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ABSTRACT Experiments on recordings from the RWC database [7] provide
. . . I ompetitive transcription results.
In this paper, an approach for polyphonic music transcription basel The outline of the paper is as follows. In Section 2, the prepro-

on joint multiple-FO estimation and note onset/offset detection is gssing steps used in the proposed system are described. The pro-
proposed. For preprocessing, the resonator time-frequency ima 0sed onset detection procedure is presented in Section 3. Sections

of the input music signal is extracted and noise suppression is pef- . . Lo
formed. A pitch salience function is extracted for each frame alon sand 5 detail the multiple-FO estimation system and the note offset

with tuning and inharmonicity parameters. For onset detection, lat etection module, respectively. Finally, experiments are described

fusion is employed by combining a novel spectral flux-based featurd! Section 6 and conclusions are drawn in Section 7.
which incorporates pitch tuning information and a novel salience

function-based descriptor. For each segment defined by two on- 2. PREPROCESSING

sets, an overlapping partial treatment procedure is used and a pitch

set score function is proposed. A note offset detection procedure 1. Resonator Time-Frequency Image

also proposed using HMMs trained on MIDI data. The system wa:
trained on piano chords and tested on classic and jazz recordin
from the RWC database. Improved transcription results are report
compared to state-of-the-art approaches.

She constant-Q resonator time-frequency image (RTFI) is employed

, due to its suitability for music signal time-frequency representa-

n. The RTFI selects a first-order complex resonator filter bank
to implement a frequency-dependent time-frequency analysis. A
Index Terms— Automatic transcription, multiple-FO estima- constant-Q representation was selected, because the inter-harmonic

tion, acoustic signal processing, music information retrieval spacings are the same for any periodic sounds. The time interval be-
tween two successive frames is set to 40 ms, the number of bins per
1. INTRODUCTION octaveb is set to 120, and the frequency range is set from 27.5 Hz

(A0) to 12.5 kHz. From now on, the employed absolute value of the

Automatic transcription is the process of converting an audio record®TF! will be denoted as\[n, k], wheren is the time frame and

ing into a symbolic representation using some form of musical nothe log-frequency bin (in 10 cent resolution). When needek]

tation. While the transcription of monophonic music is consideredVill stand for the RTFI slice for a single time-frame.

to be a solved problem, the creation of an automated system able to

transcribe polyphonic music without setting restrictions on the de2.2. Spectral Whitening and Noise Suppression

gree of polyphony and the instrument type still remains open. For an L o . L .

overview on transcription approaches, the reader is referred to [1]. Spectral whitening 1S appl_led in m_uIt|pIe-F0 estimation sy_stems n
Approaches to transcription related to the current work include’™der to suppress timbral information and make the following anal-

the iterative spectral subtraction-based system in [1], the rule-base§!S Mmore robust to different sound sources. Here, the method pro-

system in [2] which employed the resonator time-frequency imagé’os_(':‘d in [1] is employed, modified for Iog-frequgncy specira instead

(RTFI) as a time-frequency representation, and the score functiorff linear frequency ones. For each frequency bin, the squarefoot

based joint multiple-FO estimation approach in [3]. Previous worki"€ Power within a subband df octave span multiplied by a Han-

by the authors includes a system for iterative multiple-FO estimatioffind Window is computed, denotedk]. Afterwards, each bin is

; - I T X
[4], which was also evaluated for the 2010 MIREX multi-F0 estima-Sc@led according t&'[k] = (o[k])"™ X[k], wherev = 0.33is a
tion task. parameter determining the amount of spectral whitening applied.

As far as onset detection is concerned, an overview can be seen Aftérwards, an algorithm for noise suppression is performed to
in [5], where the spectral flux and phase deviation are combined int§€ Whitened RTFI. A two-stage median filtering procedure viith
a complex onset detection feature. In addition, the two aforemer2Ctave span is applied ty[k] resulting in a noise representation

tioned features along with an FO descriptor are combined using deY (<]; in @ similar way to [4]. Cepstral smoothing usitg = 30
cision fusion in [6]. coefficients is applied t&V[k] (as in [3]) and the resulting smooth

Here, an approach for polyphonic transcription using jointcuf"eN,[k] is subtracted fronY'[k], resulting in the whitened and
multiple-FO estimation, onset and offset detection is proposed)0iSe-suppressed RTFI representatiif].
For onset detection, two novel descriptors are proposed which ex-
ploit information from the transcription preprocessing steps. FoR.3. Pitch Salience Function
multiple-FO estimation, a pitch set score function which combines(-J
several pitch-related features is proposed. Finally, novel a hid:
den Markov model-based offset detection procedure is propose

sing Z[k], the log-frequency pitch salience functisfp] proposed

[4] is extracted, where € [21,...,108] denotes MIDI pitch.
uning and inharmonicity coefficients are also extracted. A tuning
This work was supported by a Westfield Trust Research Stskignt deviationd, is considered for each pitch, with a tuning search space
(Queen Mary, University of London). of +£40 cents around the ideal tuning frequency. Inharmonicity is




also considered for each pitch, with the range of the inharmonicity 4. MULTIPLE-FO ESTIMATION
coefficient3, set betweerd) and5 - 10~*. Using the extracted in-
formation, a harmonic partial sequence (HR3p, h] for each can-  4.1. Overlapping Partial Treatment

didate pitchp and its harmonic& = 1,...,13 is also stored for ] ] )
further processing. For each segment defined by two consecutive onsets, multiple-FO

estimation is applied in order to detect the pitches present. The seg-
ment is characterized by the medn, k] of the first 3 frames after

the onset (which correspond to the steady-state part of the sound) and
& corresponding segment salience function and HPS are extracted. A

descriptors which exploit information from the transcription prepro-set ofCv candidate pitches is selected, based on the maximum val-

cessing steps are proposed and combined using late fusion. FirstlyLI s of the §allence fupctlcuﬁp] (here Uy is setto 10 asin [9]). The
; ) 2 .”prtich candidate set will be denoted@s
novel spectral flux-based feature is defined, which incorporatds pltcp In order t th litude of | dh .
tuning information. Although spectral flux has been successfully. Itn otr er to' recovlc_erd fe amprllu € o_b?ver_taﬂpe d%rrTonlcs,bpar-
used in the past for detecting hard onsets [5], false alarms may 3@ reatment IS applied Ior €ach possible pitch candidate combina-

detected for instruments that produce frequency modulations su n. In [1.]' partial amplitudes were recovered using |nt_erpo_lat|on.
as vibrato or portamento. Thus, a semitone-resolution filterbank i ere, a discrete cepstrum-based spectral envelope estimation algo-

created fromZ[n, k], where each filter is centered at the estimatedrlthm is employed [10] in order to recover overlapped partial ampli-
tuning position o7f eéch pitch: tudes. Firstly, given a s€t of pitch candidates, a partial collision list

is computed. For a given HPS, if the number of overlapped partials

3. ONSET DETECTION

In order to accurately detect onsets in polyphonic music, two ons

kp,0+6p+4 1 is less thanV,..., then the amplitudes of the overlapped partials are
Yplp,n] = ( Z X[l,n]- W, [l]) (1)  estimated from the spectral envelofig,, [k] of the candidate pitch

I=kyp 0+6p—4 using only amplitude information from non-overlapped partials. If
the number of overlapped partials is equal or greater ffian., the

wherek;,o is the bin that ideally corresponds to pitpfandW, is  yartial amplitudes are estimated using spectral envelope information
a 80 cent-span Hanning window centered at the pitch tuning poskom the complete HPS.

tion. Using the output of the filterbank, the novel spectral flux-based
descriptor is defined as:

108 4.2. Pitch set score function

SFn] = > HW(¢[p,n] — ¢[p,n — 1)) (2)  Having selected a set of possible pitch candidates and performed

p=21 overlapping partial treatment on each possible combination, the goal
N : o is to select the optimal pitch combination for a specific time frame.
WheLe}éV[i( )t a b 2 '? a h.alf WaVE rgcl:!fler. Afterwards, onsets In [3], Yeh proposed a score function which combined four criteria
can be detected by performing peak picking®ijr]. for each pitch: harmonicity, bandwidth, spectral centroid, and syn-

In order to detect soft onsets, which may not indicate a Chang‘Ehronicity. In addition, [9] employed the spectral flatness of pitch

In signal energy [5], a pltch-_based deS(_:rlptor IS prqposed Wh'd&andidates along with the spectral flatness of the noise residual.
is based on the extracted salience function. The salience function Here, a weighted pitch set score function is proposed, which

s[p, n] is smoothed using a moving median filter with 120 ms span, . - ;

in order to reduce any pitch fluctuations that might be attributed’ ombines spectral and_tgm_poral characterls_tlcs of the (_:and|dat¢_a FOs,
to amplitude modulations (e.g. tremolo). The smoothed saliencgnd also attempts to minimize the noise residual to avoid any missed
functionsp, n] is then warped into a chroma-like representation: etections. Also, features which concern harmonically-related FOs

are included in the score function, in order to suppress any harmonic

6 errors. Given a candidate pitch g6tC C with size|C|, the pro-
Chrlp,n] = Z 5[12-i+ p+20,n] (3)  posed pitch set score function is:
=0
I te]]
wherep = 1,. .., 12. Afterwards, the half-wave rectified first-order
difference ofChr[p, n] is used as a pitch-based onset detection func- L) = Z(ﬁp@) + Lres ®)
tion (denoted as salience differeng®): =1
12 where L, ;) is the score function for each candidate pijcke C,
SD[n] = Z HW(Chrli,n] — Chrli,n —1]) (4) andL,.s is the score for the residual spectrumi, and L., are
i=1 defined as:

Accordingly, soft onsets are detected by peak picking ttin].
In order to combine the onsets produced by the tv?/]g ;foremen- Lp = w1 Fllp] + w2 Smp] — ws SC[p] +wa PR[p]

tioned descriptors, late fusion is applied, as in [6]. From each of the Lres = ws Fl[Res] (6)

two descriptors an onset strength signal is created, which contains

either the value one at the instant of the detected onset or zero oth- Fl[p] denotes the spectral flatness of the HPS, which is maxi-

erwise. The fused onset strength signal is created by summing ardized when the input sequence is smooth and its definition can be

smoothing these two signals using a moving median filter of 40 mgound in [9]. Sm[p] is thesmoothness measure of a HPS, which was

length. Onsets are detected by performing peak picking on the fusgatoposed in [11]. A high value ofm[p] indicates a smooth HPS.

signal by selecting peaks with a minimum 80 ms distance. For tuning'C[p] is the spectral centroid for a given HPS [3], which indicates

onset detection parameters, a development set containing ten 30 stsccenter of gravity.

classical recordings from the meter analysis data from Ghent Uni-  PR[p] is a novel feature, which stands for the harmonically-

versity [8] was employed. related pitch ratio. It is applied only in cases of harmonically-related



FOs in order to estimate the ratio of the energy of the smoothed pa  80f ]
tlals_ of the higher plt_ch corr_lpared to the energy of the smoothe: ol — L -]
partials of the lower pitch. It is formulated as follows: —
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wherep stands for the lower pitch angh- 12 - log, () for the higher 2 4 6 8 10 12 14 16 18 20 22
harmonically-related pitch/ stands for the harmonic relation be- @

tween the two pitchesf{;sn = [fiow). INn case of more than one
harmonic relation between the candidate pitches, a mean value -
computed:PR[p] = 5 i, PRi[pl, whereN,, is the set of 201 ——— .

80 B

harmonic relations. A high value @?R indicates the presence of a
pitch in the higher harmonically-related position.

Res denotes the residual spectrum, which can be expressed in®  _ |2 = —_ —_—
similar way to the linear frequency version in [9]: - -

AW 2 4 6 8 10 12 14 16 18 20 22
Res = Z[k‘] Vp,Vh, k— k'p,h > T (8) (b)

where Ay denotes the mainlobe width of the employed window rijg 1. (a) The pitch ground-truth of an excerpt from ‘RWC MDB-

W. In order to.find a measure of.the ‘whiteness’ of .the residual,j.2001 No. 9’ (guitar). (b) The transcription output of the same
1 — FlI[Res], which denotes the residual smoothness, is used. recording. The abscissa corresponds to seconds.

In order to train the weight parameters,: = 1,...,5 of the
features in (6), training was performed using the Nelder-Mead search
algorithm for parameter estimation [12] with 100 classic, jazz, and
random piano chords from the MAPS database [9] as a training set.
Trained weight parametets; were{1.3,1.4,0.6,0.5,25}. Finally,

60 = e — -

MIDI pitch

6. EVALUATION

the pitch candidate set that maximizes the score function: For the transcription experiments, we used 12 excerpts from the
. RWC database [7], which have been used in the past to evaluate tran-
C= arg max L(C) (9)  scription approaches in [14, 15, 13]. They contain classical and jazz
= music produced by a variety of instruments with various polyphony
is selected as the pitch estimate for the current frame. levels. A list of the recording titles along with the instruments
present in each one can be seen in [13]. Non-aligned MIDI files
5. OFFSET DETECTION are also provided as ground-truth. However, these MIDI files con-

tain several note errors and unrealistic note durations, making them

In order to accurately detect note offsets we employ hidden Markownsuitable for transcription evaluation. As in [14, 15, 13], aligned
models (HMMs). HMMs have been used in the past for smoothinground-truth MIDI data was created for the first 23 sec of each
transcription results (e.g. [13]) but to the authors’ knowledge theyecording, using Sonic Visualiser (http://www.sonicvisualiser.org/).
have not been utilized for offset detection. Each pitch is modeled byl in all, 1187 note events are contained in the test set.
a two-state HMM, denoting pitch activity/inactivity. The observation For evaluating the transcription experiments, several metrics are
sequence is given by the output of the multiple-FO estimation step foemployed, such as the overall accurady(), the total error £y,:),
each pitch:0, = {op[n]}, n = 1,..., N, while the state sequence the substitution errorK,.;s), missed detection errofk,, ), and false
is given by@, = {gp[n]}. In order to estimate state prioFy g,[1]) alarm error £y,). Definitions for the aforementioned metrics can
and the state transition matriX(g,[n]|gp[n — 1]), MIDI files from be found in [14, 15, 13]. It should be noted that all evaluations
the RWC database [7] from the classic and jazz genres were useidke place by comparing the transcribed output and the ground-truth
For each pitch, the most likely state sequence is given by: MIDI files at a 10 ms scale. For assessing the onset detection per-
, formance of the system, the precisioRr¢), recall (Rec), and F-
Q, = argmax [ [ P(gp[n]lap[n — 1)) P(0p[nllgn[n]) ~ (10)  measure F) were employed, with a 50 ms tolerance around ground
awlnl truth onset times, as in the MIREX onset detection task.

In order to estimate the observation probabiliti&®, [n]|g,[n]), Table 1 shows transcription results for the proposed system, ap-
we employ a sigmoid curve which has as input the salience functioplying onset detection and multiple-FO estimation only or also ap-
of an active pitch from the output of the multiple-FO estimation step:plying offset detection. A comparison is made with reported results

1 in the literature for the same files [13, 15, 14], where the proposed
{5 o=Ghm=D (11) method reports improved meatce. It should be noted that the pro-

te ’ posed system demonstrates impressive results for some recordings

wheres[p, n] denotes the salience function value at frameThe  compared to state-of-the-art (e.g. in file 10, which is string quar-
output of the HMM-based postprocessing step is generated using thet recording). Additional insight to the proposed system’s perfor-
Viterbi algorithm. The note offset is detected as the time frame whemance is given in Table 2, where the aforementioned error metrics
an active pitch between two consecutive onsets changes from an aare shown. It can be seen that by applying offset detection, an ac-
tive to an inactive state for the first time. An example for the com-curacy improvement of 1.5% is reported. Generally, the system re-
plete transcription system, from preprocessing to offset detection, igorts relatively few false alarms, but contains a considerable num-
given in Fig. 1 for a guitar recording from the RWC database. ber of missed detections. For comparison, excerpts from the RWC

P(op[n]lgp[n] = 1) =



Recording| Onsets only| Onsets+offsety [13] [15] [14]
1 58.0% 60.0% 63.5% | 59.0% | 64.2%
2 72.1% 73.6% 72.1% | 63.9% | 62.2%
3 60.2% 62.5% 58.6% | 51.3% | 63.8%
4 64.8% 65.2% 79.4% | 68.1% | 77.9%
5 52.5% 53.4% 55.6% | 67.0% | 75.2%
6 74.4% 76.1% 70.3% | 77.5% | 81.2%
7 67.6% 68.5% 49.3% | 57.0% | 70.9%
8 58.3% 60.1% 64.3% | 63.6% | 63.2%
9 49.2% 50.3% 50.6% | 44.9% | 43.2%
10 70.5% 72.4% 55.9% | 48.9% | 48.1%
11 56.2% 56.2% 51.1% | 37.0% | 37.6%
12 33.0% 36.6% 38.0% | 35.8% | 27.5%
Mean 59.7% 61.2% 59.1% | 56.2% | 59.6%
Std. 11.5% 11.2% 11.5% | 12.9% | 16.9%

Table 1. Transcription results4cc) for the 12 RWC recordings
compared with other approaches.

Method Acce FEior Foups Efn Efp
Onsetsonly | 59.7% | 40.3% | 8.4% | 24.6% | 7.3%
Onsets+offsety 61.2% | 38.8% | 7.3% | 24.8% | 6.7%

Table 2. Transcription error metrics for the RWC recordings.

database are available onlinalong with synthesized transcriptions

of the system.

(2]

(3]

[4]

(6]

[7]

Onset detection results using the fused descriptor, the modified

SF only or theSD only, can be seen in Table 3. It should be noted

that for the transcription system, we aim for highc instead of high

F. Thus, it is more important to obtain most of the correct onsets 8]

and slightly over-segment the input (which will not affect multiple-

FO estimation), rather than lose any potential onset candidates which

will lead to missed pitch detections.

7. CONCLUSIONS

El

In this paper, a system for automatic transcription of polyphonic[lo]
music was proposed, which employed joint multiple-FO estimation,
a late fusion-based onset descriptor, and HMM-based offset detec-

tion. Experiments performed on multi-instrument recordings from

the RWC database produced results which outperformed the stat@-l]
of-the-art, while the use of offset detection demonstrated a consistent

improvement throughout the recordings.

In the future, the proposed system will be evaluated at the forthf12]
coming MIREX multi-FO estimation task, as was done in 2010 for a
previous system proposed by the authors [4]. In order to reduce tHe3]
number of missed detections, future research will focus on model-
ing the attack, transient, sustain, and release states of the produced
notes. Finally, system performance can be improved by perform-
ing joint multiple-FO estimation and note tracking, instead of frame-

based multiple-FO estimation with subsequent note tracking.

8. REFERENCES

[1] A. Klapuri and M. Davy, Eds.Sgnal Processing Methods for
Music Transcription, Springer-Verlag, New York, 2nd edition,
2006.

Ihttp://www.eecs.gmul.ac.uk/~emmanouilb/transcriptitmlh

(14]

(15]

Features Pre Rec F

SF+SD | 52.85% | 86.84% | 63.17%
SF 66.29% | 81.69% | 70.56%
SD 55.36% | 82.42% | 63.80%

Table 3. Onset detection results for the RWC recordings.

R. Zhou, Feature extraction of musical content for auto-
matic music transcription, Ph.D. thesisEcole Polytechnique
Féecérale de Lausanne, Oct. 2006.

C. Yeh, A. Rbel, and X. Rodet, “Multiple fundamental fre-
guency estimation and polyphony inference of polyphonic mu-
sic signals,” IEEE Trans. Audio, Speech, and Language Pro-
cessing, vol. 18, no. 6, pp. 1116-1126, Aug. 2010.

E. Benetos and S. Dixon, “Multiple-FO estimation of piano
sounds exploiting spectral structure and temporal evolution,”
in ISCA Tutorial and Research Workshop on Satistical and
Perceptual Audition, Sept. 2010, pp. 13-18.

J. P.Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and
M. Sandler, “A tutorial on onset detection of music signals,”
|EEE Trans. Audio, Speech, and Language Processing, vol. 13,

no. 5, pp. 1035-1047, Sept. 2005.

A. Holzapfel and Y. Stylianou, “Three dimensions of pitched
instrument onset detectionJEEE Trans. Audio, Speech, and
Language Processing, vol. 18, no. 6, pp. 1517-1527, 2010.

M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC
music database: music genre database and musical instrument
sound database,” imt. Conf. Music Information Retrieval,

Oct. 2003.

M. Varewyck and J.-P. Martens, “Assessment of state-of-the-
art meter analysis systems with an extended meter description
model,” in8th Int. Conf. Music Information Retrieval, 2007.

V. Emiya, R. Badeau, and B. David, “Multipitch estimation
of piano sounds using a new probabilistic spectral smoothness
principle,” |EEE Trans. Audio, Speech, and Language Process-

ing, vol. 18, no. 6, pp. 1643-1654, Aug. 2010.

D. Schwarz and X. Rodet, “Spectral envelope estimation and
representation for sound analysis-synthesis I'ninComputer
Music Conf., Oct. 1999.

A. Pertusa and J. Mfksta, “Multiple fundamental frequency
estimation using Gaussian smoothness,” IEEE Int. Conf.
Acoustics, Speech, and Sgnal Processing, 2008, pp. 105-108.

J. A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer Journal, vol. 7, pp. 308-313, 1965.

F.J. C&édadas-Quesada, N. Ruiz-Reyes, P. Vera Candeas, J. J.
Carabias-Orti, and S. Maldonado, “A multiple-FO estimation
approach based on Gaussian spectral modelling for polyphonic
music transcription,J. New Music Research, vol. 39, no. 1, pp.
93-107, Apr. 2010.

H. Kameoka, T. Nishimoto, and S. Sagayama, “A multipitch
analyzer based on harmonic temporal structured clustering,”
|EEE Trans. Audio, Speech, and Language Processing, vol. 15,

no. 3, pp. 982-994, Mar. 2007.

S. Saito, H. Kameoka, K. Takahashi, T. Nishimoto, and
S. Sagayama, “Specmurt analysis of polyphonic music sig-
nals,” IEEE Trans. Audio, Speech, and Language Processing,

vol. 16, no. 3, pp. 639-650, Mar. 2008.



