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ABSTRACT

Chord labels for recorded audio are in high demand both
as an end product used by musicologists and hobby musi-
cians and as an input feature for music similarity applica-
tions. Many past algorithms for chord labelling are based on
chromagrams, but distribution of energy in chroma frames
is not well understood. Furthermore, non-chord notes com-
plicate chord estimation. We present a new approach which
uses as a basis a relatively simple chroma model to represent
short-time sonorities derived from melody range and bass
range chromagrams. A chord is then modelled as a mix-
ture of these sonorities, or subchords. We prove the prac-
ticability of the model by implementing a hidden Markov
model (HMM) for chord labelling, in which we use the dis-
crete subchord features as observations. We model gamma-
distributed chord durations by duplicate states in the HMM,
a technique that had not been applied to chord labelling. We
test the algorithm by five-fold cross-validation on a set of
175 hand-labelled songs performed by the Beatles. Accu-
racy figures compare very well with other state of the art
approaches. We include accuracy specified by chord type as
well as a measure of temporal coherence.

1 INTRODUCTION

While many of the musics of the world have developed com-
plex melodic and rhythmic structures, Western music is the
one that is most strongly based on harmony [3]. A large
part of harmony can be expressed as chords. Chords can
be theoretically defined as sets of simultaneously sounding
notes, but in practice, including all sounded pitch classes
would lead to inappropriate chord labelling, so non-chord
notes are largely excluded from chord analysis. However,
the question which of the notes are non-chord notes and
which actually constitute a new harmony is a perceptual
one, and answers can vary considerably between listeners.
This has also been an issue for automatic chord analysers
from symbolic data [16]. Flourishing chord exchange web-
sites ! prove the sustained interest in chord labels of ex-
isting music. However, good labels are very hard to find,

! e.g. http://www.chordie.com/
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arguably due to the tediousness of the hand-labelling pro-
cess as well as the lack of expertise of many enthusiastic
authors of transcriptions. While classical performances are
generally based on a score or tight harmonic instructions
which result in perceived chords, in Jazz and popular mu-
sic chords are often used as a kind of recipe, which is then
realised by musicians as actually played notes, sometimes
rather freely and including a lot of non-chord notes. Our
aim is to translate performed pop music audio back to the
chord recipe it supposedly has been generated from (lead
sheet), thereby imitating human perception of chords. A
rich and reliable automatic extraction could serve as a basis
for accurate human transcriptions from audio. It could fur-
ther inform other music information retrieval applications,
e.g. music similarity. The most successful past efforts at
chord labelling have been based on an audio feature called
the chromagram. A chroma frame, also called pitch class
profile (PCP), is a 12-dimensional real vector in which each
element represents the energy of one pitch class present in a
short segment (frame) of an audio recording. The matrix of
the chroma frame columns is hence called chromagram. In
1999, Fujishima [5] introduced the chroma feature to music
computing. While being a relatively good representation of
some of the harmonic content, it tends to be rather prone
to noise inflicted by transients as well as passing/changing
notes. Different models have been proposed to improve es-
timation, e.g. by tuning [6] and smoothing using hidden
Markov models [2, 11]. All the algorithms mentioned use
only a very limited chord vocabulary, consisting of no more
than four chord types, in particular excluding silence (no
chord) and dominant 7th chords. Also, we are not aware of
any attemps to address chord fragmentation issues.

We present a novel approach to chord modelling that ad-
dresses some of the weaknesses of previous chord recogni-
tion algorithms. Inspired by word models in speech process-
ing we present a chord mixture model that allows a chord to
be composed of many different sonorities over time. We
also take account of the particular importance of the bass
note by calculating a separate bass chromagram and inte-
grating it into the model. Chord fragmentation is reduced
using a duration distribution model that better fits the actual
chord duration distribution. These characteristics approxi-
mate theoretic descriptions of chord progressions better than
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previous approaches have.

The rest of this paper is organised as follows. Section 2
explains the acoustical model we are using. Section 3 de-
scribes the chord and chord transition models that constitute
the hierarchical hidden Markov model. Section 4 describes
how training and testing procedures are implemented. The
result section 5 reports accuracy figures. Additionally, we
introduce a new scoring method. In section 6 we discuss
problems and possible future developments.

2 ACOUSTIC MODEL

2.1 Melody and Bass Range Chromagrams

We use mono audio tracks at a sample rate of 44.1 kHz and
downsample them to 11025 kHz after low-pass filtering. We
calculate the short-time discrete Fourier transform for win-
dows of 8192 samples (=~ 0.74s) multiplied by a Hamming
window. The hop-size is 1024 samples (=~ 0.09s), which
corresponds to an overlap of 7/8 of a frame window. In
order to map the Fourier transform at frame ¢ to the log-
frequency (pitch) domain magnitudes @ (t) we use the con-
stant Q transform code written by Harte and Sandler [6].
Constant Q bin frequencies are spaced 33% cents (a third of
a semitone) apart, ranging from 110 Hz to 1760 Hz (four
octaves), i.e. the k™ element of the constant Q transform Q)
corresponds to the frequency

2% . 110 Hz, 1)

where k € 1,...,(4 - 36). In much the same way as Peeters
[15], we smooth the constant Q transform by a median filter
in the time direction (5 frames, ~ 0.5s), which has the effect
of attenuating transients and drum noise.

For every frame ¢ we wrap the constant Q magnitudes
Q(t) to a chroma vector y*(¢) of 36 bins by simply sum-
ming over bins that are an octave apart,

4

y;(t) = Z |Qs6.ci—1)+; (), G=1,...

i=1

,36. (2)
Similar to Peeters [15], we use only the strongest of the three
possible sets of 12 semitone bins, e.g. (1,4,7,...,34), thus
“tuning” the chromagram and normalise the chroma vector
tosumto 1,

12
i=1

where v € {0, 1,2} indicates the subset chosen to maximise
>t 2k Yary, (t). A similar procedure leads to the calcula-
tion of the bass range chromagrams. The frequency range is
55 Hz to 220 Hz. The number of constant Q bins per semi-
tone is 1, not 3. We linearly attenuate the bins at the fre-
quency range borders, mainly to prevent a note just above
the bass frequency range from leaking into the bass range.
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2.2 Data

Harte has provided chord transcriptions for 180 Beatles re-
cordings [7], the entirety of the group’s 12 studio albums.
Some of the songs have ambiguous tuning and/or do not per-
tain to Western harmonic rules. We omit 5 of these songs 2 .
In a classification step similar to the one described by Mauch
et al. [13] we map all chords to the classes major, minor,
dominant, diminished, suspended, and no chord (which ac-
count for more than 94% of the frames) as well as other for
transcriptions that do not match any of the classes. We clas-
sify as dominant the so-called dominant seventh chords and
others that feature a minor seventh. We exclude the chords
in the other class from all further calculations. Hence, the
set of chords has n = 12 x 6 elements.

2.3 Subchord Model

We want to model the sonorities a chord is made up of men-
tioned in Section 1 and call them subchords. Given the data
we have, it is convenient to take as set of subchords just the
set of chords introduced in the previous paragraph, denoting
them S;, i = 1,...,n. In this way, we have a heuristic that
allows us to estimate chroma profiles for every subchord 3 ;
in fact, for every such subchord .S; we use the ground truth
labels G to obtain all positive examples

Yi:{Yt5Gt:Si}

and calculate the maximum likelihood parameter estimates
0; of a Gaussian mixture with three mixture components by
maximising the likelihood

I1 L@ily).

YEY;

Parameters are estimated using a MATLAB implementation
of the EM algorithm by Wong and Bouman* with the de-
fault initialisation method. From the estimates #;, we obtain
a simple subchord score function

L(6;,
pSily) = —Y) @)
Zj L(ejv y)
and hence a subchord classification function
©)

s(y) = argénaXp(SiIY) € {S1,.,Su}.

These will be used in the model with no bass information.

2 Revolution 9 (collage), Love You Too (Sitar-based), Wild Honey Pie
(tuning issues), Lovely Rita (tuning issues), Within You Without You (Sitar-
based)

3 We only fit one Gaussian mixture for each chord type (i.e. major,
minor, diminished, dominant, suspended, and no chord) by rotating all the
relevant chromagrams, see [15]).

4 http://web.ics.purdue.edu/"wong17/gaussmix/gaussmix.html
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Relative subchord frequencies for chord C DIMINISHED
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Figure 1. Example of subchord feature relative frequen-
cies bg|c for the diminished chord. The five most frequent
features are labelled. The subchord corresponding to C di-
minished most likely to be the best-fitting feature is indeed
C diminished.
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2.4 Subchord Model including Bass

In order to model the bass from the bass range chroma-
grams, every subchord S; has a set B; C {1,...,12} of
valid pitch classes coinciding with chord notes. The score
for the bass range chromagram of subchord S; at a bass
chroma frame y® is the maximum value

_ b
b [vP) — maX;eB; {yj}

p ( 7 |y ) - b

> maxjen, {45}
the bass chromagram assumes in any of the pitch classes in
B;, b stands for bass range.

In order to obtain a model using both melody range and
bass range information the two scores are combined to a
single score

p(Sily,y") = p°(Sily®) - p(Sily)- @)

Analogous to Equation 5 we obtain a second subchord clas-
sification function

(6)

€ [0,1],

s(y,y®) = arg;naXp(Silxy") € {S1,Su}. (8

2.5 Discrete HMM Observations

We discretise the chroma data y (and y®) by assigning to
each frame with chroma y the relative subchord, i.e. s(y, y°),
or s(y) depending on whether we want to consider the bass
chromagrams or not. That means that in the HMM, the only
information about a frame y we keep is which subchord fits
best.

3 LANGUAGE MODEL

In analogy to speech processing the high-level processing in
our model is called language modelling, although the lan-
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guage model we are employing is a hidden Markov model
(HMM, see, e.g. [9]). Its structure can be described in terms
of a chord model and a chord transition model.

3.1 Chord Model

The chord model represents one single chord over time. As
we have argued above, a chord can generate a wealth of very
different subchords. The HMM takes the categorical data
s(y) € {S1,...,S,} as observations, which are estimations
of the subchords. From these, we estimate the chords. The
chords (', . . ., C), take the same category names (C major,
C# major,...) as subchords, but describe the perceptual con-
cept rather than the sonority ° . Given a chord C; the off-line
estimation of its emission probabilities consists of estimat-
ing the conditional probabilities

P(C7;|Sj),i7j€17...,n (9)

of the chord C; conditional on the subchord being S;. The
maximum likelihood estimator is simply the relative condi-
tional frequency

~ Ht:s(yr) = Si ANCr = G}

where G, is the ground truth label at . These estimates
are the (discrete) emission distribution in the hidden Markov
model. A typical distribution can be seen in Figure 1, where
CY. is a C diminished chord.

In hidden Markov models, state durations follow an ex-
ponential distribution, which has the undesirable property
of assigning the majority of probability mass to short dura-
tions as is shown in Figure 2. The true distribution of chord
durations is very different (solid steps), with no probabil-
ity assigned to very short durations, and a lot between one
and three seconds. To circumvent that problem we apply
a variant of the technique used by Abdallah et al. [1] and
model one chord by a left-to-right model of three hidden
states with identical emission probabilities b;|;,. The chord
duration distribution is thus a sum of three exponential ran-
dom variables with parameter J, i.e. it is gamma-distributed
with shape parameter £ = 3 and scale parameter A. Hence,
we can use the maximum likelihood estimator of the scale
parameter \ of the gamma distribution with fixed k:

5\ = 7CZN )

A (In

where dyy is the sample mean duration of chords. The obvi-
ous differences in fit between exponential and gamma mod-
elling are shown in Figure 2. Self-transitions of the states
in the left-to-right model within one chord will be assigned
probabilities 1 — 1/ (see also Figure 3).

5 In fact, the subchords could well be other features, which arguably
would have made the explanation a little less confusing.
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Figure 2. Chord duration histogram (solid steps) and fitted
gamma density (solid curve) with parameters 4 and k = 3
used in our model. Exponential density is dashed.

Chord 1

Chord 2

Chord 3

Figure 3. Non-ergodic transition matrix of a hypothetical
model with only three chords. White areas correspond to
zero probability. Self-transitions have probability 1 — 1/ A
(black), inner transitions in the chord model have probabil-
ity 1/ A (hatched), and chord transitions (grey) have proba-
bilities estimated from symbolic data.

3.2 Chord Transition Model

We use a model that in linguistics is often referred to as
a bigram model [9]. For our case we consider transition
probabilities

employing the estimates {a;, , } derived from symbolic data
smoothed by

13)

! . !
Aiky = Oy, + E}‘fi{aklkz}'

increasing probability mass for rarely seen chord progres-
sions. The chord transition probabilities are symbolised by
the grey fields in Figure 3. Similar smoothing techniques
are often used in speech recognition in order not to under-
represent word bigrams that appear very rarely (or not at all)
in the training data [12].

The initial state distribution of the hidden Markov model
is set to uniform on the starting states of the chord, whereas
we assign zero to the rest of the states.

48

4 IMPLEMENTATION

4.1 Model Training

We extract melody range and bass range chromagrams for

all the songs in the Beatles collection as described in Section2.1.

The four models that we test are as follows:

no bass, no duplicate states ‘ no bass, duplicate states

bass, no duplicate states ‘ bass, duplicate states

We divide the 175 hand-annotated songs into five sets,
each spanning the whole 12 albums. For each of the four
models we performe a five-fold cross-validation procedure
by using one set in turn as a test set while the remaining
four are used to train subchord, chord and chord transition
models as described in sections 2.3 and 3.1.

4.2 Inference

For a given song from the respective test set, subchord fea-
tures for all frames are calculated, thus obtaining a feature
sequence s(y¢), t € Tyong, and the resulting emission prob-
ability matrix is

Br(yt) = bs(y) ks (14)
where by, )k = bijr With i : S; = 5(y;). In order to reduce
the chord vocabulary for this particular song we perform a
simple local chord search: B is convolved with a 30 frame
long Gaussian window, and only those chords that assume
the maximum in the convolution at least once are used. This
procedure reduces the number of chords dramatically, from
72 to usually around 20, resulting in a significant perfor-
mance increase. We use Kevin Murphy’s implementation ®
of the Viterbi algorithm to decode the HMM by finding the
most likely complete chord sequence for the whole song.

5 RESULTS

We calculate the accuracy for the set of chord classes. As
we have six chord classes (or types), rather than two [11]
or three [10] we decided to additionally provide results in
which major, dominant, and suspended chords are merged.
The calculation of accuracy is done by dividing summed du-
ration of correctly annotated frames by the overall duration
of the song collection. Similarly, in the case of one partic-
ular chord type (or song), this has been done by dividing
the summed duration of correctly annotated frames of that
chord type (or song) by the duration of all frames pertaining
to that chord type (or song).

O http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html
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5.1 Song-Specific Accuracy

It is obvious that any chord extraction algorithm will not
work equally well on all kinds of songs. Table 1 shows over-
all accuracy figures in both the merged and full evaluation
mode for all four models. The models including bass in-

without bass with bass

std.  dupl. std.  dupl.

3 mean 64.74 6496 6646 66.84
£ std. deviation 11.76 1321 11.59 13.00
€  max 86.35 89.15 86.99 88.81
_~mean 49.87 4937 51.60 51.17
& std. deviation 13.70 14.85 13.93 15.65
max 79.55 82.19 78.82 81.93

Table 1. Accuracy with respect to songs. Full and merged
refer to the evaluation procedures explained in Section 5.
The labels “without bass” and “with bass” denote if infor-
mation from the bass chromagrams has been used or not,
whereas “dupl.” denotes the model in which the duplicated
states have been used (see Section 3).

formation perform slightly better, though not significantly,
with a mean chord recognition rate (averaged over songs)
of 66.84% / 51.6% in the case of merged / full evaluation
modes. The use of duplicate states has very little effect on
the accuracy performance.

5.2 Total and Chord-specific Accuracy

Our top performance results (50.9 % for full evaluation mode,
65.9 % for merged evaluation mode) lie between the top
scoring results of Lee and Slaney [11] (74 %) and Burgoyne
et al. [4] (49 %). This is encouraging as we model more
chord classes than Lee and Slaney [11], which decreases
accuracy for either of the classes, and their figures refer to
only the first two Beatles albums, which feature mainly ma-
jor chords. Unfortunately, we cannot compare results on
individual chords. We believe that such an overview is es-
sential because some of the chord types appear so rarely that
disregarding them will increase total accuracy, but delivers
a less satisfying model from a human user perspective.

5.3 Fragmentation

For a human user of an automatic transcription not only the
frame-wise overall correctness of the chord labels will be of
importance, but also—among others properties—the level
of fragmentation, which would ideally be similar to the one
in the ground truth. As a measure for fragmentation we
used the relative number of chord labels in the full evalu-
ation mode. One can see in Table 3, the gamma duration
modelling has been very successful in drastically reducing
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without bass with bass

std.  dupl. std.  dupl.

total 63.85 64.04 6559 6591

S major (merged) 70.31 72.04 7258 74.43
5 minor 4857 4393 5027 45.63
& diminished 14.63 1322 11.51 10.35
no chord 3458 2742 2559 1948
total 49.17 48.64 50.90 50.37
major 52.16 52.92 5456 5545

= minor 48.57 4393 50.27 45.63
= dominant 4488 4642 46.51 46.42
diminished 14.63 1322 11.51 10.35
suspended 16.61 11.04 1322 9.04

no chord 3458 2742 2559 1948

Table 2. Accuracy: Overall relative duration of correctly
recognised chords, see also Table 1.

without bass with bass
std. dupl. std. dupl
fragmentation ratio 1.72 1.12 1.68 1.13

Table 3. Fragmentation.

the fragmentation of the automatic chord transcription. This
sheds a new light on the results as presented in Tables 1 and
2: the new duration modelling retains the level of accuracy
but reduces fragmentation.

6 DISCUSSION

6.1 Different Subchord Features

In the model presented in this paper, the subchord features
coincide with the chords and emission distributions are dis-
crete. This is not generally necessary, and one could well
imagine trying out different sets of features, be they based
on chromagrams or not. Advances in multi-pitch estima-

number of songs

0 10 20 30 40 50 60 70 80 920
accuracy in %

100

Figure 4. Histogram of recognition accuracy by song in
the model using both gamma duration modelling and bass
information, merged major, minor, and suspended chords,
with mean and standard deviation markers.



ISMIR 2008 — Session 1a — Harmony

tion” may make it feasible to use features more closely re-
lated to the notes played.

6.2 Hierarchical Levels and Training

While our duration modelling is a very simple form of hier-
archical modelling, additional approaches are conceivable.
Modelling song sections is promising because they could
capture repetition, which is arguably the most characteris-
tic parameter in music [8, p. 229]. Another option is key
models, and a combination of the algorithms proposed by
Noland and Sandler [14] and Lee and Slaney [11] is likely
to improve recognition and enable key changes as part of the
model. Such higher level models are needed to make on-line
training of transition probabilities sensible as otherwise fre-
quent transitions will be over-emphasised.

7 CONCLUSIONS

We have devised a new way of modelling chords, based on
the frequency of subchords, chord-like sonorities that char-
acterise a chord by their frequency of occurrence. A hidden
Markov model based on this chord model has been imple-
mented to label chords from audio with 6 chord classes (re-
sulting in an overall vocabulary of 6 x 12 chords), while
previous approaches never used more than four. The algo-
rithm has shown competitive performance in five-fold cross-
validation on 175 Beatles songs, the largest labelled data set
available. In addition to the chord model we used a bass
model, and more sophisticated state duration modelling. The
use of the latter results in a reduction of the fragmentation
in the automatic trancription while maintaining the level of
accuracy. We believe that the novelties presented in this pa-
per will be of use for future chord labelling algorithms, yet
improvement in feature and model design provide plenty of
room for improvement.
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