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ABSTRACT

A method for pitch detection which models the temporal evo-

lution of musical sounds is presented in this paper. The pro-

posed model is based on shift-invariant probabilistic latent compo-

nent analysis, constrained by a hidden Markov model. The time-

frequency representation of a produced musical note can be ex-

pressed by the model as a temporal sequence of spectral templates

which can also be shifted over log-frequency. Thus, this approach

can be effectively used for pitch detection in music signals that con-

tain amplitude and frequency modulations. Experiments were per-

formed using extracted sequences of spectral templates on mono-

phonic music excerpts, where the proposed model outperforms a

non-temporally constrained convolutive model for pitch detection.

Finally, future directions are given for multipitch extensions of the

proposed model.

Index Terms— Shift-invariant probabilistic latent component

analysis, hidden Markov models, pitch detection

1. INTRODUCTION

Pitch estimation of music signals is the core problem in the devel-

opment of automatic transcription systems, with numerous applica-

tions in the fields of music information retrieval, interactive com-

puter systems, and automated musicological analysis [1]. While

pitch estimation for monophonic music signals is considered to be a

solved problem, estimating the pitch of multiple concurrent sources

still remains open. One of the reasons why the performance of mul-

tipitch estimation systems has not yet matched that of a human ex-

pert lies in the non-stationarity of music sounds. A note produced

by a musical instrument could be expressed as a sequence of sound

states, namely the attack, transient, sustain, and decay parts [2].

Additionally, depending on the instrument, frequency modulations

such as vibrato and amplitude modulations such as tremolo might

also take place. In the past, models have been proposed which

attempt to address these pitch detection issues, such as frequency

modulations (e.g. [3]) or sound production states (e.g. [4]).

In this work, a method is proposed which attempts to model

the temporal evolution of music sounds and also address frequency

modulations. This work is based on the model in [5], which com-

bined probabilistic latent component analysis (PLCA) [6] with hid-

den Markov models (HMMs) [7], where each hidden state corre-

sponds to a musical note. Here, the proposed model constrains the

shift-invariant PLCA model [3] with an HMM, where each hidden
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state corresponds to a temporal state of the produced sound. For ex-

periments, spectral templates of sound states for a piano, cello, and

an oboe were extracted. Using the proposed model, a supervised

pitch detection method is proposed using the extracted templates.

For comparison, the shift-invariant PLCA method [3] is also em-

ployed for pitch detection. Three monophonic excerpts were used

for evaluation, where the proposed model is shown to outperform

the shift-invariant PLCA model. Finally, a discussion is made on

extending the proposed model for multiple pitch estimation using

factorial HMMs.

The outline of the paper is as follows. Related work is pre-

sented in Section 2 and the proposed model is introduced in Section

3. Section 4 describes the pitch detection experiments that were

performed. Finally, a discussion on extending the proposed model

for multipitch estimation is made in Section 5 and conclusions are

drawn in Section 6.

2. RELATEDWORK

Related work to the proposed model is presented here. In [6], the

probabilistic latent component analysis (PLCA) model is proposed,

which is essentially a probabilistic version of the non-negative ma-

trix factorization (NMF) method. In PLCA, the input spectrogram

is considered to be a multivariate distribution P (ω, t), which can be
expressed as a product of a spectral basis matrix P (ω|z) for each

component z and a component gain matrix P (z|t). For estimat-

ing these parameters, iterative update rules can be derived using the

Expectation-Maximization (EM) algorithm [8]. An extension of the

PLCA model was proposed in [9] for polyphonic music transcrip-

tion, which supported multiple spectral templates for each pitch and

multiple instruments.

In [3], a relative pitch tracking algorithm was proposed, which

was based on a convolutive variant of PLCA (also called shift-

invariant PLCA). The shift-invariant PLCA method can be used

in conjunction with log-frequency spectrograms in order to extract

pitch tracks. This is feasible since in log-frequency spectra the inter-

harmonic spacings are the same for any periodic sounds. For a sin-

gle source, the shift-invariant PLCA model is defined as:

P (ω, t) = P (ω) ∗ω P (f, t) (1)

where a constant spectral template P (ω) is convolved with the pitch
impulse distribution P (f, t) over f in order to approximate the in-

put spectrogram. The shift invariant PLCA model was also formu-

lated for multiple instrument sources in [3], where a spectral tem-

plate corresponds to each source. In addition, an extension of the

shift-invariant PLCA model was proposed by the authors in [10]
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for multiple pitch estimation, where the proposed method supports

multiple instrument and pitch templates.

An algorithm called the non-negative hiddenMarkov model (N-

HMM) was proposed in [5], which is able to combine the PLCA al-

gorithmwith HMMs, in order to model the pitch changes in a mono-

phonic recording. Each hidden state corresponds to a single pitch

component, and multiple templates per pitch are supported. Param-

eter estimation can be achieved using the EM algorithm, by combin-

ing the PLCA update steps with the HMM forward-backward pro-

cedure [7]. An extension for multiple sources was also proposed,

which employed factorial HMMs.

Finally in [4], an extension of the NMF method with Markov-

chained constraints is proposed for music spectrogram modeling.

The non-stationarity of music sounds is addressed by learning the

time-varying spectral patterns of musical instruments. Parameter

estimation is achieved using the NMF update rules combined with

the Viterbi algorithm (HMM transition probabilities are fixed).

3. PROPOSED MODEL

3.1. Motivation

The goal of the proposed model is to provide a framework for mu-

sic signal analysis, where the produced notes can be represented as

time-varying spectral templates that can be also shifted across fre-

quency, in order to account for frequency modulations. This will

allow for a much more accurate representation of the input spec-

trogram, and will attempt to address the drawbacks of current pitch

estimation systems. In contrast to the Markov-chained approaches

in [4, 5], the goal is to also exploit the benefits given by shift-

invariance in the log-frequency spectrum for pitch detection.

3.2. Formulation

The proposed algorithm can be named as HMM-constrained shift-

invariant PLCA. We approximate the input log-frequency spectrum

Vω,t (where ω is the log-frequency index and t the time index) as

a multivariate probability distribution P (ω, t), which can be de-

composed using a succession of spectral templates corresponding

to each sound state q that can also be shifted across log-frequency.

The model can be formulated as:

P (ω, t) = P (t)
∑

qt

Pt(qt|ω̄)P (ω|qt) ∗ω Pt(f |qt) (2)

where P (ω|q) is the spectral template for state q, P (t) is the energy
of each time frame, Pt(qt|ω̄) is the contribution of each state at the

current time frame (ω̄ represents all observed spectra), and Pt(f |qt)
is the pitch impulse distribution for each state across time.

Since the succession of the sound states Pt(qt|ω̄) is temporally-

constrained, the corresponding HMM in terms of all observations ω̄
is:

P (ω̄) =
∑

q̄

∑

f̄

P (q1)
∏

t

P (qt+1|qt)
∏

t

Pt(ωt|qt) (3)

where P (q1) is the state prior distribution, P (qt+1|qt) is the tran-
sition probability, and Pt(ωt|qt) is the time-dependent observation

probability given a current state. It should be noted that ωt cor-

responds to the observed spectrum at time t. Here, we define the

observation probability as:

Pt(ωt|qt) = 1 − ||P (ω, t|qt) − Vω,t||2∑
qt

||P (ω, t|qt) − Vω,t||2
(4)

where || · ||2 is the l2 norm and the spectrogram that corresponds to

state q is given by:

P (ω, t|qt) = P (t)Pt(qt|ω̄)P (ω|qt) ∗ω Pt(f |qt) (5)

Using (4), the state spectrogram that better approximates the input

spectrogram using the Euclidean distance has a greater observation

probability.

3.3. Parameter Estimation

The aforementioned parameters can be estimated by maximizing

the log-likelihood of the data, using the EM algorithm [8]. Essen-

tially, the update equations for each iteration are a combination of

the shift-invariant PLCA rules [3] and the HMM forward-backward

procedure [7].

For the Expectation step, the update equations are:

Pt(f, qt|ω̄) = Pt(qt|ω̄)Pt(f |ω, qt) (6)

where

Pt(f |ω, qt) =
P (ω − f |qt)Pt(f |qt)∑
f P (ω − f |qt)Pt(f |qt)

(7)

Pt(qt|ω̄) =
αt(qt)βt(qt)∑
qt

αt(qt)βt(qt)
(8)

Equation (6) is the model posterior, being the probability of the hid-

den variables given the observations. In (8), αt(qt) and βt(qt) are
the HMM forward and backward variables, respectively. The vari-

ables can be computed recursively by employing (4), using the for-

ward/backward procedure described in [7]. Finally, the marginal-

ized posterior for the transition matrix is given by:

Pt(qt, qt+1|ω̄) =

αt(qt)P (qt+1|qt)βt+1(qt+1)Pt(ωt+1|qt+1)∑
qt,qt+1

αt(qt)P (qt+1|qt)βt+1(qt+1)Pt(ωt+1|qt+1)
(9)

For the Maximization step, the update equations are:

P (ω|q) =

∑
f,t Vω+f,tPt(f, qt|ω + f)

∑
ω,f,t Vω+f,tPt(f, qt|ω + f)

(10)

Pt(f |qt) =

∑
ω Vω,tPt(f, qt|ω)∑

f,ω Vω,tPt(f, qt|ω)
(11)

P (qt+1|qt) =

∑
t Pt(qt, qt+1|ω̄)∑

qt+1

∑
t Pt(qt, qt+1|ω̄)

(12)

Finally, the state priors are computed using (8): P (q1) = P1(q1|ω̄).
An example of the proposed model is given in Fig. 1, where the

10-cent resolution log-frequency spectrogram of a C4 piano note is

used as input. The HMM topology for this example is a 4-state left-

to-right model, and the pitch shifting span is one octave (thus, the

length of f is 120). It can be seen from Fig. 1(d) that there is a clear

succession of spectral templates across time.

4. EXPERIMENTS

The model presented in Section 3 was applied in a supervised

manner for pitch detection in monophonic audio excerpts in order

to demonstrate its superiority compared with standard approaches

which do not take into account the temporal evolution of musi-

cal sounds. Three excerpts were utilized: a piano melody from
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Figure 1: (a) Spectrogram Vω,t of a C4 piano note (b) Approximation P (ω, t) of the spectrogram using estimated parameters (c) Spectral

templates P (ω|q) (d) Stacked pitch distributions Pt(f |qt) (e) Sound state transition matrix P (qt+1|qt) (f) Sound state priors P (q1)

the beginning of J.S. Bach’s Chromatic Fugue synthesized using

the Native Instruments soundfonts1, a cello melody from the RWC

database [11] (RWC-MDB-C-2001 No. 12), and an oboe melody

from the MIREX multi-F0 development set2.

Spectral templates were extracted for the three aforementioned

instruments, using samples for note C4 from the RWC Musical In-

strument Sound database [11]. The time-frequency representation

that was employed for analysis was the resonator time-frequency

image (RTFI), which is a first-order complex resonator filter bank,

having been used in the past for transcription experiments [12]. The

reason the RTFI was selected instead of the more common constant-

Q transform (CQT) is because it provides a more accurate temporal

resolution in lower frequencies, which is attributed to the use of an

exponential decay factor in the filterbank analysis. Here, a constant-

Q RTFI with 120 bins per octave was selected, with a frequency

range from 27.5 Hz (A0) to 12.5 kHz. For extracting the tem-

plates, the model in (2) was employed, using left-to-right HMMs

with Q = 4 hidden sound states.

For the pitch detection experiments, the update rules in (6) -

(12) were used, excluding the update rule for the spectral templates

in (10), since the patterns for each sound state were considered

fixed. The detected pitch for the recordings is summed from the

pitch distribution for each sound state:

P (f, t) = P (t)
∑

qt

Pt(qt|ω̄)Pt(f |qt) (13)

Using P (f, t), a piano-roll representation was created by sum-

ming every 10 pitch bins (which make for one semitone). The out-

put piano-roll representation was compared against existing MIDI

ground truth for the employed recordings. In Fig. 2, an excerpt

of the employed piano melody can be seen along with the weighted

sound state transitions using the employed model with a left-to-right

HMM. For each produced note, the transition from the attack state

to two sustain states, followed by a brief decay state can clearly be

seen. For evaluation, the transcription metrics also used in [10]

1Available at: http://www.eecs.qmul.ac.uk/~emmanouilb/WASPAA.html
2http://www.music-ir.org/mirex/wiki/MIREX HOME

were utilized, namely the overall accuracy (Acc), the total error

(Etot ), the substitution error (Esubs ), missed detection error (Efn ),

and false alarm error (Efp). It should also be noted that all evalua-

tions take place by comparing the transcribed pitch output and the

ground-truth MIDI files at a 10 ms scale. For comparative purposes,

the shift-invariant PLCA method in [3] was also employed for tran-

scription. In this case, one spectral template per source is employed,

using the same training data as in the proposed method.

Pitch detection results using the proposed model are displayed

for each recording in Table 1. Experiments using the proposed

method were performed using left-to-right and ergodic HMMs

(where all possible transitions between states were allowed). Al-

though the use of an ergodic model might not be ideal in cases

where the sound evolves clearly between the attack, transient, sus-

tain, and decay states, it might be useful for instruments where dif-

ferent sustain states alternate (e.g. tremolo). It can be seen that in all

cases, the proposed HMM-constrained shift-invariant PLCA meth-

ods outperform the shift-invariant PLCA method in terms of over-

all transcription accuracy. Also, the accuracy is relatively high for

the piano and cello recordings, but significantly lower for the oboe

recording. This can be attributed to the fact that the spectral pat-

tern of oboe notes is not constant for all pitches, but in fact changes

drastically. Most of the missed detections are located in the decay

states of produced notes, whereas most false alarms are octave er-

rors occurring in the attack part of notes. Finally, when comparing

the HMM topologies, it can be seen that the ergodic model slightly

outperforms the left-to-right one.

5. MODEL EXTENSIONS

The proposed model is a first attempt in introducing temporal con-

straints in a convolutive model. By using only one time-varying set

of pitch templates per source with log-frequency shifting, transcrip-

tion errors may occur. One solution would be to employ one set of

spectral templates per pitch for each instrument source (as an exten-

sion to the works in [9, 10]), which would allow for a much more

informative decomposition.
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Figure 2: (a) Log-frequency spectrogram of a segment of the pi-

ano melody employed for experiments (b) Weighted state transi-

tions P (qt, t|ω̄) = P (t)Pt(qt|ω̄).

Method Instrument Acc Etot Esubs Efn Efp

Proposed

(LtR)

Piano 81.5% 17.8% 2.2% 9.8% 5.8%

Cello 80.3% 22.1% 8.3% 5.6% 15.7%

Oboe 55.0% 39.1% 13.3% 22.6% 3.2%

Proposed

(ergodic)

Piano 82.2% 16.9% 2.2% 9.5% 5.2%

Cello 80.5% 22.2% 5.6% 5.4% 16.2%

Oboe 55.6% 37.5% 14.9% 19.3% 3.2%

SIPLCA

Piano 80.1% 20.2% 1.6% 10.7% 7.9%

Cello 75.0% 28.5% 1.2% 9.2% 18.0%

Oboe 54.1% 41.9% 13.7% 20.5% 7.7%

Table 1: Pitch detection results using the proposed method with

left-to-right and ergodic HMMs, compared with the shift-invariant

PLCA method.

For multipitch estimation, the proposed model can be extended

by utilizing multiple HMMs (one per pitch). Either independent

HMMs could be employed, or factorial HMMs as in the non-

negative HMM formulation in [5], which however would lead to

greater computational complexity. For transcription of polyphonic

music, the set of pitch templates could be shifted in a semitone span

as in [10], which would allow the creation of a pitch spectrogram.

The final goal would be a system which is able to exploit informa-

tion from multiple instrument sources, multiple pitches, and mul-

tiple sound states per pitch, which could allow for a rich represen-

tation of the evolution of sound in polyphonic music. In order to

further constrain the model, sparseness could also be enforced in

the pitch impulse distribution as in [3], or in the source contribution

as in [9, 10].

6. CONCLUSIONS

In this proof-of-concept work, we proposed an HMM-constrained

convolutive model for pitch detection. The goal was to model the

temporal evolution of each produced note and utilize the extra infor-

mation for reducing pitch detection errors. A supervised variant of

the proposed model was utilized for pitch detection on monophonic

excerpts from a piano, cello, and oboe and was compared against

a convolutive probabilistic model. Results showed that the pro-

posed model can capture the temporal evolution of musical sounds

and outperforms the single pitch template approach. Finally, fu-

ture directions on extending the proposed model for temporally-

constrained multipitch estimation are given.
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