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Abstract

In an expressiveperformance, a skilled musicianshapes
the musicby continuouslymodulatingaspectslike tempo
and loudnessto communicatehigh level information such
asmusicalstructureandemotion.Althoughautomaticmod-
elling of this phenomenonremainsbeyondthecurrentstate
of theart, wepresenta systemthat is ableto measuretempo
and dynamicsof a musicalperformanceand to track their
developmentover time. Thesystemacceptsraw audio in-
put, tracks tempoand dynamicschanges in real time, and
displaysthedevelopmentof theseexpressiveparameters in
an intuitive and aestheticallyappealinggraphical format
which providesinsight into the expressivepatternsapplied
by skilledartists.

1 INTRODUCTION

An expert musicalperformeris able to shapea given
pieceof musicto communicatehigh level informationsuch
as musicalstructureand emotion. That is, the artist goes
beyond what is prescribedin the written scoreand modi-
fies, graduallyor abruptly, the tempoor loudnessor other
parametersat certainplacesin thepiecein orderto achieve
certainmusicalandemotionaleffects.This activity is com-
monly referredto as expressivemusicperformance. De-
spite its importancein art music, expressive performance
is still a poorly understoodphenomenon,bothfrom a musi-
calandacognitiveperspective. No formalmodelsexist that
would explain,or at leastquantifyandcharacterise,aspects
of commonalitiesanddifferencesin performancestyle.

This paperpresentsa steptowardsthe automatichigh-
level analysisof this elusive phenomenon.We restrictour
attentionto two of the most importantexpressive dimen-
sions: tempoand loudness(dynamics). A systemis pre-
sentedthat is able to measuretempo and dynamicsof a
musicalperformanceand to track their developmentover
time. Thesystemacceptsraw audioinput (e.g.,from a mi-
crophone),trackstempoanddynamicschangesin realtime,
anddisplaysthedevelopmentof theseexpressiveparameters
in an intuitive andaestheticallyappealinggraphicalformat
which providesinsight into the expressive patternsapplied
by skilledartists.

Measuringand trackingdynamicsis ratherstraightfor-
ward.The(perceived)loudnessof themusiccanbederived

from the audiosignalby applyingwell-known signalpro-
cessingtechniquesandpsychoacousticprinciples.Thediffi-
cult partis inferringthebasictempo, andtrackingchangesin
tempoin realtime. Themainproblemsaredetectingtheon-
setsof notesin theraw audiosignal(eventdetection),infer-
ring thebasicrateof beatsor tempoandthemostplausible
metrical level (tempoinduction),andthe real time adapta-
tion of thetempohypothesesin responseto newly incoming
information(tempotracking).

The main technicalcontribution of this paperis a real
time algorithm that finds the tempo of a musical perfor-
mance,keepingtrackof multiplehypotheses,ratingandup-
datingeachof thehypothesesdynamically, andallowing the
userto interactively switchbetweenhypotheses(e.g.,when
thesystemhasobviouslychosenawrongmetricallevel). At
theheartof thetempoinductionandtrackingsystemis afast
on-lineclusteringalgorithmfor time intervals.

2 REAL TIME TEMPO TRACKING

Most musichasasits rhythmic basisa seriesof pulses,
spacedapproximatelyequallyin time, from which the tim-
ingof all musicaleventscanbemeasured.Thisphenomenon
is calledthe beat, andthe individual pulsesarealsocalled
beats. The rateat which beatsoccurdefinesthe tempo, a
quantitywhich variesover time. Sometimesa multiple or
divisor of the tempois perceived as an alternative tempo;
thesedifferentratesarecalledmetricallevels.

The task of a tempoinduction and tracking systemat
any momentduring its operationis to infer, from the ob-
served inter-notetime intervals,possiblebeatratesandse-
lect theonethatmostlikely representstheperceivedtempo
of the piece. This is performedby a clusteringalgorithm
which groupssimilar time intervals betweennote onsets,
forming clusterswhich correspondto musical time units,
suchashalf notes,quarternotesanddottedquarternotes.
In a mechanicalperformance,thesetime intervalswould be
preciselyintegeror simpleinteger fractionmultiplesof the
time betweentwo consecutive beats.But in expressive per-
formance,thecategoriesareblurredandchangeover time,
sotheclusteringalgorithmmustberobustto noiseandable
to adaptdynamicallyto drift in theclustercentres.

The architectureof the tempotracker is shown in fig-
ure1. The input signalis preprocessedin severalstagesto
detectthe onsetsof musicalnotes(events),andthis infor-
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Figure1: Architectureof tempotrackingsystem

mation is usedby the multiple tempotracking subsystem
to createa setof tempohypotheseswhich areupdateddy-
namicallyasfurtherinput dataarrives.Thehighest-ranking
tempohypothesisis givenasoutput,but therankingcanbe
overriddenby the userselectinga differentmetrical level.
In theremainderof this section,we describethesuccessive
stagesof processing. Full detailscan be found in Dixon
et al. (2002).

2.1 Audio Processing

The audio input is readfrom the soundcardor from a
file, in linear PCM format. If the input hasmorethanone
channel,a singlechannelsignalis createdby averagingall
channels. The datais then processedby a smoothingfil-
ter which calculatestheRMS amplitudefor 40mswindows
with 75%overlap,giving thesystema10mstimeresolution
in all subsequentcalculations.

The event detectionmodulethenfinds the slopeof the
smoothedamplitudeusing a linear regression,and calcu-
latesthesetof localpeakswhichareabovegiventhresholds
of amplitudeandslope. Theselocal peaksaretaken to be
noteonsettimes,which arethe main input to the multiple
tempotrackingmodule,the mostcomplex part of the sys-
tem. Althougha relatively simpletime domainalgorithmis
usedfor event detection,it hasbeenshown (Dixon, 2001)
that this approachis sufficient for successfulextractionof
tempo.

2.2 Multiple Tempo Tracking Subsystem

2.2.1 Clustering

Thetempoinductionandtrackingsystemcalculatesthe
timeintervalsbetweenpairsof recentevents(inter-onsetin-
tervals, or IOIs) andusesaclusteringalgorithm(figure2) to
find significantclustersof IOIs, which areassumedto rep-
resentmusicalunits. Theseclustersform the basesof the
tempohypothesesgeneratedby thesystem.Theclustering

For eachnew onset
For IOI times � from 100msto 2500msin 10mssteps

Findpairsof onsetswhichare � apart
Sumthemeanamplitudeof theseonsetpairs

Loopuntil all IOI timepointsareused
For times � from 100msto 2500msin 10mssteps

Calculatewindow size � asfunctionof �
Find averageamplitudeof IOIs in window � �����	�
���
Store� which givesmaximumaverageamplitude

Createa clustercontainingthestoredmaximumwindow
Mark theIOIs in theclusterasused

For eachcluster
Find relatedclusters(multiplesor divisors)
Combinerelatedclustersusingweightedaverage

Matchcombinedclustersto tempohypothesesandupdate

Figure2: Algorithm for clusteringof inter-onsetintervals

algorithmmaintainsa limited memory(5 seconds)of onset
times,andbeginsprocessingby calculatingall IOIs between
pairsof onsetsin its memory. The intervals areweighted
by thegeometricmeanof theamplitudesof theonsets,and
summedfor eachtime interval, to give the weightedIOIs
shown in figure3(a).

At eachtimeinterval, theinter-onsetintervals(limited to
therange0.1sto 2.5s)areclusteredusingan iterative best-
first algorithmgivenin figure2,whichsequentiallyfindsthe
clusterswith thegreatestaverageamplitude,usinga sliding
window whichgrowsproportionallywith IOI size.For each
of thebestclusters,thetimeinterval representedby theclus-
ter(clustertime) is calculatedastheweightedaverageof the
componentIOIs (figure3(b)).

2.2.2 Reinforcement

It is usually the casein traditionalWesternmusic that
time intervalsareapproximatelyrelatedby smallintegerra-
tios, andthereforetheclustertimesareexpectedalsoto re-
flect this property. In otherwords,theclustertimesarenot
independent;they representrelatedmusicalunits suchas
quarternotesandhalf notes.Thetempoinducerexploitsthis
propertyby adjustingtheclustertimesandweightsbasedon
thecombinedinformationgivenby setsof relatedclusters.
Two clustersaresaidto be relatedif the ratio of their time
intervalsis closeto aninteger.

Thustheerror in eachindividual clustertime canbere-
ducedby bringingtheclustertime andrelatedclustertimes
closerto theidealintegerratios.To achieve this, therelated
clustersarescaledto thesamemetricallevel andaweighted
averageof the scaledclustersis calculated.The weighting
favours longer time intervals, which tend to have a lower
relativeerror.

2.2.3 Smoothing

Tempoasaperceptarisesfromthetiming of many notes;
localchangesin timingdonotunambiguouslyimply atempo
change. In order that the systemis not disruptedby lo-
cal timing irregularities,like thedelayof a singlenote,the
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Figure3: (a) Weightedinter-onsetintervals beforecluster-
ing and(b) resultsof clusteringshowing the5 bestclusters

tempotrackerperformssmoothingonthetempohypotheses
generatedabove. At eachtime step,the hypothesesfrom
the previous time stepareupdatedby combiningwith new
values.This is doneby matchingeachcurrenthypothesisto
thenearestprevioushypothesis(if asufficiently nearoneex-
ists),andupdatingusinga recursive (one-pole)filter, which
causesoldvaluestodecayexponentiallyasthey arereplaced
by new.

3 THE PERFORMANCE WORM

The above algorithm, togetherwith an algorithm that
computesthe dynamics(loudness)of a performancefrom
the audio signal, has beenimplementedin a systemthat
tracksthetempoanddynamicsin a givenperformanceand
shows theparameters(currentvaluespluspartof their his-
tory) in ananimateddisplay. As with tempo,thedynamics
trajectoryis smoothedover the pastvia an exponentialde-
cay function. Thesystemtakesits input from anaudiofile
or directly from thesoundcardandworks in real time. For
reasonsthat are evident (seefigure 4), we call it the Per-
formanceWorm. This representationis basedon anoffline
tempo-loudnessanimationdevelopedby musicologistJörg
Langner(LangnerandGoebl,2002).

The Worm works interactively. The usercan dynam-
ically modify presentationparameters(e.g., rescalingthe
axes)andswitchbetweentempohypotheses,i.e., force the
tempotracker to re-weightits clustersandmove to a higher
or lower metrical level. Figure4 shows a snapshotof the
Wormasit tracksaperformance(byBarenboim)of Mozart’s

Figure4: Screenshotof thePerformanceWorm,showingan
expressiontrajectorywith 
 axis: tempoin beatsperminute;� axis: dynamics(‘loudness’)in decibel.Thedarkestpoint
representsthe currentinstant,while instantsfurther in the
pastappearfainter.

pianosonataK.279(C major, 2ndmovt). In theplots,the 

axis representsthe tempoin beatsper minute(bpm), the �
axistheloudnessin termsof soundpressurelevel (measured
in decibels). The darkest point representsthe current in-
stant,while instantsfurtherin thepastappearfainter. In the
example,we seea simultaneouscrescendoandritardando,
followed by a decrescendo,with the ritardandocontinuing
for ashorttime into thedecrescendobeforethetempostarts
to increasetowardsits previousrate.

Observingtrajectoriessuchas in figure 4, many inter-
estingpatternsemerge that reveal characteristicsof perfor-
mances. Someof theseare clearly audiblein the record-
ing, othersare hard to pinpoint and namewhen we hear
the piece,but clearly emerge from the graphicalrepresen-
tation (andcontribute to the overall impressionof the per-
formance).What this exampleis meantto illustrateis how
this approachto visualisationprovidesan intuitive view of
a numberof high-level aspectsof expressive musicperfor-
mance.With a little experience,oneimmediatelyseesmany
interestingandtypical featuresandpatternsin a given tra-
jectory. ThatmakestheWorm anextremelyusefultool for
musicalperformanceanalysis.

4 DISCUSSION

We have describeda tempotrackingalgorithmthat ex-
tractspotentialnoteonsetsfrom audioinput andestimates
the currenttempoof a pieceof musicin real time, andthe
applicationof thisalgorithmin amusicalexpressionvisual-
isationsystem.

Previouswork in tempoandbeattrackinghasfocussed
primarily on the converseof expressionextraction, that is
rhythm parsing,wheredeviationsfrom metrical time were



either not considered(e.g. Lee, 1991) or treatedas noise
(e.g. Desainand Honing, 1989; Rosenthal,1992; Cemgil
et al., 2000),andthesystemsprocessedsymbolicdataoff-
line. Morerecently, severalbeattrackingsystemshavebeen
developedwhichwork with audioinput(e.g.Scheirer,1998;
Dixon, 2001) or run in real time (e.g. Large and Kolen,
1994)or both(e.g.GotoandMuraoka,1995,1999). Com-
paredwith the real time audiobeattrackingwork of Goto
andMuraoka,ourtempotrackingalgorithmperformsasim-
pler task,that of finding the tempobut not necessarilythe
beat.However, ourwork is not restrictedto aparticularmu-
sical style or tempo,whereasGoto’s work is restrictedto
function only for popularmusic in 4/4 time, with a tempo
rangeof 61–120beatsper minute, whereeither the drum
patternsor theharmonicchangesmatchassumedrhythmic
patternstypical of popmusic.

The approachto visualisingexpressive performancein
the form of an animationin a 2-D tempo-loudnessspace
comesfrom Langnerand Goebl (2002). The systemdif-
fers from Langner’s in several importantways. The pri-
mary differenceis that it works in real time, which means
that the Worm doesnot use information from the future.
Langner’s systemsmoothsthe tempoand dynamicsusing
a large Gaussianwindow, which requireslooking several
secondsinto the future. This hasthe sideeffect of thedis-
play sometimesanticipatingthe performer. On the other
hand,thePerformanceWormdisplaysamorelocal(i.e. less
smoothed)representation,which,dueto thesmoothingwith
dataonly from the past,sometimeslagsbehindthe perfor-
mance. Langner’s systemalso requiresknowledgeof the
musicalscoreandthe preciseonsettimesof eachnote,in-
formationwhich is not availableto thePerformanceWorm.

ThePerformanceWorm hasa varietyof interestingap-
plications. For instance,it could be usedfor didacticpur-
poses,for thevisualisationandanalysisof students’perfor-
mances(e.g.,in conservatories).Anotherinterestingpracti-
calapplicationwouldbein theautomaticsynchronisationof
musicwith otherpresentationaspectslike lighting, videos,
animations,etc. in live productions. Here, real time ca-
pabilitiesareessential.Note that our algorithmsareby no
meansrestrictedto classical(or even tonal)music. In fact,
they makenoassumptionswhatsoever regardingthetypeof
musicor instrumentsthey aredealingwith, exceptthat the
notionof ‘tempo’ hasto beapplicable(i.e., therehasto be
someregular, recognisablerhythmic element).

A third application— andwhatweareusingit for — is
in thevisualisationandanalysisof theperformancestyleof
famousartists.We arecurrentlystartinga large-scalestudy
onthetypicalstyleof variousfamouspianists,in anattempt
to quantify andcharacteriseat leastsomeaspectsof what
hassofarbeendiscussedby musicologistsandmusiclovers
only in rathervagueandaestheticterms:whatis it thatdis-
tinguishesone greatartist from another— what makes a
Horowitz aHorowitz, to speakwith Widmer(1996).
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