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ABSTRACT

In this paper, we address the task of semi-automatic music transcrip-
tion in which the user provides prior information about the poly-
phonic mixture under analysis. We propose a non-negative matrix
deconvolution framework for this task that allows instruments to be
represented by a different basis function for each fundamental fre-
quency (“shift variance”). Two different types of user input are stud-
ied: information about the types of instruments, which enables the
use of basis functions from an instrument database, and a manual
transcription of a number of notes which enables the template es-
timation from the data under analysis itself. Experiments are per-
formed on a data set of mixtures of acoustical instruments up to a
polyphony of five. The results confirm a significant loss in accuracy
when database templates are used and show the superiority of the
Kullback-Leibler divergence over the least squares error cost func-
tion.

Index Terms— semi-automatic music transcription, non-
negative matrix deconvolution, music signal processing

1. INTRODUCTION

Automatic music transcription refers to the transformation of a piece
of music into a musical score or score-like representation. A large
amount of research work has been carried out on this task — pre-
dominantly during the last two decades — and a wide variety of
approaches has been proposed, ranging from heuristic procedures to
perceptually-motivated approaches and data-adaptive methods. De-
spite these extensive endeavours, the performance of current systems
for polyphonic music transcription is still not comparable to the tran-
scription accuracy achieved by human experts. A comprehensive
overview of computational methods for music transcription can be
found in [1].

In this paper we study semi-automatic transcription where the
user provides some prior information for the transcription process,
such as the instrument identities in the target signal or some correct
notes (as examples) for each instrument. The method proposed in
this work is in line with various data-adaptive approaches based on
the non-negative matrix factorisation (NMF) method [2]. Smaragdis
and Brown [3] were the first to apply the basic NMF algorithm to the
task of music transcription. This method approximates a magnitude
spectrogram by a sum of instrument sound spectra (basis functions)
each of which is weighted by time-variant gain values. Basis func-
tions and gains are estimated from the spectrogram by iteratively and
alternately updating randomly initialised matrices.

This work was funded by a Queen Mary University of London CDTA
studentship.

In the same year, Smaragdis [4] introduced an extension to the
basic NMF algorithm which models the magnitude spectrogram of
a signal as a convolution of two-dimensional source spectrograms
with the corresponding gain functions. This method was evaluated
on — and is particularly useful for — drum transcription applica-
tions where events of an instrument are likely to exhibit a similar
frequency content and time evolution.

A modification of the NMF algorithm that aims at transcrib-
ing and separating sounds of pitched instruments was described by
Fitzgerald et al. [5] and a similar approach based on the related
PLCA technique can be found in [6]. Here, the constant-Q mag-
nitude spectrogram of each source is modeled as a convolution of a
single spectral shape with the corresponding two-dimensional gain
function. Thus, besides the estimation of the spectral shapes, corre-
sponding matrices are estimated that contain the gains for each point
in time and frequency shift.

Schmitt and Mørup [7] combine both time-extended basis func-
tions and shifts along the frequency axis in their non-negative matrix
factor 2-D deconvolution (NMF2D) algorithm. The authors evaluate
their method on a small excerpt of synthesized chamber music.

The representation of a musical instrument by a fixed spectral
shape shifted in frequency is a very coarse characterisation of most
real-world musical instruments. Usually, the average spectral shape
of an instrument sound is strongly dependent on the fundamental
frequency (cf. [8]). We therefore propose a model that estimates a
different instrument spectrum for each fundamental frequency under
analysis which we call shift-variant non-negative matrix deconvolu-
tion (svNMD). The model is fully shift-variant (i. e. a different basis
function can be assigned to each frequency shift) but can also be
used with partially or fully shift-invariant basis functions. Partially
shift-invariant basis functions refer to a set of fixed instrument spec-
tra that are shifted within adjacent pitch ranges; fully shift-invariant
basis functions are shifted over the whole frequency range and were
used in the above mentioned publication [5, 6].

The remainder of this paper is organised as follows: Section 2
describes the algorithmic foundations of the svNMD algorithm. In
Sect. 3, we consider different types of user information and explain
how they can be used for semi-automatic transcription. Section 4
presents the evaluation procedure and discusses the results and
Sect. 5 summarises and concludes the work.

2. SHIFT-VARIANT NON-NEGATIVE MATRIX
DECONVOLUTION

In the proposed model, each instrument is represented by a set of
basis functions corresponding to different fundamental frequencies
in the constant-Q spectrogram. The model for the magnitude spec-
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Fig. 1. Graphical illustration of matrices V, Wφ and Hφ

trogram V is given by

V ≈ Λ =

Φ−1∑
φ=0

φ↓
Wφ Hφ, (1)

where V ∈ RN×M
+ denotes the constant-Q magnitude spectrogram

(with N frequency bins and M frames) and Λ ∈ RN×M
+ the ap-

proximation by the model. Wφ ∈ RN×d
+ contains in its columns

the spectra (basis functions) of the d instruments for a particular fre-
quency shift φ. The operator φ↓ denotes a downward shift of the
matrix elements by φ rows while the upper φ rows are filled with
zeros. Hφ ∈ Rd×M

+ contains the gains of each basis function for

each instrument at shift φ. Figure 1 illustrates the matrices V, Wφ

and Hφ graphically.

This model is similar to the NMF2D algorithm in [7], but modi-
fies it in two aspects:

1. The temporal extent τ of the basis functions is set to a value
of 0 (equivalent to a single audio frame), so that all temporal
information is contained in the gain matrices. This way, the
sum over the time instances τ can be abandoned.

2. We extend Schmidt and Mørup’s model to work with different
basis functions for each frequency shift and each instrument.
We therefore use Wφ instead of Wτ to indicate the basis
functions for the different shifts φ.

A similar framework could be achieved by concatenating all stacked
matrices Wφ and Hφ and using those in combination with the ba-
sic NMF algorithm [2]. The advantage of the proposed framework,
however, is its clear and meaningful structure, and the property that
all partials are at the same frequency positions which is achieved by
the use of the shift-parameter and a logarithmic frequency axis. This
property facilitates the interpolation of missing templates which is a
crucial requirement for semi-automatic transcription (cf. Sect. 3).

In order to derive the iterative update functions for both Wφ

and Hφ we calculate the gradient of the two commonly used cost
functions least squares error (LS) and generalised Kullback-Leibler
divergence (KL):

CLS = ‖V −Λ‖2F =
∑
i

∑
j

(
[V]i,j − [Λ]i,j

)2
(2)

CKL =
∑
i

∑
j

[V]i,j log

(
[V]i,j
[Λ]i,j

)
− [V]i,j + [Λ]i,j . (3)

In eq. (2), ‖ · ‖F denotes the Frobenius norm.
The update functions based on gradient descent are given by

1. Least squares error:

Wφ ←Wφ •
φ↑
V [Hφ]T

φ↑
Λ [Hφ]T

, Hφ ← Hφ •
[ φ↓
Wφ

]T
·V[

φ↓
Wφ

]T
·Λ

(4)

2. Generalised Kullback-Leibler divergence:

Wφ ←Wφ •
φ↑
(V

Λ )[Hφ]T

1·[Hφ]T
, Hφ ← Hφ •

[ φ↓
Wφ

]T
·V
Λ[

φ↓
Wφ

]T
·1

(5)

1 ∈ RN×M is a matrix of ones with the same dimensions as V
and Λ. In these equations, • denotes elementwise multiplication and
all divisions are also elementwise. A detailed derivation of equations
(4) and (5) can be found in [9].

The model is highly underdetermined as the number of param-
eters to estimate in the model is larger than the number of elements
in the input spectrogram V. Therefore, the application of the update
equations (eq. (4) and (5)) in a completely unsupervised manner will
not yield any useful results. A useful estimation can only be achieved
when a certain amount of prior information is provided.

3. USE OF PRIOR INFORMATION FOR MODEL
INITIALISATION

The method introduced in Sect. 2 in its given form cannot be applied
for completely unsupervised automatic music transcription. The aim
of this paper is to study its use for semi-automatic music transcrip-
tion in which the user provides some prior information about the
instruments in the polyphonic mixture under analysis. We consider
two different types of information from the user:

1. The user provides information about the instrument types
contained in the mixture.

2. The user transcribes some notes for each instrument in the
mixture.

In the first case, a transcription can be achieved by initialising
the basis functions by a set of instrument sound spectra learned from
an instrument database and updating the gain matrices of the model
while keeping the basis functions fixed.

In the second case, the basis functions for the user-annotated
pitches can be learned from the data under analysis itself by first ini-
tialising the gain matrices at the annotated pitches and learning the
spectra of these by updating the basis functions only. Once the in-
strument sound spectra are learned, the transcription can be obtained
as in the first case by randomly initialising the gain matrices and ap-
plying the update functions for Hφ. In a practical application for
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user-assisted transcription, the user would only be required to label
a small number of notes for each instrument and it can be assumed
that the transcription performance depends on the number and type
of notes the user selects. In this study, however, we are only in-
terested in the upper limit of performance that can be achieved by
the proposed svNMD procedure. This upper limit is given when the
user provides information about all notes of all instruments during
the basis function learning process. An investigation of the number
and type of notes required is deferred to a subsequent study.

3.1. Learning the basis functions

In order to study the first case of semi-automatic transcription men-
tioned in the beginning of this section, instrument spectra were
learned from training data that was completely separate from the
data used for testing. The training audio files were taken from the
RWC database [10] for each instrument identified by the user as
being present in the target (test) data. Each of these audio files con-
tains monophonic recordings of the instruments playing a chromatic
scale over their whole compass. These recordings were manually
annotated and the annotations were stored in MIDI format. To learn
the basis function sets from this training data, the above-described
update rules were used, fixing the gains Hφ to contain ones at the
frequency bins and time frames corresponding to the notes in the
training data annotation and zeros elsewhere. The exact frequency
bins were determined by finding the maximum within the frequency
region of a semitone in the corresponding constant-Q spectrogram
of each note at each time frame. The constant-Q analysis covered
the frequency range from C2 (∼ 65 Hz) to C8 (∼ 4.2 kHz) with a
frequency resolution of 48 bins per octave. The time resolution was
4.1 ms. Matrices Wφ were randomly initialised and 10 iterations of
the update functions were computed.

For the second case mentioned in the beginning of this section,
the same learning procedure was applied to derive basis functions
from the target (test) data under analysis. A set of basis functions
for each instrument was learned both from the monophonic phrases
used in creating the mixtures (see Sect. 4.1) and from the polyphonic
instrument mixtures of the test set itself.

To summarise, we study the performance of basis function sets
learned from three different sources:

1. recordings of the corresponding instruments in the training
data (RWC database),

2. monophonic phrases used in creating the target (test) mix-
tures,

3. the target polyphonic instrument mixtures.

3.2. Learning the gain matrices

We are interested in the transcription accuracy that can be achieved
by each of the basis function sets introduced in the previous sec-
tion in combination with the svNMD method. In a practical applica-
tion of semi-automatic transcription, no prior information about the
gains of each spectrum would be available apart from the few user-
labelled notes. Therefore, we initialised the gain matrices Hφ with
random non-negative values. The gains were learned by initialising
the matrices Wφ with one of the three basis function sets discussed
above, and applying the update functions only for the gain matri-
ces Hφ. This was done for all combinations of basis function sets
(cf. Sect. 3.1) and cost functions (cf. Sect. 2). Again, a fixed number
of 10 iterations was computed.

4. EVALUATION

4.1. Test data

A test set was constructed based on monophonic musical phrases
from 12 different acoustical instruments (flute, oboe, clarinet, bas-
soon, alto sax, horn, trumpet, trombone, tuba, violin, viola and vio-
loncello). Most of the phrases were previously used in [11]. Each of
the signals had a length of approximately 30 s. From these phrases,
random mixtures of 2, 3, 4 and 5 instruments were generated by sum-
ming the amplitude-normalised signals. 50 mixtures were generated
for each polyphony level.

Pitch, onset time and offset time of each note were manually an-
notated for each monophonic phrase and stored as MIDI files. The
ground truth for each instrument mixture was created by combin-
ing the ground truth annotations of the instruments contained in the
mixture.

4.2. Transcription accuracy

For the evaluation of the svNMD method we did not apply the com-
monly used accuracy measures of note transcription such as preci-
sion, recall and F-measure. These measures would require further
processing steps — such as thresholding the gains and f0-tracking
— which would have an impact on the results. Instead, we are only
interested in the evaluation of the svNMD method in combination
with different basis functions sets. Therefore, we measure how well
the gain matrices estimated by the proposed method agree with the
ground truth annotations.

We first sum the gains of all instruments in the mixture to get an
overall gain matrix G, each element of which is given by

[G]φ,n =
∑
i

[
Hφ
]
i,n

. (6)

The accuracy is then computed as the ratio between the energy of the
fundamental frequencies in G and the overall energy of G:

Acc =

∑
n

∑
φ∈Fn

([G]φ,n)
2∑

n

∑
φ′([G]φ′,n)

2
, (7)

where Fn denotes the set of annotated pitches in frame n.

An accuracy of 1 corresponds to a perfect pitch detection and
complete suppression of the harmonics above the fundamental fre-
quencies since all energy in G is concentrated in the fundamen-
tal frequencies. Smaller accuracies indicate that there is a certain
amount of energy elsewhere in G.

4.3. Results

The results of the experiments are displayed in Fig. 2. The upper
three panels show the results for the KL-divergence, the lower panels
those of the least-squares cost function. From left to right, the results
for the different dictionaries can be compared. Within each plot, the
accuracies of all files in the test set for each polyphony are displayed
as boxplots.

When comparing the different dictionaries, it is obvious that ba-
sis functions learned from the RWC database lead to lower accura-
cies than basis functions learned from the recordings under analysis
themselves – even when the basis functions are learned from poly-
phonic target data (as opposed to monophonic training data). This
confirms that there is a significant loss of accuracy when independent
training data from the same instrument type is used. Depending on
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Fig. 2. Transcription accuracy of the the svNMD method with different initialisations of the basis functions. Results for the KL-divergence
and least squares cost function can be found in the upper and lower rows, respectively. The different sets of basis functions are displayed
from left to right. In each plot, the accuracies of the files of each test set are displayed as boxplots. The edges of the boxes mark the lower
and upper quartile (median indicated in the middle) and the whiskers extend to the minimum and maximum data points.

the cost function and the number of instruments in the mixture, the
median of the accuracies is between 23% and 48% higher when the
basis functions are estimated from the polyphonic mixture instead of
using generic basis functions from a database.

Results obtained by the generalised Kullback-Leibler divergence
cost function (KL) clearly yield better results than using the least-
squares cost function (LS). Without exception, accuracies for the
least squares error are significantly lower; the deviation of the medi-
ans varies between about 18% and 34%.

5. CONCLUSION

We presented a shift-variant non-negative matrix deconvolution
method that chararacterises each instrument by a different basis
function at each possible fundamental frequency bin. It can be
assumed that this gives a more accurate representation of real-
world musical instruments than shift-invariant NMF and PLCA
methods and has the potential to lead to better approximations
of the magnitude spectrogram. The number of model parame-
ters is an order of magnitude higher than the information con-
tained in the input spectrogram, therefore the model is not in-
tended for unsupervised learning, but is well-suited as a frame-
work for semi-automatic music transcription. A MATLAB im-
plementation of the svNMD algorithm can be found at http:
//code.soundsoftware.ac.uk/projects/svnmd.

We experimentally investigated the use of the model for user-
assisted music transcription. Two different types of user information
were investigated that led to different sets of basis functions. Basis
functions were derived from the data under analysis itself and from
a database of musical instrument sounds. The results confirmed that
significantly higher transcription accuracies can be obtained when
instrument templates are learned from the data under analysis than
using generic basis functions learned from training data.
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