carried out in a
city-block fashion, with integration ratios < 1.

Target Memorisation Test
Fig. 10 shows the differences in the MEM case. Accuracy
worsens; participants said that auditioning the sound they
were controlling degraded the memory of the target. How-
ever it is interesting that the actual time to a given bit thresh-
old is much faster. Table 6 shows percentage differences. So
for rough matches it is much faster to not keep re-listening
to the target. Nevertheless, participants failed to implement
this strategy when they were given the choice, indicating that
they underrate their own ability to either memorise a target or
predict the effect of parameter adjustments.
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Figure 11. A small but significant correlation between amount of diago-
nal movement and speed.

Another interesting result was that search trajectories were
more diagonal in the single target listen case. For the XY
pad, the integration ratio was 1.2 (MEM), vs. 0.8 (non-MEM)
t(1022) = 6.95, p < 0.01. For the Leap it was 2.2 (MEM)
vs. 1.3 (non-MEM) t(1022) = 7.4, p < 0.01. It seems that if
people are forced not to repeatedly compare the two sounds,
they treat the dimensions in a more integral fashion. Could
this be because a back and forth comparison encourages a
slower, analytical mode of thinking, whereas a sound stored
in a short term auditory buffer is treated in a more holistic
fashion?

DISCUSSION
It seems the multidimensional controllers are more effective,
though not by a huge margin. However, they were showing
greater improvements with practice, so may be expected to
become faster still. The reasons for the speed improvement
appeared different for the different devices, however. The XY
pad showed a greater throughput due to a shallower gradient:
it was faster traversing the space. The speed gains with the
Leap, on the other hand, seemed to be a result of faster re-
action time: for some reason people felt they could start the
search quicker, without waiting to compare the sounds first.
We speculate that this is the result of associative learning of
regions of the space. For achieving high accuracies, the slid-
ers were still preferable to the Leap, which was 9% less accu-
rate. Therefore, in terms of sound production work-flow, high
DOF controllers would be better for early stage exploratory
creativity and live performance, but individual controls better
for late stage creativity and fine tuning.

There is a small correlation between diagonal movement and
speed, but not yet enough to be the cause of significant speed
up for multidimensional control. Far more practice seems
to be needed to be able to be completely comfortable tak-
ing the shortest path through the parameter space. One user
guessed that about 100 hours would be required before they
had learned the perceptual space well enough to move directly
to the target in 3D. Indeed, one of the most striking findings
is how hard the perceptual component of this task is. Even
with three simple audio parameters, experienced users, and
elimination of the worst half of the results, throughput is only
around 0.5bit/s, around a quarter of that for the pointing tasks.

The proposed ISSR characterisation of Fitts’ law proved use-
ful for the following reasons:

1. It provided a theoretical baseline of how difficulty should
scale with dimensionality, for both integral and separable
cases.

2. It measures information throughput at the point of interest:
the effectiveness of the search.

3. Where varying accuracy levels cannot be specified in ad-
vance, it enables us to extract a range of difficulty values
from the trajectory data.

4. For the multidimensional controllers, it generated straight
lines near the intercept of movement time plots, and these
intercepts agreed well with reaction time measurements.

5. It has a simple and generalisable definition, and could be
easily applied to a wide variety of search task situations.

6. Information is always conserved, no matter how convo-
luted the search path.

What ISSR is not intended to address is accurate prediction
of movement difficulty. Fitts’ law can be used in a predictive
sense, in which case subtleties of the human motor system are
important, but can also be used in a comparitive/evaluative
sense, where we wish to test alternative interfaces for their
effectiveness. It is the second scenario that ISSR is deemed
appropriate for. Further work is needed to ascertain exactly
why the noisy channel approach gives a different formula.

This experiment was probably not precise enough to expose
subtle cognitive effects such as integrality or separability of
timbre parameters. The bulk of the disparity between inter-
faces seemed to be attributable to basic manipulation issues,
i.e. those revealed in the visual target task. Ideally, individual
experiments would be carried out to investigate each of the
aspects of this experiment in isolation. More should be done
to reduce the variability in participants’ performance, per-
haps by teaching a consistent technique. An upcoming study
will attempt to treat time as the independent variable: users
will match a repeating sequence of targets (this time with 6
DOF) along to metronome clicks of varying speeds. Musi-
cians are good at predicting when regular beats will occur, so
hopefully reaction times can be eliminated. Also eliminated
will be the need for the user to trigger sounds themselves.
This task should also be a more appropriate model of live
performance. It would also be useful to compare hardware
faders and knobs: these are generally preferred by musicians
to touch screen controls, and they may exhibit faster acquisi-
tion times. However there is a practical difficulty specifying
the target in the visual target case, and giving progress feed-
back to the user. Touch screens are more flexible for such
graphical feedback.

There is still a long way to go to get ecologically valid results
for a digital musical instrument capable of musically varied
sounds. Four hours of interaction time is a fair duration for
most interface evaluations, however it is tiny compared to the
amount of time serious musicians spend practising. If a prac-
tise programme could be designed for a higher dimensional
synthesiser interface, analysis based on Fitts’ law could pro-
vide valuable insights for the instrument designer, the musi-
cian, and the HCI community at large.
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