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Abstract

Voice conversion is a prominent area of research, which can typically be described
as the replacement of acoustic cues that relate to the perceived identity of the
voice. Over almost a decade, deep learning has emerged as a transformative solu-
tion for this multifaceted task, offering various advancements to address different
conditions and challenges in the field. One intriguing avenue for researchers in
the field of Music Information Retrieval is singing voice conversion - a task that
has only been subjected to neural network analysis and synthesis techniques over
the last four years.

The conversion of various singing voice attributes introduces new considera-
tions, including working with limited datasets, adhering to musical context restric-
tions and considering how expression in singing is manifested in such attributes.
Voice conversion with respect to singing techniques, for example, has received lit-
tle attention even though its impact on the music industry would be considerable
and important. This thesis therefore delves into problems related to vocal per-
ception, limited datasets, and attribute disentanglement in the pursuit of optimal
performance for the conversion of attributes that are scarcely labelled, which are
covered across three research chapters.

The first of these chapters describes the collection of perceptual pairwise dis-
similarity ratings for singing techniques from participants. These were subse-
quently subjected to clustering algorithms and compared against existing ground
truth labels. The results confirm the viability of using existing singing technique-
labelled datasets for singing technique conversion (STC) using supervised ma-
chine learning strategies. A dataset of dissimilarity ratings and timbral maps was
generated, illustrating how register and gender conditions affect perception.

In response to these findings, an adapted version of an existing voice conver-
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sion system in conjunction with an existing labelled dataset was developed. This
served as the first implementation of a model for zero-shot STC, although it ex-
hibited varying levels of success. An alternative method of attribute conversion
was therefore considered as a means towards performing satisfactorily realistic
STC. By refining ‘voice identity’ conversion for singing, future research can be
conducted where this attribute, along with more deterministic attributes (such as
pitch, loudness, and phonetics) can be disentangled from an input signal, exposing
information related to unlabelled attributes.

Final experiments in refining the task of voice identity conversion for the
singing domain were conducted as a stepping stone towards unlabelled attribute
conversion. By performing comparative analyses between different features, sing-
ing and speech domains, and alternative loss functions, the most suitable process
for singing voice attribute conversion (SVAC) could be established.

In summary, this thesis documents a series of experiments that explore dif-
ferent aspects of the singing voice and conversion techniques in the pursuit of
devising a convincing SVAC system.
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Chapter 1

Introduction

The topic of this thesis is singing voice attribute analysis, disentanglement, and
conversion. This chapter describes the motivation, aim, structure, and contribu-
tions of this thesis. It also presents several publications related to its main content
chapters.

1.1 Motivation and Aims

1.1.1 The Frontier of Singing Voice Conversion

Although the advent of neural networks (NNs) was already gaining momentum in
its new phase of the ‘AI hype cycle’ at the time this PhD began, literature on such
models being applied to music was, of course, significantly more sparse than it
is now. A few years earlier, Google’s AlphaGo [Silver et al., 2016] demonstrated
how it could develop its own strategies in the game of Go to outperform the Go
master, Lee Sedol. Later that year, Google also produced WaveNet [van den Oord
et al., 2016b], a model that was able to generate waveform audio with astonishing
clarity. These exciting advances in computer science made the prospects of their
application to the singing voice all the more exciting. There was already an ac-
cumulated excitement in using deep learning for singing voice separation [Huang
et al., 2014, Jansson et al., 2017] and analysis [Schlüter and Grill, 2015, Leglaive
et al., 2015]. However, there was very little research on the conversion of singing
voices using NNs.
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In contrast, there was (and still is) a large amount of literature on the applica-
tion of NNs to the task of spoken voice conversion. As will be discussed in Section
4.1.3, through no surprise, the demand for spoken-voice-related technological ad-
vancements has always overshadowed its counterpart in the singing domain. Sim-
ilarly, singing datasets are few in number and tiny in size (not to mention how few
annotated datasets there are), as highlighted by [Stoller, 2020]. The fact that there
was a sparse amount of research and resources available specifically concerning
singing voice conversion made it clear that this would be an exciting niche at
the intersection of Music Information Retrieval (MIR) and probabilistic machine
learning (ML). The large amount of literature on spoken voice conversion has
proven to provide significant insight into the topic of singing voice conversion.

1.1.2 Academic and Industrial Interest

Today, interest groups such as the ‘Music Technology Group’ in Barcelona, or the
international ‘Singing Voice Interest Group’ have been vocal about their interest
in NNs and the singing voice. A clear increase of relevant paper submissions to
conferences such as ISMIR, ICASSP, and INTERSPEECH demonstrates a con-
tinuously rising worldwide interest in the subject.

As domains like speech and computer vision produce more convincing and
novel probabilistic ML-based transformations, the inevitable interest of the enter-
tainment industry has propelled further research in more artistically relevant do-
mains such as singing. In recent years, there has been an explosion of applications
that specialise in voice conversion, confirming that the entertainment industry is
now a core player in this frontier of voice synthesis and conversion research.

Singing voice attribute conversion (SVAC) describes the process of replacing
acoustic features that relate to a specific attribute of the voice such as identity,
timbre, or singing techniques. It is apparent that technology of this variety has
yet to fully find its place in the music production suites of heavy-hitting recording
studios. The music industry has already benefited from singing voice manipula-
tion such as pitch correction, vocoding, and formant manipulation1. The ability to
switch a singer’s particular attribute with that of any number of alternative singers,

1Examples of this include Melodyne, iZotope RX, and Vocaloid.
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without the target singer needing to be present in the studio, would be a revolu-
tionary change for composers, performers, producers, and music labels, saving
time and money (although how this will be managed ethically and legally remains
to be seen).

Such technology will have indisputable artistic value. Popular music has, over
recent years, increasingly digitalised the character of the voice by all means avail-
able to it, even extending its use as a musical function to cater towards sound
design as well as a vehicle for narration. In addition to the identified gap in the lit-
erature and interest among the research community and the industry, the prospect
of putting SVAC technology in the hands of the artist is the final key motivation
behind the research that makes up this thesis.

1.2 Aim

This work aims to contribute to the topic of SVAC with NNs by analysing how
humans perceive singing, how existing voice identity conversion (VIC) systems
perform when applied to the task of singing technique conversion (STC), how
much transferable knowledge the VIC systems can learn between the speech and
singing domains, and how singing VIC can improve.

An end-user’s ability to interpolate between source and target singer attributes
in a latent space is not so fruitful without an acceptable degree of control. As the
space between such attributes becomes linear in its relation to human perception,
control becomes more intuitive. As computers cannot be primed with human per-
ception, this is something that must be provided. Unfortunately, little research
is available on the perception of singing. The research presented in Chapter 5
attempts to fill this gap with respect to (w.r.t.) the perception of the singing tech-
nique. In theory, these findings, when applied to a model, should also encourage it
to model singing techniques in a manner that is more similar to human perception.

To achieve any kind of attribute conversion, the attributes of interest must
be disentangled from the data. The term disentanglement, as conceptualised in
this thesis, is the process of separating a particular subset of information from a
representation of data. This subset would exclusively relate to a particular attribute
of the data, such as the melody of a singer. Replacing this subset with that of
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another example of data (the target data), if similarly distributed, would result in
a representation of the data containing the converted attribute. In theory, some of
these conversions could result in unrealistic data. This, however, does not imply
poor disentanglement, but poor execution where correlated relationships of certain
attributes have not been properly considered. Chapter 6 of this thesis aims to
explore the techniques available for disentanglement and to provide a solution
specific to STC that can be used in a flexible manner.

The research presented in Chapter 7 aims to provide some insight into how
much transferable knowledge there is between speech and singing in the context
of VIC, and also attempts to fine-tune the identity conversion process for singing.
The concept of voice identity can be understood as the acoustic cues within a voice
signal that, when heard by a listener, serve as necessary predictors contributing to
the perceived identity of that voice. In this thesis, identity is sometimes presented
as its own attribute, although the predictors it consists of can also be though of as
sub-attributes, such as singing technique or timbre.

1.3 Thesis Structure

Chapter 1 (this chapter) presents the motivation behind the thesis, what it aims to
do, the structure it follows and the contributions it provides.

Chapter 2 and Chapter 3 are primers on ML and NNs, respectively. This
provides context and documentation of the journey of knowledge undertaken by
the author, offers resources that aid comprehension or provide novel points of
view, and highlight the main components of ML and NNs that require essential
comprehension before any significant, meaningful contributions in this field of
research can be made. Readers who are already confidently familiar with these
concepts are welcome to jump ahead to the following chapter if they so wish.

Chapter 4 presents a review of the literature, covering previous research rel-
evant to the experiments conducted in the subsequent content chapters. This in-
cludes research related to: the voice, its application to singing, and representation
in datasets; the perception of sound, listening experiment design, and subjective
rating analysis; and NN-based solutions to voice-related problems such as analy-
sis, disentanglement, conversion, and synthesis.
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Chapter 5 presents research that involved curating a collection of recordings
that consisted of multiple singers using multiple singing techniques. These stimuli
were presented in listening studies in which participants were required to rate their
dissimilarity. The results were examined using clustering techniques and statisti-
cal analysis, and were presented as timbral maps on 2D planes for interpretation.

Chapter 6 presents research on STC. A singing technique classifier is first
proposed, the final embedding layer of which is used to provide singing technique
embeddings as conditioning elements to an autoencoder. This system results in an
STC network that produces a set of diverse singer-converted recordings. They are
evaluated for naturalness and similarity by participants in a listening test.

Chapter 7 presents research relating to VIC, focussing on comparisons be-
tween: speech and singing domains; mel-spectrograms and WORLD spectral en-
velopes as input features; and several modifications of an VIC network’s objective
function.

Chapter 8 concludes the research discussed in the previous three chapters. It
summarises the findings and considers its contributions to the world in its current
state. It also discusses some shortcomings and hypothesises how the research can
be built upon in future work.

1.4 Contributions

The main contributions this thesis makes to researchers and society include the
following:

• Chapter 2 and 3: A tutorial-style introduction to the field of ML and NNs.

• Chapter 5: A description of the perceptual differences of the singing voice
when produced by different genders or vocal registers.

• Chapter 6: A report on the results of the first published (to the best of my
knowledge) zero-shot singing technique classification and conversion ex-
periment using NNs.

• Chapter 7: An analysis on cross-domain applications of singing and speech
data.
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• Chapter 7: A report on the differences between commonly used spectral
features used for voice identity embedding generation.

• Chapter 7: A proposed objective function for SVAC networks that is robust
against poor disentanglement, and includes a metric that explicitly measures
the similarity between converted and target voice identities.

1.5 Associated Publications

This thesis presents the research and work conducted by the author between Septem-
ber 2019 and December 2023 at Queen Mary University of London (QMUL) dur-
ing their PhD, excluding interruptions from July to September 2021, and Febru-
ary to April 2023. The following research was submitted for international peer-
reviewed publications as follows:

1. Work described in Chapter 5 is a modified version (analysis only) of a pub-
lication at the 2020 Joint Conference on AI Music Creativity [O’Connor
et al., 2020]

2. Work described in Chapter 6 was published at the International Symposium
on Computer Music Multidisciplinary Research [O’Connor et al., 2021]

3. Work described in Section 7.3 in Chapter 7 was published at the 2023 Sound
and Music Computing Conference [O’Connor and Dixon, 2023] (It is the
author’s intention to build upon the work in Section 7.2 before submitting
for publication).

All original research described in this thesis was conducted by the author,
which includes all implementations in Python code, presented in Github reposi-
tories as referenced (unless explicitly disclaimed otherwise). The writing of this
thesis was guided by the primary supervisor, Professor Simon Dixon, who also co-
authored the three publications mentioned above. As the secondary supervisor, Dr
George Fazekas also contributed towards the development of research and is a co-
author of the first two publications mentioned above. Dr Dan Stowell and Dr Huy
Phan provided helpful feedback on the development of this thesis as independent
assessors.
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1.6 Author’s Background

The interest in singing originated from my fascination with the voice, not just as a
musical instrument, but as a general sound maker. A Bachelor’s Degree in Classi-
cal Music sparked my curiosity for contemporary sound design and composition,
which led me to pursue a Master’s Degree in Electronic Music Composition at the
University of West London in 2015. There, I took on a large-scale compositional
project that explored how the voice could be stripped of its narrative functionality,
and have different combinations of its attributes harvested for experimental com-
positional use, forcing new conceptions regarding the voice’s role in music2. The
author later received a studentship to join the Media and Arts Technology Centre
for Doctoral Training (MAT CDT) in 2018, which involved participating in a year
of slightly relevant modules before a proposal for the topic of this thesis was first
drafted.

As required by the MAT CDT, the author elected additional modules at QMUL
during the course of their research. Among these were introductory modules to
computer programming, ML, and research methods, which attempted to compen-
sate for the author’s unfamiliarity with STEM material. It is important to the
author that a word of acknowledgement is also given to non-academic resources,
as reading research papers and text books alone would have made the transition
from musician to computer scientist particularly painful. These included: blog
posts, which explain concepts using an inviting and conversational style of writ-
ing that is easier to digest, omitting details that are not essential to conveying an
idea, providing illustrations and demonstrations with code3; and online video tu-
torials [Velardo, 2020, Kumar et al., 2019, Khan Academy, 2006, Luis Serrano,
2013, Ng and StanfordOnline, 2009, Starmer, 2011] which provided similar styles
of presentation and infographics. Sometimes, it is just helpful to have the same
idea presented from a different perspective. In the final stages of writing this
thesis, ChatGPT [OpenAI, 2023] has been a helpful resource, providing quick

2A composition from this project featured in The 6th Irish Sound Science and Technology Con-
vocation, and can currently be heard at https://soundcloud.com/radiofreeissta

3Examples of such sources include, but are not limited to https://
machinelearningmastery.com, https://stackoverflow.com, https:
//uk.mathworks.com, https://towardsdatascience.com
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reminders of how concepts work, and equally importantly, how to communicate
them effectively.
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Chapter 2

Principles of Machine Learning

In this section, an overview of the techniques and terminologies relevant to ML
is provided. ML refers to a branch of artificial intelligence dealing with models
that learn from incoming data by adjusting their own parameters to be able to
identify and mimic patterns in the data. In doing so, the model is trained to a point
where it can automatically perform simple to complex tasks with minimal human
intervention. ML models come in multiple forms. All models require data from
which they can learn, a set of learnable parameters, and a process that steers these
parameters towards an optimal configuration w.r.t. the main goal.

Key sources covering ML (and NNs, covered in the proceeding chapter) that
have contributed significantly to the author’s understanding of the relevant con-
cepts include the literature by Chollet [2018], LeCun et al. [1998], Neuneier
and Zimmermann [1998], Howard and Gugger [2020], Bell [2020], Goodfellow
[2016], Russell and Norvig [2021].

2.1 Tasks and Learning Strategies

To choose the most appropriate model, one must consider the type of problem
that needs to be solved, along with some prior knowledge of the distribution of
the data being modelled. The type of problem dictates what type of approach
is required, which in this field of research, can be broken down into any of the
following types of learning strategies: supervised, unsupervised, semi-supervised,

9



or self-supervised. If a model is trained successfully using one or more of the
aforementioned learning techniques, it should infer meaningful information from
unseen data. This inference can be used for tasks such as detection, identification,
verification, classification, or generation. In this section, we will describe the
types of tasks available, along with appropriate learning strategies.

2.1.1 Task Types

The first type of task involves synthesising novel data. In most cases, it is of
interest to synthesise data that is similar to those of a particular subset of observa-
tions from a dataset or predict the next element in a sequence. This requires the
use of generative models such as Boltzmann Machines, Hidden Markov Models
(HMMs) and a variety of NN architectures which will be discussed in Section 3.2.

Discriminative or classification models, on the other hand, are designed to
discriminate between the various classes or clusters of data seen in the dataset.
Some models designed for classification tasks include support vector machines
(SVMs), decision trees, logistic regression, and K-Nearest-Neighbour (kNN).

2.1.2 Supervised Learning

Supervised learning refers to the process of learning from a set of labelled data.
Labels represent the ground truth, usually provided by human annotation, and act
as targets from which a model can determine how correct or incorrect its predic-
tions are. For example, a dataset may come packaged with a number of entries
in the form of audio waveform formats representing mixed audio tracks. These
entries may be accompanied with their corresponding labels that explicitly state
which class (such as a music genre, artist, instrumentation list, sound event etc.)
belongs to which audio track. By providing an ML model with such a dataset,
it can be set with the task of learning what structures in the waveform data best
predict the ground truth labels.
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2.1.3 Unsupervised Learning

Unsupervised learning refers to the process of learning structures from data with-

out using labels. In this context, the notion of correct or wrong answers is not so
relevant. The model is only required to ascertain how similar entries in a dataset
are to each other. The end result of unsupervised learning often comes in the form
of dimensionality reduction and/or clustering.

2.1.4 Semi-Supervised Learning

Semi-supervised learning describes a hybrid learning style that combines super-
vised and unsupervised learning strategies. As will be seen in Section 4.4, semi-
supervised strategies have sometimes been reported to outperform supervised strate-
gies. It should therefore be noted that semi-supervised learning is not always a
compromise based on the scarcity of labelled data.

2.1.5 Self-Supervised Learning

Self-supervised learning describes the process of attributing labels to otherwise la-
belless data using a single model, which is achieved by analysing features among
data points for similarities and dissimilarities. Contrastive learning is a common
method of self-supervised learning, where input data is presented to a model in
batches that contain more than one example from multiple classes. From such
a batch, multiple combinations of positively-matched and negatively-matched in-
stances can be observed. Knowledge of whether a combination is positive or
negative acts as a feedback signal, which encourages the model to force its em-
beddings for these instances to be similar or dissimilar. Positive instances can
either be the result of segments taken from different examples of the same class
or from multiple segments of the same data point.

2.2 Data Preprocessing

The first step in any ML pipeline is preprocessing the data. Depending on how
the data was collected and where it came from, a number of transformations may
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be necessary before it is suitable to pass to a model. This includes several stages
of data analysis and transformation.

2.2.1 Imbalanced Datasets

When classes in a dataset are not uniformly distributed, the dataset is said to be
imbalanced. The first and simplest way to deal with imbalanced datasets is to
apply different weights to the loss criterion for each class.

Another solution to an imbalanced dataset is resampling. Oversampling is
the process of replicating instances within the minority class to balance the ratio
between classes. Undersampling is the process of removing instances from the
majority class, which of course should not be done without considering the size
and distribution of the dataset. In some cases, this basic solution has been found
to lead to a decrease in training time without a significant decrease in performance
[Batista et al., 2004].

Balancing a dataset can be also achieved by deleting data points that are overly
similar or too close to one or more neighbours in latent space encodings [Radford
et al., 2016]. Another method is an extension of basic oversampling, called the
Synthetic Minority Oversampling Technique (SMOTE), which generates new in-
stances based on the interpolation between existing instance vectors using a ran-
domised weight [Gazzah and Amara, 2008, Fan et al., 2021], and has been found
to contribute to significantly better results. Kovács [2019] presents an evaluation
of further adaptations of SMOTE, of which there are many. One such improve-
ment to this algorithm is fuzzy clustering (FC-SMOTE), which considers that a
dataset’s instances may not be evenly distributed, exhibiting heavy clustering in
latent space. This algorithm only generates samples in regions where the minor-
ity class instances are clustered together, thereby ensuring that newly generated
samples exist in an appropriate latent space region. FC-SMOTE has been shown
to improve voice-related classification tasks using MFCCs as input [Fan et al.,
2021].
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2.2.2 Dataset Splits

Datasets are typically split into subsets for training, validation, and testing. The
partitions in which datasets are split are often unofficial, ambiguous, or simply not
stated. In these cases, it is important to verify whether an official training set is
suggested by the dataset’s authors or whether a researcher used a particular split.
Won et al. [2021] discuss at length the considerations that should be taken when
deciding how a dataset should be split.

In ML research, it is common to find split ratios of 70:30 to 80:20 with respect
to training and validation partitions. The exact choice of split is often uninformed
and simply inherited from previous research practice. The origin of a split usu-
ally considers a compromise between the demand of its users and the amount of
data available. The trade-off between how well a model can be trained and how
thoroughly it is evaluated is directly proportional to the training-validation ratio.

The k-fold cross validation method bypasses the need for predefined partitions.
Instead, after determining a ratio split, multiple versions of the model are trained
so that the entirety of the dataset is used as training and validation data across all
models. If the ratio split was 80:20, then five models would be trained, and each
would use a different fifth of the dataset as a validation set. An average valida-
tion loss across all models will then represent the model’s ability to generalise to
unseen data.

Even though the model is not being trained on the validation set, researchers
learn from validation losses, which informs their choice in fine-tuning the model.
Therefore, an indirect feedback loop exists between the validation set and the
model. For this reason, a test set is created, which is a subset of a dataset that is
kept entirely separate from the training-validation cycle and is only used to prove
the final model’s generalisation capabilities before deployment.

2.2.3 Dimensionality Reduction

In many cases, the use of raw data for ML purposes will be inefficient. The first
consideration is the curse of dimensionality, which, as the name implies, warns
practitioners that more dimensions do not necessarily imply better performance.
In fact, in some cases it can be detrimental, confusing models by allowing them
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to detect patterns in the data that are coincidental rather than meaningful. Dimen-
sionality reduction is key to this issue and can be a manual, automatic, or hybrid
process between computational analysis and manual feature selection.

Principal component analysis (PCA) is an unsupervised automatic process of
dimensionality reduction. It transforms the features of the dataset into a smaller
set of uncorrelated features called principle components, which represent the max-
imal variances of the data [Sammon, 1969]. Of course, reducing a dataset’s fea-
tures from 100 to 2 would omit a considerable amount of information from the
data. PCA algorithms usually inform users of how much information is being lost
by a dimensionality-limited solution. It is a non-iterative process and therefore
reduces computational requirements. It can be used as a de-noising technique and
reduces overfitting. However, it is limited to linear transformations and therefore
is usually unsuitable for representing data with non-linear relationships [Anowar
et al., 2021].

PCA can also be used as a precursor to the task of t-distributed Stochastic
Neighbour Embedding (t-SNE), which is another form of dimensionality reduc-
tion, more useful for visualisation purposes, where data points have a tendency to
group in clearly segregated clusters, allowing users to visually observe how well-
defined different classes are to each other [van der Maaten and Hinton, 2008].

Multidimensional scaling (MDS) is an unsupervised process. It is frequently
used as a means of data visualisation, and therefore usually requires reductions to
2 or 3 dimensions. MDS is focused on pairwise dissimilarities as opposed to the
dataset distribution. It is computationally expensive due to the fact that it relies
on generating a dissimilarity matrix between all data points in a dataset [Anowar
et al., 2021].

2.2.4 Normalisation

A typical and indispensable trick of the trade is normalisation, which describes
the process of rescaling the data so that it is transformed to a reasonable range and
mean value. Including this step allows a model to converge more quickly. Min-

max normalisation is the process of limiting the range of data to values between 0
and 1, and is formulated as
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X ′ =
X −Xmin

Xmax −Xmin

(2.1)

where X ′ and X represent the normalised data and original data, while Xmax and
Xmin represent the original data’s maximum and minimal value, respectively.

However, this is sensitive to outliers and does not assume a Gaussian distri-
bution (an important assumption often used in ML). Standardisation (or z-score
normalisation) is a normalisation technique that transforms the data so that the
distributions of each feature in the dataset possess 0 mean and unit variance. The
transformation assumes prior Gaussian distributions among the features and is less
sensitive to outliers. It is a widely accepted normalisation process that is known
to improve rates of convergence [LeCun et al., 1998, Howard and Gugger, 2020,
Neuneier and Zimmermann, 1998, Schlüter and Grill, 2015, Leglaive et al., 2015,
Bengio et al., 2006]. It is parameterised as:

X ′ =
X − µ

σ
. (2.2)

where µ and σ represent the mean and standard deviation, respectively.

2.2.5 Augmentation

Augmentation is often necessary to increase the robustness of a model. It makes
the model less likely to overfit, more generalisable to real-world conditions, and
invariant to naturally observed transformations of the data.

‘Unsupervised augmentation’ is the application of augmentation without con-
sidering the label attached to the data, while ‘supervised augmentation’ considers
the label. Lemley et al. [2017] have used both techniques to increase the accuracy
of their systems by a significant amount. Cubuk et al. [2019] have shown that the
use of unsupervised augmentation can even reduce errors by more than 30%. With
audio data, augmentation can be applied in the time, frequency, or latent domains.

Audio Domain

Augmentations to the audio waveform itself are often preferable, as their appli-
cation to a representation of reduced dimensionality is not always guaranteed to
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reflect realistic or natural transformations of the signal.
The reversal of an audio signal is a perception-invariant augmentation w.r.t.

timbre. While the signal itself will sound unnatural, most aspects of timbre per-
ception such as spectral centroid will remain constant, as these are not time-
varying. Polarity inversion (shifting the phase by 180◦) is another example of
augmentation that uniformly changes a fundamental feature of the information
without affecting human perception [Nachmani and Wolf, 2019]. Bonada and
Blaauw [2021] applied a modest amount of pitch shifting to their input data while
temporally scaling it to the relevant spectrogram, facilitating pitch transforma-
tion while linearly scaling the timbre in frequency. Injecting noise of different
types into waveforms has also been a common transformation [Qian et al., 2019,
Bonada and Blaauw, 2021, Kusner and Hernández-Lobato, 2016]. Other possi-
ble augmentations that impose realistic augmentations to audio include filtering,
delay, and reverb. There are a large number of music production suites, audio edit-
ing tools, software packages, and framework-specific libraries that are capable of
such transformations.

When dealing with datasets that contain multiple stems, there are a few cre-
ative augmentations available. Researchers have often made use of pseudo-rando-
mly combined stem tracks from different songs to create new examples of mixed
audio signals or swapping left and right channels [Uhlich et al., 2017, Davies et al.,
2014, Lee and Nam, 2019]. This often requires some analysis of key signature,
tempo, and other musical attributes to determine whether the resulting mixed track
would be a realistic representation. Another example of augmentation in stem-to-
mixed approaches would be to modify the gain of each signal to change the ‘mix’
of the recording [Uhlich et al., 2017], or apply various types of DSP to enrich the
diversity of perceived recording conditions for each track [Choi et al., 2021].

Frequency Domain

Cui et al. [2015], Jaitly and Hinton [2013] used vocal tract length perturbation,
where the spectrograms are subject to frequency warping. Park et al. [2019] used
rectangular masks over the spectrograms to train their model for speech recog-
nition. Schlüter and Grill [2015] used modest pitch-shifting by scaling linear-
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frequency spectrograms vertically, and applied time-stretching by doing the same
on the horizontal axis. SpecAugment [Park et al., 2019] offers manipulations on
the time and frequency axes of the spectrograms. SpeakerAugment [Wang et al.,
2023b] does the same and uses vocoding techniques to alter pitch and formats in
a disentangled manner. Basak et al. [2021] used the WORLD vocoder to impose
pitched melodies on spoken sentences.

As spectrograms can be thought of as pictures, other transformations such as
cropping, rotation, or blurring can also be used. SimCLR [Chen et al., 2020] is a
contrastive learning method that utilises these types of augmentations to generate
positive pairs whose embeddings are drawn towards a maximal agreement during
training, thereby making the model’s embeddings robust against augmentation
and prioritising features relevant to class differentiation.

Latent Space Domain

Less frequently used, but still equally valid, is augmentation in the latent space of
NN embeddings. The SMOTE technique mentioned in Section 2.2.1 can also be
regarded as an augmentation technique of this variety. Nachmani and Wolf [2019]
interpolated between the latent representations of two voices, which is analogous
to creating a voice whose timbre lies between the timbre of two other voices.

2.3 Objective Function

An objective function is the global metric by which a model can determine how
well it is performing. It combines all loss and regularisation components. Gener-
ally, it is more computationally feasible to minimise an objective function, and so
the model’s goal is to reach the global minimum of the cost function via gradient
descent (discussed at the end of this subsection).

Loss components in an objective function represent a measurement of distance
between a model’s prediction and the ground truth values. Regularisation can
be thought of as a force that stops the network from over-fitting to a problem
parameterised by its loss function components. This can come in many forms,
such as adding a secondary component to the objective function, restricting the
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model’s ability to adjust its weights either directly or through activation function
clipping, adding dropout layers to a NN, the application of transfer learning, or
simply adding noise to the data itself [Lee et al., 2019, Schlüter and Grill, 2015,
Kusner and Hernández-Lobato, 2016].

2.3.1 Distance Metrics

The task of regression requires a model to predict a scalar or vector consisting of
continuous data based on a set of input predictors. For such models, the objective
function will usually rely on distance metrics to compute the distance between its
predicted output and the ground truth data. The most common metrics used to
determine similarity or dissimilarity between vectors are presented below.

The first of these metrics is the mean absolute error (MAE) metric. The ab-
solute (non-negative) distances between each pair of corresponding components
of two vectors are summed (this method of vector summation is known as the
L1norm). All units of distance between the vectors therefore have an equal im-
pact on the summed result, which is then averaged across the samples to compute
the MAE loss (commonly referred to as the L1 loss in ML):

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|, (2.3)

where n is the total number of samples, i is the sample index, and y and ŷ are the
true and predicted vectors, respectively.

An alternative to this is the mean squared error (MSE) metric. This takes
the sum of the squared distances between each component of the compared vec-
tors (this method of vector summation is known as the L2norm). Unlike MAE ,
squaring the errors means that larger component-wise distances will contribute
more heavily to MSE than they would in MAE . All distances are then averaged
across the samples to compute the MSE loss (commonly referred to as the L2 loss
in ML):

MSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)
2 (2.4)
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A further adaption to this metric is the root mean square error (RMSE), where
the square root of the MSE value is obtained (making this loss computation more
similar to the Euclidean distance):

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (2.5)

The cosine similarity gets the angular distance between two vectors, therefore
providing a similarity measure that is not influenced by the magnitude of the vec-
tor and is capped between the values of one and minus one, conveying maximal
or minimal similarity, respectively:

CS(y, ŷ) = cos(θ) =
y · ŷ

∥y∥∥ŷ∥
=

∑n
i=1 yiŷi√∑n

i=1 y
2
i

√∑n
i=1 ŷ

2
i

(2.6)

2.3.2 Classification Metrics

The task of classification, unlike regression, requires a model to predict a discreet
output representing a category, based on set of input predictor values. For binary
classification tasks, a specific type of objective function is used which relies on
the binary cross-entropy loss (BCE). This measures the distance between the true
and predicted probability distributions, parameterised as:

BCE(y, ŷ) = −(y · log(ŷ) + (1− y) · log(1− ŷ)), (2.7)

where y is the discreet label, ŷ is the predicted value, and log is the natural loga-
rithm.

For multiclass classification where there are more than two categories to choose
from, the categorical cross-entropy loss (CCE) is used, which generalises the BCE
function to handle multiple classes, parameterised as:

CCE(y, ŷ) = −
∑
i

yi · log (ŷi) , (2.8)

where yi is the true probability distribution of a sample belonging to class i, and
ŷi is the corresponding predicted probability distribution (and is the output of a
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softmax function applied to the model’s output for class i).
Finally, to produce the actual classification prediction, the class containing the

maximum value in the class probability distribution is selected.

Classification Evaluation Metrics

To understand how well a model performs when classifying data, it is important to
have a clear understanding of the different types of evaluation metrics available.
These take into account the different types of predictions a model can make when
considering ground truth labels.

A simple accuracy metric computes how many predictions are correct. How-
ever, this does not provide information about how well the model performs w.r.t.
individual classes. It also gives us no information regarding how biased the model
may be towards a particular class.

Fawcett [2006] offers a comprehensive explanation on more informative com-
binations of metrics. Considering a binary classification task (the logic of which
can be extended to multi-classification), there can either be negative or positive
prediction. If ground truth labels are known, then predictions can be broken down
further into the following list and illustrated in Figure 2.1:

• true positives (TP)

• false positives (FP)

• true negatives (TN)

• false negatives (FN)

True-positive rate (also known as sensitivity or recall), reflects the proportion
of positive classes that are correctly predicted by a model. The inverse is intu-
itively the case for the false-positive rate (also known as the false alarm rate).

In the context of binary classification, receiver operating characteristic (ROC)
graphs are plots of the FP rate against the TP rate on the x and y axes, respectively.
An example of this is presented in Figure 2.21. The point (0,1) (the maximum

1By Masato8686819 - CC BY-SA 3.0, https://commons.wikimedia.org/wiki/
File:ROC_curve.svg

20

https://commons.wikimedia.org/wiki/File:ROC_curve.svg
https://commons.wikimedia.org/wiki/File:ROC_curve.svg


Figure 2.1: A confusion matrix, labelling all types of predictions for a binary
classification task

top left corner of the graph) represents the performance of the perfect model.
Models producing results closer to the left-hand side of this graph (near x =

0) can be thought of as conservative, only predicting positive cases when they
are very certain. The diagonal of this graph represents ‘random guessing’ rates,
and therefore any model that produces an ROC close to this line is considered
to perform no better than chance. A binary classifier producing results on the
lower right triangle of the graph, however, can simply have its outputs inverted,
thereby mirroring its performance across the diagonal of the graph to produce
symmetrically better results.

A hyper-parameter controlling the decision boundary threshold can be ad-
justed on a given model. Determining this threshold is usually dependent on the
cost of false negatives or positives. Plotting the performance of a binary classifi-
cation model where the decision boundaries are adjusted from one extreme to the
other results in an arc. The area under the curve (AUC) is a quantitative method
of determining how well the model performs, converting the 2-dimensional ROC
into a single scalar value. ROCs have the desirable characteristic of being insensi-
tive to class distribution, while accuracy, precision, and F-scores are sensitive. For
multilabel classification tasks, the performances across multiple binary classifica-
tions for each class must be aggregated. In order to obtain an average performance
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Figure 2.2: ROC graph demonstrating how the decision boundaries can be ad-
justed to produce an arc in the sensitivity-specificity space. A larger area under
the curve between the ROC and the diagonal means higher performance.

in such instances, an average between these metrics must be calculated for each
label [Choi et al., 2021].

2.4 Gradient Descent

An optimiser describes the mechanism in an ML model that adjusts its parameters
in response to a loss value. In the context of NNs, the optimiser uses a parameter
called the learning rate to determine the factor by which the network’s weights
are adjusted. A form of the gradient descent algorithm is the type of optimiser
most commonly found in NNs.

Upon generating a loss value from the loss function, a model is able to de-
termine the gradient of a designated cost function. From this gradient, the model
can then determine in what direction and by what magnitude the weights should
be adjusted in order to lower the loss value. This process is repeated every time a
new loss value is generated from newly observed data until it reaches a minimum
of the cost function. Other mechanisms, which are not covered here, assist this
process in manners such as avoiding local minima in the objective function. It is
also desirable that the cost function is convex, guaranteeing an optimal solution
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with no local minima or saddle points.
The Adam optimiser has been used most consistently throughout recent ad-

vancements in NN-based tasks. Kingma and Ba [2014] report that Adam is de-
signed to adjust its parameters automatically, is highly robust, requires little mem-
ory, requires virtually no tuning, and outperforms many of its predecessor optimis-
ers.
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Chapter 3

Introduction to Neural Networks

Having covered the main principles of ML, the focus can now be moved to NNs,
which describe a specific family of ML models. Although the first NNs were
proposed 80 years ago [McCulloch and Pitts, 1943], computational abilities, ML
techniques, and data storage capacities have improved to facilitate the implemen-
tation of NNs to degree that has been revolutionary in the field of computer science
today.

3.1 Modules and Mechanisms

A simple NN with a single layer relies on the same ML principles as a linear
regression model, possessing the same capabilities. This section describes a list
of common NN modules and mechanisms, that when stacked and combined, un-
lock the potential of ML architectures capable of complex tasks far beyond the
capabilities of linear regression and other ML models.

3.1.1 The Perceptron

The smallest component in a NN is the perceptron. Each perceptron in a NN
has multiple weighted inputs, as well as its own bias value, as seen in Figure
3.1. Each connection to a neuron is weighted. These weights are initialised by
randomly sampling a probability distribution or by receiving their states’ values
from a previously trained model’s parameters [Leglaive et al., 2015, Bengio et al.,
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Figure 3.1: Diagram of the perceptron, where b represents the bias, wn represents
the nth weight, and f(x) represents the activation function.

2006]. The combination of the bias and its inputs allows the perceptron to function
like an information gate such as the gates AND, OR and NOT. Following more
recent literature, perceptrons will herein be referred to as neurons.

3.1.2 Activation Functions

Before being passed to another neuron, the outgoing signal of a neuron passes
through an activation function. This transforms the signal in a non-linear manner
that is compressed to the limits of the activation functions’ output. These functions
are key to the non-linear capabilities of NNs.

Figure 3.2 illustrates the nature of the Sigmoid, Tanh, Step, and ReLU func-
tions, the latter of which replaced the hidden layer Sigmoid functions for better
system performance. The ideal type of activation layer depends on the type of
output that the model is expected to produce.

The softmax function is a special activation function that ensures all the el-
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Figure 3.2: Sigmoid, ReLU, Tanh and Step activation functions

ements in a vector sum up to 1. It is therefore commonly used to convert logit
vectors from previous layers to probabilities and is computed as follows:

softmax(z)i =
ezi∑N
j=1 e

zj
, (3.1)

where zi represents the ith element of the input vector z, e is Euler’s constant,
and

∑N
j=1 e

zj represents the summation of all exponentiated elements in the input
vector.

3.1.3 Dense/Linear/Fully-Connected Layer

In NNs, neurons are arranged in groups called layers. The manner in which neu-
rons of a layer are connected to neighbouring layers defines what type of layer it
is. It is the addition of non-linear functions and hidden layers between the inputs
and outputs that allow NNs their non-linear mapping capabilities. The following
subsections describe several common layers used in NNs.

When every output of an array of neurons is connected to every input of a
proceeding array of neurons, this connectivity is referred to as a dense, linear or
fully-connected layer. They are useful when there is no prior knowledge of how
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any of the features generated from the previous layer should influence the next
layer. Neurons within these of these layers are not connected to one another.

3.1.4 Convolutional Layer

The linear layer does not, however, provide an economical or computationally fea-
sible solution when working with data structures where the coordinates of neurons
are important, like pixels in an image. A typical example of a 2-dimensional array
is an image, and the positional arrangement of its pixels (and all derived features)
will be referred to as a feature map.

A mechanism called the convolutional layer enforces sparse connectivity be-
tween its input (the first of which is the original image) and output feature maps.
A NN model based on convolutional layers is intuitively called a convolutional
neural network (CNN). It achieves convolutions by applying a kernel of a given
shape (which consists of randomly initialised values) to its input feature map. The
kernel is applied to each section of the input feature map, covering the space of its
own shape. The sum of the element-wise products of the kernel and the windowed
feature map determines the convolution layer’s output value for the input feature
of focus. It therefore acts as a convolutional filter and is applied as a ‘sliding win-
dow’ that moves across each axis of the feature map to generate a new filtered
feature map. Convolutional layers have a padding option, which can be employed
to ensure that the convolved feature map is of the same dimensions as the previous
input feature map.

The stride parameter in convolutional operations determines the number of
features skipped as the kernel window slides across dimensions. Figure 3.31 il-
lustrates how each of the operations described so far works together to create a
convolutional layer.

Pooling layers are commonly used in conjunction with convolutional layers.
These use a kernel to scan the input feature maps in the same sliding-window
manner as the convolutional layer’s kernel, and output the average, maximum, or
minimum value of the windowed feature map, depending on which type of pooling

1By Omegatron, reproduced by the Expat Licence, https://commons.wikimedia.
org/wiki/File:Convolution_arithmetic_-_Padding_strides.gif#
filelinks
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(a) (b)

Figure 3.3: Convolutional process on a 2D feature map, using a kernel of size 3,
stride of 2, and padding of 1. The green tiles represent the output feature map
while the blue ones represent the input feature map.

layer is chosen. This results in an output feature map that is inversely proportional
to the size of pooling layer’s kernel size, effectively downsampling the image.
However, some researchers challenge the value of max-pooling layers, producing
comparable results with CNNs that use only convolutional layers [Springenberg
et al., 2015].

The receptive field of a neuron in a convolutional layer describes how many of
the surrounding input features it retains information for. As more convolutional
and pooling layers are added, the receptive field increases, and the output features
become more abstract in nature. Figure 3.42 is an illustration of how this works.
In some applications, causal convolutions are necessary, where the receptive field
can only include features of the past.

Fully-convolutional networks describe a network that does not utilise any other
type of layer in its embedding process. These are inherently able to consider tem-
poral features across input data, since the final layer’s residual outputs have a
global receptive field. They are favourable to convolutional networks with ap-

2By Aphex34 - CC BY-SA 4.0, https://commons.wikimedia.org/w/index.
php?curid=45679374
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Figure 3.4: A diagram of the convolutional process.

pended dense or recurrent networks when it is necessary to be conservative with
the number of tunable parameters, the convergence time, or when the model must
accommodate inputs of arbitrary sizes [Choi et al., 2017, Chandna et al., 2019,
Kameoka et al., 2020, Zhu et al., 2017].

There are also transposed convolutional layers. These are commonly used
to transform a compressed version of data back into its original uncompressed
format, like the decoder of a convolutional autoencoder. Some researchers such
as AlBadawy and Lyu [2020], Kumar et al. [2019], Kong et al. [2020a] have used
them in generators of a GAN to upscale to the dimensional space of the desired
data format. To generate a bigger feature space than its input, it heavily pads
its input features so that performing a standard convolution would involve the
kernel sliding over more pixel values provided by the padding. Further details on
how transposed convolutional layers work are presented by Dumoulin and Visin
[2018].

CNNs also use channels, which refer to the number of feature maps that are
analysed in each convolutional layer. Images are often encoded in RGB format,
and so the first convolutional layer they encounter can facilitate an individual
channel for red, green, and blue feature maps. Each channel undergoes its own
convolutional kernel. As more kernels are used, more channels are generated,
providing opportunities to learn more features.

3.1.5 Normalisation Layer

As NNs are trained, the distribution of inputs can vary widely between batches
during training. This can be problematic as the shift in weights in response to gra-
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Figure 3.5: Flow chart depicting the use of skip connections as detailed by He
et al. [2015]. x goes through multiple transformation processes considered as
f(x), the output of which is reunited with x by addition.

dient descent is made under the assumption that all other weights remain the same.
This is of course not the case and forces the optimiser to pursue a moving target.
Batch normalisation is a process where the output of a layer is standardised, as de-
scribed in Section 2.2.4, across an incoming mini-batch (if the batch size is 1, then
batch normalisation will not be applicable). This standardisation prevents weights
from drastically changing. It improves the rate of convergence of the networks
and, as a side effect, imposes some regularisation [Ioffe and Szegedy, 2015].

3.1.6 Skip Connections

Skip connections, or residual connections, were first introduced by He et al. [2015]
for image recognition tasks. Figures 3.5 and 3.10 show skip connections, depicted
by linking one layer’s output to another that is multiple layers or transformations
ahead of it. Figure 3.5 shows a chain of transformations summarised as f(x) out-
puts an embedding that is added to its input via a skip connection that bypasses the
function. Therefore, the parameters of f(x) are optimised to produce a residual

embedding.
As NNs get deeper when more layers are stacked together, the issue of vanish-
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Figure 3.6: Depiction of a gated block, where a sigmoid signal is gating a tanh
signal (or vica versa)

ing gradients becomes more prevalent, reducing the network’s capacity to back-
propagate efficiently towards layers further back in the architecture. Skip con-
nections are used to mitigate this effect, allowing for easier optimisation. They
also enable feature reusability by sending earlier information unfiltered further
upstream to the destination point, without being affected by the layers in between.
‘Short’ skip connections usually occur between consecutive convolutional layers
that don’t change in tensor output shape, while ‘long’ ones usually occur between
encoders and decoders, or any mirrored parts of a symmetrical NN architecture.

3.1.7 Gated Blocks

A gated block describes a mechanism in a network that decides how important
information is, therefore providing some primitive notion of attention based on
the input. This is achieved by processing an input through two parallel paths: one
that contains a linear or nonlinear transformation, and the other that provides the
‘gate’ signal, such as a sigmoid function transformation. Figure 3.6 provides an
illustration of this setup.
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Gated Linear Units

Introduced by Dauphin et al. [2017], gated linear units (GLUs) are mechanisms
that allow an incoming signal to gate in a manner that provides the flow of infor-
mation with nonlinear capabilities while providing a linear path for the gradients
during backpropogation. They are usually used after a causal convolutional layer
to facilitate sequential predictions without requiring recurrence. To achieve this,
a GLU requires two inputs from the previous layer, each of which has a separate
set of weights and biases. The output of a GLU is the element-wise product of
one input by the sigmoid-activated output of the other. This is parameterised in
Equation 3.2 where: ⊗ represents element-wise multiplication; X is the output
of a preceding layer; W and V are the individually determined weights while b

and c are their biases; σ is the sigmoid activation function, and hl(X) is the GLU
output.

hl(X) = (X ∗W + b)⊗ σ(X ∗V + c) (3.2)

3.1.8 Recurrent Layer

Recurrent neural network (RNN) modules are a type of mechanism that allow
NNs to deal with sequential data such as weather reports, audio data, or language.
These mechanisms allow the network to take past information into consideration
and process sequences of variable lengths. This property is achieved through the
use of parameter sharing across timesteps. The prediction of an RNN’s neuron
at timestep t is fed back and reused at the neuron’s inputs in conjunction with the
next piece of data in the time series to make a prediction at the time step t + 1.
See Figure 3.73, where the left side of the image presents a diagram of the RNN,
and the right side presents the unrolled version with time moving from left to
right. RNNs are considerably more computationally expensive than other layers
described so far, as each element in the sequence must be computed recurrently
before the next element can be predicted. The RNN undergoes backpropagation
through time. This can lead to vanishing gradients as the weights’ influence on

3By MingxianLin - CC BY-SA 4.0, https://commons.wikimedia.org/wiki/
File:RNN.png
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Figure 3.7: A diagram of the RNN process unfolded across time, where: U , W ,
and V are the weights for the input, hidden and output states respectively; and x,
s, o and t represent the input, hidden, output and timestamp, respectively.

the outcome is diminished as time reverts, meaning that this model inherently
assumes that information further in the past is less important. However, in many
types of sequences, this is not the case.

The long short-term memory (LSTM) [Hochreiter and Schmidhuber, 1997]
and gated recurrent unit (GRU) cell improves upon this issue, by making use
of a hidden state cell that can carry information through many timesteps without
degradation. As shown in Figure 3.84, these types of RNN use three gated con-
nections (discussed in Section 3.1.7), allowing them to have individual control of
how much input, previous, and current memory data are kept. Bidirectional im-
plementations of these RNNs (BLSTMs and BGRUs) also exist, where both past
and future information are combined to influence predictions, inherently requiring
twice as much memory. GRUs have fewer parameters than LSTMs and, therefore,
take less computational time to train.

4By Ixnay, - CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File:
Long_Short-Term_Memory.svg, https://commons.wikimedia.org/wiki/
File:Gated_Recurrent_Unit.svg
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(a)

(b)

Figure 3.8: Diagram of the inner architecture of the (a) LSTM and (b) GRU units.
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3.1.9 Attention Layer

Attention Mechanism

The attention mechanism provides networks with the ability to pay attention to
certain sets of features, irrespective of their temporal position, but dependent on
their content relevance. Unlike RNN layers, attention mechanisms offer the more
advanced capabilities of dealing with hidden states of variable sizes, capturing
long-range dependencies in sequences, and parallelisation.

Attention mechanisms have been used as an independent structure to connect
encoders and decoders. Bahdanau et al. [2016] introduced the concept of an at-
tention layer as follows: The idea of attention is parameterised by weights α. The
activation outputs of the preceding LSTM layer h are each multiplied by these
weights to produce weighted observations. The sum of these weighted activations
gives us the context vector, c. The equation for this is shown in Equation 3.3,
where i refers to the current timestep, and j refers to the index of all other time
steps in the input sequence.

ci =
Tx∑
j=1

αijhj (3.3)

The context vector is fed to the current state s of an output RNN in conjunction
with the previous state of that RNN (si−1) and output yi−1 to generate a prediction.

All outputs of elements in the sequence input are subjected to a softmax func-
tion to ensure all weighted activations sum to 1. The values for each weight can
be learned through a single feed-forward layer, a:

αij = a (si−1, hj) . (3.4)

The attention mechanism has been used widely in the literature as a more
powerful RNN with the ability to know where in a sequence the important infor-
mation resides, without concern for vanishing gradients. Many of the more recent
systems described in the following sections of this review of the literature will
have attention mechanisms, although they may not be explicitly referenced.
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Simplified Attention Mechanism

Raffel and Ellis [2016] suggest a simplification of this mechanism, where weights
αij are learned by the function a(hj) instead of a(st−1, hj). Therefore, the content
embedding does not require a proceeding RNN output layer, and all observations
of h are summarised. However, this proposed method will not take into account
the temporal order of sequences.

Self-Attention Layers

Vaswani et al. [2017] proposed an implementation of Bahdanau et al. [2016]’s at-
tention mechanism that allowed them more flexibility in designing architectures.
Their self-attention layer facilitated sequence transformation while using its own

attention mechanisms to achieve this, while previous implementations of the at-
tention mechanism required an encoder and decoder structure as its input and
output, respectively.

The self-attention layer can handle changes in length to the input sequence
without inducing a change in the number of parameters. It can perform sequence-
to-sequence, label-to-sequence, or sequence-to-label tasks. Thanks to extensive
use of matrix operations, self-attention can perform significantly efficient parallel
processing, which makes very deep networks feasible.

Self-attention is computed using three learned matrices, referred to as Query

(Q), Key (K), and Value (V ). These can be conceptualised as linear layers, which
take position-encoded embeddings of elements in the input sequence. These lay-
ers are combined to determine an attention weight for each input in a sequence.
Once calculated, weights for all inputs are divided by the square root of the word
embedding size, and put through a softmax function. The finalised weights are
multiplied by the incoming value (representing an embedded element of the input
sequence).

This concludes what is referred to as the “Scaled Dot-Product Attention”. In
the Transformer model, as proposed by Vaswani et al. [2017], multi-head attention
is used, which applies the self-attention module multiple times in parallel to en-
hance the network’s ability to model multiple relationships in the sequential input
data. This seminal work has been highly influential across the landscape of deep
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learning and has led to extremely powerful natural language processing (NLP)
models such as BERT [Devlin et al., 2019] and GPT-3 [Brown et al., 2020].

3.2 Architectures

This section presents several specific NN architectures and systems, comprising
various combinations of the mechanisms presented in the previous section. These
particular architectures are presented as they have become prevalent in the field of
machine learning for audio.

3.2.1 WaveNet

The WaveNet model has become a seminal piece of neural architecture and has
been adopted by many researchers for its waveform-generative capabilities. It was
introduced by van den Oord et al. [2016a] as a generative text-to-speech (TTS) au-
dio model, influenced by previous architectures used in computer vision [van den
Oord et al., 2016b]. It works as an autoregressive model, using causal convolu-
tional layers to output a categorical distribution on each audio waveform sample
xt.

A network of this description can take advantage of the fact that conditional
predictions of multiple time steps can be made in parallel, since all time steps for
a given piece of audio are already known. Generating new audio with WaveNet,
however, cannot make use of future samples. The original WaveNet implementa-
tion is, therefore, strictly autoregressive during inference, making it an especially
slow process when considering the large number of previous samples required to
provide a decent estimate of the next sample.

To mitigate the vanishing gradient issue commonly found in sequential mod-
elling, dilated stacked convolutional layers are used, where filters are spread over
areas much larger than their kernel size, as seen in Figure 3.9. By ignoring inter-
mittent values between the neurons used for computation, these layers are able to
work with significantly downsampled representations of the audio. Unlike pool-
ing or striding convolutions, the output of these layers will be the same size as
their input. A stack of these dilated layers allows networks to have large receptive
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Figure 3.9: Flow diagram depicting a stack of dilated, causal convolution layers.
The flow of information between layers is shown with arrows.

Figure 3.10: Flow diagram depicting the WaveNet’s architecture.

fields without incurring excessive computational cost.
The output of each convolutional layer is fed to a residual block, as shown

in Figure 3.10, where the residual blocks include a gate mechanism consisting of
tanh and sigmoid activation paths in parallel, parameterised as

z = tanh (Wf,k ∗ x)⊗ σ (Wg,k ∗ x) (3.5)

where: σ is a sigmoid function; k is the layer index; f and g represent the filter
and gate; and W is the convolutional filter. The residual block’s auxiliary outputs
are summed and passed through the chain of ReLU functions, 1× 1 convolutional
filters and a softmax function to produce the next predicted sample.

With WaveNet, predictions can be conditioned on global or local features such
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as speaker identity labels or spectrogram data, respectively.

3.2.2 Autoencoders

Standard Autoencoders

An autoencoder is an architecture consisting of an encoder and decoder. The en-
coder performs dimensionality reduction, reducing the input dimensionality to a
specified vector size that best describes the multivariant nature of the data in a
compact representation. Due to the restricted size of the encoder’s output embed-
dings, this is commonly referred to as the bottleneck. The decoder then resyn-
thesises the original data from this compact representation. The reconstructed
data is compared to the original data, and a distance metric between the two is
determined, from which the network can learn. The main loss for a standard au-
toencoder is shown in Equation 3.6, where gϕ represents the encoder function, fθ
represents the decoder function, n is the batch size, x is the input data, and ϕ/θ are
the encoder/decoder weights.

L(ϕ, θ) =
1

n

n∑
i=1

[xi − fθ(gϕ(xi))]
2 (3.6)

Variations of the encoder include the denoising autoencoder which adds noise
to the input data but compares reconstructions to the noiseless version [Lewis
et al., 2020]. As no labels are explicitly used in a standard autoencoder, these can
be considered as unsupervised learning systems.

Variational Autoencoder

The variational autoencoder (VAE) was proposed to produce a seemingly novel
output that mimics the distribution of the dataset on which it was trained [Kingma
and Welling, 2014]. To model the intractable posterior distribution of a dataset
p(z|x), the approximate isotropic Gaussian distribution q(z|x) is instead used.
The Kullback-Leibler divergence (KLD) is calculated between the two distribu-
tions (see Equation 3.7) during training. This is reformulated in conjunction with
the autoencoder reconstruction loss to give us the complete objective function of
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the VAE shown in Equation 3.8 which comprises the reconstruction loss (left com-
ponent) and the KL divergence (right component) [Kingma and Welling, 2014,
Kumar, 2019, Goodfellow, 2016]. As the variational generative aspect of the VAE
requires a stochastic sampling of learned Gaussian distributions, this would nor-
mally cause a break in the backpropogation process. Instead, VAEs must use
the reparameterisation trick, where only the means and variances of the Gaus-
sian distributions are learned. A stochastic process can then sample distributions
possessing the learned statistics. Some excellent and concise descriptions of the
Bayesian theory behind the VAE architecture can be found in [Leglaive et al.,
2020, Luo et al., 2020b, Kumar, 2019, Kameoka et al., 2020].

DKL(qϕ(z|x)||pθ(z)) = Eqϕ(z|x)[log(q(z|x))− log(p(z|x))] (3.7)

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]− DKL(qϕ(z|x)||pθ(z)) (3.8)

3.2.3 Generative Adversarial Networks

The Generative Adversarial Network (GAN) proposed by Goodfellow et al. [2014],
is another network architecture designed to generate data that fits the distribution
of a given dataset X . This is achieved by pitting two models against each other:
the generative model (G) and the discriminator model (D). A GAN is trained
so that G can generate data that is indistinguishable from that of the real dataset,
while D discriminates whether it has witnessed synthesised or real data.

The generator comes in the form of a predefined NN architecture chosen by the
user and is fed a prior of input noise pz(z). This is mapped through the generator
to generate data that is similar to the instances of X . D takes either the output of
G, or samples from X , and produces a single value representing the probability
that the data came from X .

The objective of a GAN is for D and G to possess Nash equilibrium, implying
that given the current state of one model, the other model has found the best re-
sponse, and neither model can unilaterally improve its performance. Both models
are trained in a turn-taking fashion by freezing one model’s parameters at a time.
Simultaneous training would not allow one network to have an advantage over the
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other and avoid the Nash equilibrium objective. It is this close proximity tension
between the models that encourages optimal convergence. Data is presented in
batches consisting of examples taken from both X and G. By training D to pre-
dict the probabilities of its input’s authenticity and training G to make this deceive
D, the resulting objective function of the GAN is

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (3.9)

After incrementally training both models, presuming G is generating high-
quality samples and D is achieving 50% accuracy, the GAN is considered to be
well trained. At this point, D can be removed, and we are left with G, a high-
quality generator model.

GANs can suffer from mode collapse. This is when a GAN focuses primar-
ily on certain modes in a multi-modal distribution and ignores all others due to
insufficient incentive via the loss function. This may happen because D is fo-
cused on one particular mode that contributes greatly towards its objective func-
tion, and therefore G learns to model this mode well in response, for which it will
be rewarded just as much or possibly more than learning the other modes. Mode
collapse usually results in G producing outputs that no longer evolve. Attempts
to mitigate mode collapse in GANs involve modifying the loss function, such as
using the Jenson-Shannon Divergence or Wasserstein methods which measure the
distances between the modelled and real data distributions [Tolstikhin et al., 2019,
Kumar, 2019].

Along with mode collapse, GANs are particularly difficult to train, encounter-
ing issues such training instability, loss saturation, non-convex objective function
optimisation, sensitivity to hyper-parameters, vanishing gradients, and the crucial
need for high-quality, large datasets.

3.2.4 Teacher-Student System

The teacher-student paradigm is a good example of transfer learning (described in
Section 4.4.3), where a pretrained model can be used to generate pseudo-labels.
The pretrained model providing labels to an untrained model is analogous to a
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teacher giving the student answers, hence the name. From the handed-down
pseudo-labels combined with the corresponding input data, the student model is
trained until it outperforms the teacher model.

3.2.5 Transformer Model

The Transformer is an encoder-decoder system, consisting primarily of deep stacks
of multi-headed self-attention layers, skip connections and positional encoding
mechanisms. In recent years, this architecture has experienced great success,
achieving state-of-the-art (SOTA) results in many sequence-based tasks. Vaswani
et al. [2017]’s work introduced the Transformer and shows that the self-attention-
based module can be put in place of both convolutional and recurrent modules in a
network. Its receptive field is global but possesses quadratic memory complexity.
Section 3.1.9 describes how the self-attention layers work, and examples of its
success will be presented in Section 4.4.

3.2.6 Diffusion Model

Among the most recent and successful branches of generative NN architectures is
the diffusion model. It has the ability to iteratively convert noise into a structured
form of data that is similar to samples from the dataset on which it is trained.
The theory for these models came from non-equilibrium thermodynamics [Sohl-
Dickstein et al., 2015].

The forward process of the model involves gradually destroying samples from
the training data by subjecting them to invertible transformations in the form of ad-
ditive Gaussian noise, until all traces of their original structure have disappeared.
The model can learn the iterative process that brought the data towards this state
of pure noise. After being trained, the model can then proceed through the back-
ward process of the transformations it has learned to generate noiseless samples,
the structure of which mimics the distribution of the training dataset. While the
input for generation after training is usually randomly sampled noise, there are a
number of conditional parameters that can be added to the training strategy that
allow novel samples to be generated based on such a prompt. These models come
with the benefit of not requiring any adversarial training, which, as previously
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described, comes with many challenges. They have been known to outperform
GANs and are able to perform a number of different tasks including novel data
generation, manipulation, in-painting, and data description.
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Chapter 4

Background

Having covered the basics of ML techniques and NN architectures, this chapter
presents the remaining literature review, covering several areas relevant to the
thesis. Sections 4.1 to 4.4 discuss the topics of the human voice, the perception of
sound, spectral representations of audio, and NN systems designed for audio and
voice analysis, disentanglement, conversion, and synthesis tasks.

4.1 The Voice

This section starts with a basic description of the vocal anatomy, proceeding with
a description of how the vocal organs work together to produce vocal sounds.
Subsection 4.1.2 discusses how the voice is used for singing and how it is au-
rally perceived. Subsection 4.1.3 concludes with a discussion of the differences
between singing and speech content, and how these relate to existing datasets.

4.1.1 Physiology

The vocal organs refer to the collection organs that contribute towards the produc-
tion of any type of vocal sound. This section is accompanied by several diagrams
to aid readers in visualising how the vocal apparatus works. An excellent source
of scientific explanation for how the voice works is that of Sundberg [1987], from
which most of the information in this section originates unless cited otherwise.
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Figure 4.1: Anterior view (left) and plan view (right) of the larynx.

Figures 4.11 and 4.22 are provided to aid the reader in visualising the descriptions
in the proceeding subsections.

Use of Respiratory Function

This section begins with a description of the respiratory system of the vocal or-
gans. The vibrating component, air, is provided by the lungs. During inhalation
and exhalation, an underpressure or overpressure (w.r.t. atmospheric pressure) is
induced in the lungs and carried up to the glottis. It is commonly called subglottal
pressure (SGP). The diaphragm, intercostal, and abdominal muscles are employed
to modulate this pressure, directly influencing voice amplitude. Generally, there
is a monotonic relationship between SGP and pitch and loudness in singing, par-
ticularly pronounced in the higher registers of vocalists. Consequently, various
respiration techniques exert a discernible impact on these aspects of vocal sound
production.

1Left diagram credit: “Cenveo - Drawing Larynx and vocal cords - English labels” at Anato-
myTOOL.org by Cenveo, license: Creative Commons Attribution, (adapted). Right diagram
credit: ”Slagter - Drawing Larynx and vocal cords - no labels” at AnatomyTOOL.org by Ron
Slagter, license: Creative Commons Attribution-NonCommercial-ShareAlike, (adapted).

2By Tavin - Own work, CC BY 3.0, https://commons.wikimedia.org/w/
index.php?curid=17388339
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Figure 4.2: Lateral view of the vocal tract.

The functional residual capacity (FRC) of the lungs describes the volume of
air they contain in the absence of passive inspiratory or expiratory forces. Upon
descending below the FRC, the contraction of the abdominal muscles becomes
vital to maintain SGP, ensuring the continuation of voiced sound production. In
speech, sentences and phrases are mostly initiated with 50% of the lungs’ vital

(total) capacity, which is generally just over the FRC. The amount of inhalation
increases proportionally to how loud a speaker wants to be. In singing, the in-
flation of the lungs is much higher and varies depending on the type of singing
required. Long passages of projected singing often require close to 100% of the
vital capacity of the lungs.

Vocal Folds

The vocal folds are thin protrusions at the position shown in Figure 4.1. They
are located in the larynx (commonly called the voice box) and are approximately
9-20mm in length, depending on the size of the neck. The length of these folds
dictates the pitch range of the vocalist. They are covered by a mucous membrane,
and are separated by a gap called the glottis.

Adduction describes the state of the vocal folds when they are brought to a
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close at their anterior by the lateral cricoarytenoid muscles. As air passes through
the constricted passage, a Bernoulli force is induced, causing the vocal folds to
vibrate which propagate the air up through the larynx. The rate of vibration of the
vocal folds determines the fundamental frequency that is produced during voiced
vocal sounds. Different frequencies of vibration occur when the length of the
vocal folds is stretched, thereby increasing tension. This process creates what is
called the source or excitation signal - a spectrum of sound which is yet to undergo
the filtering process that takes place in the passage between the vocal folds, mouth
and nose.

Abduction on the other hand, describes the folds’ state when they are pulled
apart from each other through the use of the posterior cricoarytenoid muscles,
thereby removing the vibrating phenomenon. This state allows the vocal organs
to produce more breathy utterances such as whispering, passive breathing, and
other unvoiced vocal sounds.

Directly above the vocal folds are the ventricle folds, also covered by a mu-
cous membrane. They are not usually used for voiced phonations and provide
regulatory and protection functions in the respiratory system. However, they do
contribute to the quality of pathological vocal sounds, which will be discussed
in the following subsections. Above these is the epiglottis, which is a flat, flap-
shaped cartilage structure, whose function is to stop food and liquids from entering
further into the respiratory system.

Phonation modes describe the types of vocal sounds that are produced as a
result of the behaviour of vocal folds. The timbral qualities that each mode has
are the result of how the folds oscillate. There are four types of phonation modes
called neutral, pressed, breathy and flow phonation. Figure 4.3 presents them
in each quadrant of a 2-dimensional plane, parameterised by glottal airflow and
SGP. However, while the 2D space might imply equal distributions of phonations
to each quadrant, this is not the case in reality. A detailed summary of how each
mode occupies this space is provided by Proutskova et al. [2013], who also points
out that phonation modes are not linked to singing registers, introducing the ques-
tion of how changes in pitch affect timbre while these vocal mechanisms remain
constant.

When phonation occurs in the falsetto register, the vocal folds no longer make
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Figure 4.3: A 2-dimensional representation of the placement of the phonation
modes, where the vertical axis and horizontal axis correspond to glottal airflow
and subglottal pressure, respectively.

contact to close completely. Whispering is considered to be an extreme case of
breathiness where the vocal folds are no longer vibrating enough to produce a pe-
riodic excitation source that would otherwise provide the voice with pitch. Voiced

and unvoiced (VUV) sounds refer to the sound of the voice when it is with or
without vibrating vocal folds, respectively. Whispering is rarely used in singing
and has less scope for timbral diversity.

The breathy qualities in a voice occur when air passes through the partially
opened glottis. This causes low glottal resistance, which refers to the ratio be-
tween SGP and transglottal airflow. Examples of this can be heard when one
exhales as they lift something heavy, or when Marlyn Monroe uses her signature
breathy voice. A phonation of this configuration requires an increase in SGP to
retain the same amplitude.

Vocal Tract Filtering

After passing through the vocal folds, the source signal of the voice is propagated
through the narrow cavity of the vocal tract, which describes the space between
the vocal folds, lips, and nostrils. Like the epiglottis, the velum is another valve
located at the back of the throat that connects the oral cavity to the nasal cavity.
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This can open or close to regulate airflow in the nasal passage.
The area function of these cavities imposes a filtering function on the source

signal and is controlled by the following: tongue shape, jaw, larynx, velum, and
lips. These are called the articulators. Their adaptive nature allows the source
signal to undergo a wide range of filtering functions that allow for the diversity
of timbre and morphological nature of vocal sounds. A phone describes a distinct
vocal sound, irrespective of how it relates to the construction of words in a lan-
guage. A phoneme on the other hand, is the smallest unit of sound into which a
given language can be broken down.

The vocal tract filters the excitation signal, attenuating some frequencies more
than others. This process forms peaks in the spectral representations of vocal
sounds called formants. The position of these formants accounts for the sound
that is perceived once the excitation signal has been filtered and radiated through
the lips, which is the result of particular articulator configurations.

4.1.2 Voice for Singing

Having covered vocal anatomy, attention will now be given to how the voice is
used in singing. This section describes the voices physical restrictions and capa-
bilities, opportunities for expressivity, vocal technique taxonomy, and the concept
of voice identity.

Vocal Register

The idea of vocal register alone lacks a widely accepted definition. One definition
that appears to fit most concepts and classifications of register, however, is that
provided by Hollien [1974], who writes that register is a “range of consecutively
phonated frequencies which can be produced with nearly identical vocal quality
and that ordinarily there should be little or no overlap in fundamental frequency
between adjacent registers”. Here, we continue with Sundberg [1987]’s descrip-
tion of the most widely referenced registers.

Male registers consist mainly of two registers. The modal register describes
the range of phonations apparent in a male’s ‘normal’ speaking voice, utilising
the lower frequency ranges. The falsetto register accommodates frequency ranges
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above those of the modal range, allowing males to produce vocal sounds more
similar to females in relation to their timbre and range.

Recognised female registers include the chest, middle and head registers. Some
unusual registers shared between both genders is the pulse register, also called
vocal fry (the latter of which will be more frequently used in this thesis). This de-
fines the voice when it possesses ‘creaky’ qualities in the lowest frequency range
of the voice, perceived as individual voice pulses. Conversely, the whistle reg-
ister describes the extreme high end of the frequency range, characterised by its
whistle-like timbral qualities.

Expressivity

In singing, expressivity is established by utilising whatever variations are available
that are not explicitly established in predefined musical composition. The nature
in which these compositions are retained come in different forms offering vary-
ing levels of detailed information (and a proportional amount of restriction), such
as oral transmission alone, condensed music representations such as lead sheets,
or classical music notation. Dimensions of expressivity are achieved through di-
versity in singing techniques, and differ in use between genres. Kayes [2015]
explores this phenomenon and provides a description of how vocal mechanisms
contribute to this effect, and also notes the tendencies of singers when considering
what is comfortable for their voice in different musical contexts.

In most classical music, the communication of emotions is dictated by mu-
sical structure and content, often encapsulated in a score. Singers who closely
honour the composer’s direction and genre authenticity would be considerably
constrained when conveying their own expression of an emotional state, as the
melody carries musically semantic implications, the dynamics dictate intensity,
and the tempo evokes an urgency connected to emotional arousal [Coutinho et al.,
2014].

However, the timbre of the voice is only coarsely dictated by terms in the score,
such as dramatico and dolce. These directions are often very general in nature,
allowing for considerable variance in timbre, giving the singer an opportunity to
become expressive and make use of the diversity of their voice as they see fit. The
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timbral qualities of the voice are determined by the singing technique being used,
which can be thought of as a preset of vocal mechanism configurations.

The exhalation of air is determined by a combination of glottal resistance and
SGP. In singing, SGP has been found to be strongly correlated with the frequency
and loudness of phonations [Bouhuys et al., 1966], which means that it can vary
significantly across a musical phrase. As the difficulty of musical passages in-
creases w.r.t. notes per second, proficiency in active use of the diaphragm muscles
is therefore required to produce smooth singing.

Scherer et al. [2017] present a novel experiment where singers were asked
to portray different emotions while singing an arbitrary sequence of notes and
meaningless syllables, therefore eliminating musical and linguistic semantics and
relying heavily on timbral diversity. Their results suggest that features such as
loudness, dynamics, high perturbation variation, and formant amplitude are cor-
related with the emotions being conveyed.

Coutinho et al. [2014] explores the capabilities of the voice with regard to ex-
pressivity and how emotion can be communicated between production and per-
ception. They express how essential it is to explore the dynamics of this di-
chotomy in order to devise systems that can digitally manipulate expressivity in
the voice. As emphasised by Stylianou [2009], it is essential to understand how
voice parameters contribute towards timbre and therefore expression, if we are to
build systems that model this accurately.

Taxonomy of Vocal Sounds

There has been a considerable amount of disagreement and miscommunication
between voice specialists regarding the taxonomy of vocal techniques and sound,
as documented by Sundberg [1987], Proutskova [2019], Hollien [1974], Mörner
et al. [1963], Gerratt and Kreiman [2001], which makes it difficult to present an
exhaustive or precise list. Garcı́a-López and Gavilán Bouzas [2010] compare val-
ues and perspectives of artistic and scientific professions specialising in the voice,
and suggest that the differences between these two communities lead to a convo-
luted and inconsistent tapestry of technical terminology.

The biological production of singing, as noted by Sundberg [1987], is far eas-

51



ier to describe than how humans perceive it, which involves more subjectivity
and analogous terminology. Heidemann [2016] provides an interesting approach
on the subject of singing perception, where she presents a system to describe the
perceptual vocal timbre of the voice. Garcı́a-López and Gavilán Bouzas [2010],
Sundberg [1977], Kayes [2015], Zhang [2016] provide detailed information on
how vocal production techniques influence the perception of a singer’s voice.

Gerratt and Kreiman [2001] investigated the phenomena of ‘nonmodal phona-
tions’ that are considered pathological or less common among vocalisations, such
as vocal fry and supraperiodic phonation, which describe a vocal signal that con-
sists of repetitive patterns in the waveform that stretch beyond a single funda-
mental frequency period, or a pair of cycles alternating in intensity. Blomgren
et al. [1998], Michel and Hollien [1968], Gerratt and Kreiman [2001] have demon-
strated through perceptual tests that the acoustic features of vocal fry are highly
salient compared to other modal phonations.

Voice Identity

Singers have a wide range of timbral diversity at their disposal that can be used
to produce expressive singing. Singers’ timbral diversity is subject to a variance
that is limited by their physiological capabilities due to their age, gender, size and
shape. However, variances in aural cues are not only bounded by the capabilities
of the singer, but also preferences in performance style, such as those relating to
dynamics, tempo, pitch and rhythmic deviation.

Perceived voice identity can be thought of as the acoustic effect of all param-
eters relating to expressivity and physiology working together, allowing listeners
to discriminate between voices. Complex combinations of many of the aural cues
mentioned above lead to a wide timbral palette that, when intentionally controlled
by the singer, are manifested as singing techniques.

As a result, timbral features are heavily entangled with singing technique in-
formation, which accounts for the specific configurations of the vocal organs that
allow a singer to express themselves with a wide timbral range. The entanglement
between singing technique and voice identity information presents an interesting
disentanglement problem to be explored in subsequent chapters.
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In this thesis, the term singing style is reserved to describe the manner in which
singing techniques are used, such as the temporal behaviour of the vibrato tech-
nique [Yamamoto et al., 2021]. It is important to make this clear, as much of the
literature in the field of ML concerning voice conversion is inconsistent with voice
attribute terminology, or is vague when defining it.

4.1.3 Speech and Singing

Spoken voice conversion and TTS tasks are in far more demand in the industry
than singing-related tasks and have therefore monopolised the spotlight in voice
analysis and synthesis research. Public domain speech datasets also vastly over-
shadow singing datasets in size and availability [Meseguer-Brocal et al., 2020],
and so the research related to singing in this field has been limited in its capabili-
ties in comparison to that of speech.

There is an understandable temptation to consider speech and singing datasets
as one of the same domain. As will be clear in Section 4.4, most research re-
lated to singing analysis and synthesis has been inspired or copied from similar
tasks used in the field of speech. However, it is important to consider how these
two domains of vocal recordings differ before considering which methods should
be transferred from one domain to the other. This section presents some of the
main structural differences between speech and singing content, highlighting the
inherent biases that come with them in terms of vocal use. Other work that consid-
ers the comparison of these domains includes Demirel [2022], Nercessian [2020],
Saitou et al. [2004].

Domain-Specific Characteristics

In most Western music styles of singing, a strong majority of singing content is
occupied by long sustained vowels. Consonants naturally occur at the start or end
of notes, as they are not elongated in most cases.

Singing content features sustained spectral states while speech produces a
rapid spectral morphology due to the fact that phones do not need to be sus-
tained for any length of time as long as they are communicated effectively to a
listener. This also highlights the fact that speech will always possess a higher
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rate of syllables-per-minute than singing, especially since it is not restricted to a
rigid metric time. The ratio of consonants to vowels is therefore higher in speech,
thereby increasing the amount of spectral noise and its importance in speech.

Pitch contours are of great importance in singing. They are based on the tar-
gets of discrete pitches and durations, specific to the style and composition of the
music being sung. Preservation of the structure of musical components is vital
in singing, although pitch transposition and dynamic use of time such as (rubato)
for the purpose of performance and/or expression are typical transformations in
music. The arrangement of pitch and duration forms the concepts of harmonic
and rhythmic structures of music. As long as these structures largely remain in-
tact, pitch transposition and rubato are permissible in music for re-orchestration.
Repetition of harmonic and rhythmic structures (such as verses and choruses) is
also typical in sung content. Microvariations in these structures related to intona-
tion, pitch, volume, and rhythm are often utilised by singers to deliver a unique
interpretation of the musical score with expressive qualities. Researchers who ex-
plored the role of these variations in singing content include Savery et al. [2020],
Saitou et al. [2004].

In speech, the requirements for preserving pitch contours and phone dura-
tions are much less rigid. This is because these attributes of vocal sounds are
directly related to intonation and prosody, which are not dependent on a hierarchi-
cal structure of discrete units for frequency or timing. Instead, these components,
along with vocal timbre, obey their own intrinsic functions, and can be trans-
formed dynamically with interdependency to faithfully convey the grammatical,
emotional, and semantic meaning of speech [Wagner and Watson, 2010, Scherer,
2003, Nolan, 2020].

Choosing a Dataset

Vocal datasets will vary in many ways, and so careful consideration must be given
to the task before choosing the right dataset. For example, if the task is synthesis-
based, datasets without audio files will be insufficient. Some other considerations
include whether the dataset contains:

• single or multiple languages, vocalists, or microphone recordings
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• singing or speech

• a capella or mixed music content

• processed or unprocessed vocal recordings (compression, reverb, pitch-shif-
ting etc.)

• singer identity labels for each recording

• short or long excerpts, and overall size/duration of the dataset

• parallel recordings of multiple domains or styles

• near or far-field microphone techniques

• environmentally noisy or clean studio recording circumstances

There are a number of publications that provide content-specific lists of vocal
datasets. A quick search online can produce numerous examples of curated lists,
specific to the field or researchers’ needs. These come in the form of online blog
posts 3, literature reviews [Yamamoto et al., 2022, Rosenzweig et al., 2020], or
lists associated with challenges related to speech [ISCA, 2023] and singing [Toda
et al., 2023]. Recently, it has become increasingly common to utilise published
collections that use scripts to collect raw audio from websites such as YouTube
[Yamamoto et al., 2022, Kalbag and Lerch, 2022]. Singing datasets of particular
relevance to this thesis include:

• MIR-1k [Hsu and Jang, 2010]

• MUSDB18 [Rafii et al., 2017]

• DALI [Meseguer-Brocal et al., 2020]

• MedleyDB [Bittner et al., 2014, 2016]

• NUS-48E [Duan et al., 2013]
3https://github.com/RevoSpeechTech/speech-datasets-collection,

https://openslr.org/resources.php
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• Phonation Mode Dataset [Proutskova et al., 2013]

• VocalSet [Wilkins et al., 2018]

• LibriSpeech [Panayotov et al., 2015]

• Voxceleb [Nagrani et al., 2017]

• VCTK [Veaux et al., 2017]

4.2 Perception of Sound

In this section, research and techniques related to sound perception are discussed.
Section 4.2.1 covers the computation of dissimilarities, inferences from such data,
and the experimental design of listening studies, while Section 4.2.2 discusses sta-
tistical analysis, clustering techniques, evaluation metrics and subjective evalua-
tion.

4.2.1 Listening Studies

Multidimensional Scaling Techniques

It has been widely accepted that timbre is impossible to quantify through a single
measurement, as it encompasses a large number of attributes [McAdams et al.,
1995, Wedin and Goude, 1972, McAdams et al., 1992]. In perceptual listen-
ing studies, there have been disagreements between participants about what they
have heard, as detailed in Section 4.1.2, making it difficult to create a unified
perception-based analysis of the timbre. The use of multidimensional scaling
(MDS) is first discussed in order to provide context when discussing timbral per-
ception.

A typical method for developing timbral maps of an instrument is to conduct a
listening test where participants are asked to rate the dissimilarities between every
pair of sounds in a given set. These can be presented as dissimilarity matrices and
converted into a representation of fewer dimensions via MDS. This approach is
especially useful to represent the cognitive process of how people perceive and
generalise the diversity of data within a given domain [Mugavin, 2008].
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The first to use MDS to represent perceptual data were Kruskal [1964], Shep-
ard [1962a,b], employing ‘stress’ metrics which quantify a solution’s goodness-
of-fit to the data, and ‘nonmetric’ techniques (due to the rank-ordered nature
of the data) to reflect perceptual data monotonically in the MDS representation.
This innovative work has paved the way for investigating timbre spaces and has
been widely used in the relevant literature [Gerratt and Kreiman, 2001, McAdams
et al., 1995, Wedin and Goude, 1972, Krimphoff et al., 1994, Serafini, 1993].
Within this field, MDS has undergone multiple adaptations and refinements. Car-
roll and Chang [1970] improved on the classical MDS with the INDSCAL algo-
rithm, which avoids rotational invariance for simplified dimension interpretation
and provides weights relating the contribution of participants’ collected data to
these dimensions [Mugavin, 2008]. INDSCAL has been used by Grey [1977] in
his influential research on timbral maps for multiple instruments. Interpreting the
distribution of data points across dimensions in an MDS representation requires
a post-hoc analysis. McAdams et al. [1995] combined perceptual dissimilarities
with acoustic parameters to generate timbre maps using the CLASCAL algorithm
[Winsberg and De Soete, 1993], which verified dimensional interpretation by in-
corporating the values of these acoustic parameters into the MDS calculations.

Interpretation of Timbral Space

McAdams et al. [1995] concluded that the first two dimensions of their timbral
maps were related to the temporal and spectral envelope, and that their data was
highly correlated with that of Krimphoff et al. [1994]. The strong impact of
these attributes on the timbral space is agreed upon by Grey [1977], Iverson and
Krumhansl [1993]. Iverson and Krumhansl [1993]’s studies reported spectral cen-

troid and ‘sharpness of attack’ as the meaning of the primary dimensions. Grey
[1977] deduced that the three axes in his 3D representations could be interpreted
as spectral energy distribution, spectral flux and temporal patterns in relation to
the attack portion of the sound. While it is apparent that the first two dimensions
often share similar meanings between experiments, the interpretation of the last
dimension (in most cases the third) often varies between results, which may relate
to the difference in datasets being used.
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The pitch of a musical instrument can also have a considerable impact on how
it is perceived. Grey [1977] found that the bassoon playing in a very high register
was perceptually close to the brass instruments. The work of Wedin and Goude
[1972] suggests that while elements such as attack transients assisted people in
identifying an instrument, they did not have a significant effect on the perceptual
structures of instrumental tones.

McAdams et al. [1995], Iverson and Krumhansl [1993] suggest that timbral
associations with specific instrument mechanisms provide a bias in giving dissim-
ilarity raters a cue that such a sound should be distinguished from others based on
its class (Krimphoff et al. [1994] refer to these types of aural features as acoustic
‘parasites’). Grey [1977] reports a similar phenomenon, in which particular artic-
ulations can disrupt clustering behaviour among instruments that would normally
sit well within a family of instrumentation. In contrast, Iverson and Krumhansl
[1993] investigated the influence of complete tones and their corresponding on-
sets / remaining segments on timbral spaces, concluding that the importance of
instrumental timbre in entire tones cannot be attributed to either their onsets or
remaining segments. They also concluded, like many others, that centroid fre-
quencies and amplitude envelopes contributed heavily to the timbral space.

Experiment Design

In relation to timbral perception, there is little research focused on investigating
what the ideal experimental design should be for listening studies. As a result,
there is not much guidance on the following points.

The phrasing of the required task varies between experiments even though
the data being sought out is the same. Iverson and Krumhansl [1993] for exam-
ple, asked the question “How much would you have to change the first sound to
make it sound like the second sound?” and presented a continuous scale rang-
ing from “a little” to “a lot”. Grey [1977] simply instructs participants to “rate
the similarity of the two tones” from very dissimilar to very similar on a scale of
1 to 30, while McAdams et al. [1995] used smaller Likert scales between 1 (la-
belled very similar) and 7 (very dissimilar). The number of ratings required per
listening session (in previously mentioned research, this ranged from 120 to 276
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ratings) may also have an effect of fatigue on the listener that may significantly
diminish the quality or consistency of their ratings. Listening fatigue is unavoid-
able after a certain period of time, so optimal durations, phrasing, and choice of
interface should be carefully considered on a case-by-case basis. Grey [1977] re-
ports that the order in which the comparisons are represented causes differences
in the judgements between the participants. For this reason, it has become com-
mon practice to randomise the presented order of pairwise comparisons. Mehrabi
[2018], Gerratt and Kreiman [2001] employed repetition within experiments to
assess intra-participant reliability. However, even with this approach, there is still
the issue of collecting saturated ratings because initial stimuli are mildly diverse
in timbre (or the opposite). Most studies include a significant number of practice
sessions, allowing participants to become familiar with the diversity of the stimuli
before they can provide recorded dissimilarity data.

There have also been conclusions about how the profiles of participants in-
fluence their rating style. Wedin and Goude [1972], Carterette and Miller [1974]
reported in their work that the use of participants with different levels of mu-
sical training did not cause differences between them. However, Serafini [1993]
reported that musicians familiar with the sounds being evaluated (Gamalan instru-
ments) attributed more importance to the attack of the sound than its resonant vol-
ume, while non-musicians’ ratings reflected these equally. Gerratt and Kreiman
[2001] used voice specialists in their perceptual tests on vocal pathology, which
led to perceptual data that possessed strong clustering properties. However, the
results of perceptual listening tests with the voice are quite different, where even
voice specialists have difficulty agreeing on what was heard [Proutskova, 2019].
McAdams et al. [1995] used participants with different levels of musical train-
ing, which did not seem to influence their perception of class structures, although
those with more of a musical background did offer more ‘precise’ ratings, which
was hypothesised to be due to superior ear training.

4.2.2 Analysis and Evaluation Methods

Statistical Analysis

Greene and D’Oliveira [2005] provide an excellent breakdown of statistical analy-
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sis methods that are suitable for any type of experiment in psychology. In addition
to this, sources dedicated to the particular calculations used in the relevant statisti-
cal tests [Cohen, 2008, Black, 2023, Hope, 1968, Kruskal and Wallis, 1952, Mann
and Whitney, 1947, Mumby, 2002] helped to explain the various experimental
scenarios where terminology or applications can be ambiguous. Perugini et al.
[2018] offer additional insight on power analysis, and have suggested the soft-
ware G*Power to assist in the calculation.

Clustering Techniques

Clustering techniques are suitable methods of analysing data provided by partici-
pants of a listening study due to their unsupervised nature, as they do not impose
classes on the data. McAdams et al. [1995] used nearest-neighbour clustering
analysis to detect which of their participants performed significantly differently
from others, highlighting instances where some individuals may have misinter-
preted instructions. They used the Monte Carlo significance testing procedure
[Hope, 1968] to determine the optimal number of classes that best represent the
clustering nature of the data. Gerratt and Kreiman [2001] used the K-means algo-
rithm to confirm that their dimensionality separated their 3 classes into statistically
significant clusters. Iverson and Krumhansl [1993] averaged dissimilarity values
across all the perceptual data of the participants to calculate the MDS spaces.
Grey [1977] did similar calculations and applied the HICLUS hierarchical clus-
tering algorithm [Johnson, 1967] to group the stimuli into clusters and assessed
the compactness of these clusters.

Evaluation with Computational Metrics

In most cases of assessing the performance of an audio-generative model, it is
typical to evaluate the performance of such a model using some kind of compu-
tational evaluation. The most basic form of evaluation will be the metric that was
used to determine the model’s performance during training. This can be used on
the evaluation data to measure how well the model does its job and how well it
generalises to unseen data. With generative networks in particular, as the mea-
surement is not as simple as determining whether a label is right or wrong, other
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means of evaluating the model’s performance must also be considered.
The latent loss (described in detail in Section 4.4.1 is the distance between two

vectors in latent space. This can be used to compare a model’s predicted output
to the original or target data. Third-party pretrained models such as Resemblyzer4

or Wespeaker5 have also been used to evaluate converted audio [Tan et al., 2021,
Lei et al., 2022, Prihasto et al., 2023, Li et al., 2023], although this creates a upper
bound evaluation limitation, dictated by how well such models are trained.

Subjective Evaluation

However, due to the variance in the quality of converted data, it is good practice
to employ human-based evaluations. For this reason, we see listening tests being
the most common type of subjective experiments used to measure the perceptual
ratings based on the generated audio’s naturalness or similarity to a target audio
example. Human participants are expected to choose, rank, or rate the available
stimuli.

The most common type of metric used to determine the quality of synthesised
audio is the mean opinion score (MOS). To obtain an MOS value, multiple ratings
from different participants are obtained for the same stimuli or different stimuli
under the same conditions. The mean score of these values is then obtained and re-
ported as the MOS, along with the standard deviations (although some researchers
present standard error or confidence intervals).

The Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) evalu-
ation method has also been used. This involves a test where participants are given
three types of stimuli: the reference, the anchor, and the test recordings. The in-
clusion of anchor and reference recordings allows participants to have a bounded
perceptual scale to use, where the reference represents the upper bound and the
anchor represents the lower bound ratings.

Guidance for the use of MOS and MUSHRA is provided by ITU-R [2015],
ITU-T [2013], which also provides informed guidelines for experiment prepara-
tion, choice of assessors, scope, and effective implementation.

4https://github.com/resemble-ai/Resemblyzer
5https://github.com/wenet-e2e/wespeaker
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Other types of evaluation tests include XAB tests, in which participants are
instructed to choose between candidate stimuli based on how well they match a
given reference stimulus, given a specified criterion [Tan et al., 2021]. There is
also the preference test, where there is no target or reference stimulus present, and
participants are required to simply choose the best option, again based on a given
specified criterion. Another design collects pairwise ratings, in which participants
are required to rate similarity (or dissimilarity) between two stimuli.

To summarise: the XAB test selects the best stimulus sample w.r.t. a refer-
ence; the preference test selects the best stimuli; and the pairwise similarity test
quantifies the perceptual distance between two stimuli (one of which could be a
test or reference stimulus). Popular challenges such as the Blizzard Challenge
[ISCA, 2023] have offered the rationale for their choice in evaluation test meth-
ods and challenged the validity of ratings based on pairwise comparisons between
two voices [Wester et al., 2016].

4.3 Spectral Representations of Audio

A fundamental consideration when designing a system for audio analysis or syn-
thesis is how the input data will be represented. This section covers the most
relevant methods by which sound has been represented in digital format for voice-
related tasks.

The most basic audio representation is the result of the initial method by which
sound is recorded on a digital system. After a sound has been recorded by a
microphone and converted to a digital format, it is stored on a digital device in
a format that reflects the fluctuations of the signal over time. This format is the
most direct digital representation of the original waveform.

Determining whether the waveform representation is more appropriate for
modelling than any representations derived from it requires a consideration of how
much data and computational resources are available. Pons et al. [2017] showed
that NNs using spectrograms performed better at audio tagging than those using
waveforms, but disclaimed that larger datasets in the future will likely invert this
observation. A diverse array of audio embedding types have been successfully
used as input representations in the field of audio and ML research. This section
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covers embedding types that are particularly relevant to MIR research. Much of
the information presented in this section has been informed by Müller [2015],
Velardo [2020], Gold et al. [2011], Dixon and Benetos [2020], unless stated oth-
erwise.

4.3.1 Spectrum

A spectrum is used to define the position between a minimum and a maximum
value. For most audio-relevant purposes, the frequency spectrum is bounded by
the threshold of human hearing (20Hz-22kHz). In digital audio, this spectrum is
represented as a set of discrete quantised points called bands, each of which is
used to represent the amount of energy within the frequency region it is tuned to.

Transforming a time-domain audio waveform into a frequency-domain spec-
trogram can be achieved with the Discrete Fourier Transform (DFT). Given an
audio signal of finite length (the analysis window), a DFT will produce an ar-
ray of complex numbers that represent the amplitude and phase of the waveform
across its bands. The resolution (number of bands) of the DFT is proportional
to the size of the analysis window. As this spectrum contains no temporal infor-
mation, it is typical to perform a Short-Time Fourier Transform (STFT), which
describes the application of the DFT multiple times over a sequence of short anal-
ysis windows until the entire signal of interest has been analysed. The result is a
series of short-duration spectra, concatenated over time to become a spectrogram.
In audio, the periods by which spectra are generated are typically two to four times
smaller than the DFT analysis window, allowing the spectrogram to capture high-
resolution frequency information in more localised timesteps. Using overlapping
windows also improves accuracy by reducing spectral leakage and smoothing out
abrupt changes between adjacent windows. Computing the absolute values of
the complex numbers of a spectrum produces the magnitude information, while
computing their angles produces the phase information.

Adaption for Human Perception

In the majority of MIR applications, magnitude information has been regarded
as the more informative data, while the phase is often considered less relevant
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because of humans’ perceptual invariance to it. In cases where further energy
analysis is required, the magnitudes are squared to generate the power spectrum.

Human perception of both loudness and frequencies must also be taken into
account. The human ear perceives loudness logarithmically, and relatively low-
energy sound events can still be perceptually relevant if the environment is ade-
quately quiet. To accommodate for this, the power spectrum can be converted into
decibels to mimic the perception of humans using the equation

dB(I) = 20 · log10
(

I

ITOH

)
, (4.1)

where I refers to sound intensity and ITOH is a reference point for the threshold

of hearing, from which the relative decibel measurement is generated.
Humans also have a logarithmic perception of frequency. Their sensitivity to

frequency is stronger at lower frequencies than at higher ones. Therefore, the log
scale is often used for frequency to shift the importance of frequencies to the lower
orders of the spectrum.

An alternative approach looks more closely at non-linear perception of fre-
quency, and uses a custom scale to faithfully reproduce the sensitivity of the hu-
man ear. This was determined from the experiments of Stevens et al. [1937],
where they measured listeners’ responses to intervals across the frequency spec-
trum and generated a series of critical bands. These bands are implemented as a
series of triangular filter windows applied to the spectrogram, resulting in ‘mel’
filterbanks. In other words, the mel filterbank is a calibrated set of spatially de-
fined frequency bins to map the linear frequency scale to the mel scale, which is
perceptually tuned to the sensitivity of the human ear.

After applying each of these transformations, the result is a log-magnitude
mel-spectrogram, which is one of the most common forms of audio representation
in the field of MIR.

4.3.2 Cepstrum

A ‘cepstrum’ is formally defined as the Inverse Fourier Transform (IFT) of the
log magnitude of a DFT, but can more intuitively be thought of as the spectrum
of a spectrum of a signal. Its application covers a wide range of domains, from
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seismic to speech to music analysis. Cepstrum analysis is a tool used to measure
the amount of periodicity in a spectrum over time. Due to the inverted nature of
the maths involved, the terminology related to these types of transformations are
partial reversals of the original terminology, such as the conversion of spectrum to
cepstrum [Bogert et al., 1963].

In the same way that a DFT measures how well each sine wave resonates with
the waveform being analysed, we can test the presence of periodicities against a
spectrum as if it were a time-domain signal. The cepstrum is said to lie in the
‘quefrency’ domain, which is measured in time intervals. Strong peaks in this
domain indicate which periodicities and their multiples are the most present in the
frequency domain. The information relevant to the spectral envelope resides in
the lower end of the quefrency axis, which also relates to the timbre of the voice
and the shape of the vocal tract. The upper end of the quefrency axis contains
information relevant to details such as the glottal pulse. The quefrency domain of
the cepstrum can be divided to separate the contributions of the vocal tract filter
and the excitation signal via liftering (the equivalent of filtering in the quefruency
domain). The quefrency at which liftering occurs can be informed by considering
what the lowest detectable fundamental frequency should be (bearing in mind that
the lowest note for male singers is roughly 50Hz). By taking the logarithm of
these two components of the cepstrum, they can be summed (instead of being
multiplied, as in Equation 4.4) to produce the log of the speech signal:

log |X(ω)| = log |E(ω)|+ log |V (ω)| (4.2)

Mel-Generalised Cepstrum

A variation of the standard cepstrum that uses the mel scale is the mel-generalised
cepstrum (MGC), which has been frequently used in speech processing [Bonada
et al., 2016, Chandna, 2021, Kaneko et al., 2017]. This is advantageous over typ-
ical cepstrum analyses as it does not overestimate formant bandwidths and has
a frequency resolution akin to the filter banks and phase response of the human
auditory system. It is defined as the IFT of the generalised logarithmic spectrum
calculated on a warped frequency scale [Tokuda et al., 1994]. The generalised
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logarithmic function is defined in [Kobayashi and Imai, 1984] as the natural gen-
eralisation of the logarithmic function, parameterised as

sγ(w) =

 1
γ
(wγ − 1) , γ ̸= 0

logw, γ = 0
(4.3)

where γ is a real number of |γ| ⩽ 1.

4.3.3 Spectral Envelope

The spectral envelope is the overall shape of the distribution of energy across
a frequency spectrum. It provides a simplified representation of the amplitude-
frequency plane, highlighting spectral content of the audio signal that captures
timbral characteristics, peaks and troughs in the signal. As spectral envelopes are
meant to convey a smooth version of the frequency response of spectral frames,
they require relatively fewer coefficients to approach a useful function that ap-
proximates the true spectral distribution adequately.

Speech modelling conceptualises the phenomenon of speech as the result of
two processes: the vocal tract frequency response and the excitation signal. The
spectra of these components can be multiplied to produce the spectrum of the
entire speech signal, formalised as

|X(ω)| = |E(ω)||V (ω)|, (4.4)

where X(ω), V (ω), and E(ω) represent the spectra of the speech signal, the vocal
tract frequency response and excitation signal. Peaks in the spectral envelopes
are heavily correlated with vocal formants. E(ω) can be approximated using a
truncated cepstrum. A specific implementation of this will be described in Section
4.3.5.

4.3.4 Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) were originally developed for speech
processing and automatic speech recognition (ASR) [Tiwari, 2009]. They are co-
efficients for a function that provides a rough estimate (depending on how few
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coefficients are used) of a spectral envelope, making them suitable features for
predicting utterances in speech and timbre in music. They have been very suc-
cessful in providing a reduced representation of the voice and capturing the salient
features of human perception. MFCCs are effective for analysis, but not for syn-
thesis, as the operations required to generate MFCCs cannot be inverted to return
to the audio’s original uncompressed representation.

To generate MFCCs, as with the transformation from waveform to cepstrum,
we first apply the DFT to a waveform and take the log of the resulting power
spectrum. Mel filter-bank mapping is applied to the frequencies, producing the
log mel-spectrum. Instead of an IFT, a discrete cosine transform (DCT) is applied
to the spectrum6, the result of which is the MFCC features. The number of Fourier
components is typically truncated between indices 12 and 14, which has the effect
of smoothing the spectrum.

4.3.5 Vocoder

The concept of the vocoder was first proposed by Dudley [1940]. It uses the prin-
ciples of discrete frequency band and excitation source manipulation to represent
the vocal tract and glottal pulse configurations in voice production. This process
represents the source-filter model, which is still used today in modern vocoders.
It allows users to manipulate spectral and fundamental frequency (henceforth re-
ferred to as F0) information independently.

This process has been converted to the digital domain in numerous imple-
mentations that have improved in quality over the decades. The STRAIGHT
vocoder [Kawahara et al., 1999] was recognised as the first vocoder to compete
with the more natural-sounding waveform concatenation systems (the concatena-
tion of sonified phonemes was considered the best approach to vocal synthesis due
to its SOTA results and simplicity). It improved upon issues relevant to its pre-
decessors, which included the removal of periodicity interference, the production
of smoother F0 contours and a reduction in the amount of perceived buzziness in
synthesised audio. Further variations of this vocoder provided real-time analysis

6The DCT is very similar to the IFT, but is computationally a more reasonable choice for this
application. It also has the added advantages of decorrelating information shared between mel
banks, and allows for dimensionality reduction.
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and synthesis capabilities, but at the cost of more simple algorithms that degrade
audio quality [Banno et al., 2007].

NNs designed to synthesise waveform audio from vocal acoustic features (such
as spectral envelopes or mel-spectrograms) are commonly referred to as neural

vocoders. Examples of these can be found in Section 4.4.5.

WORLD Vocoder

The WORLD vocoder [Morise et al., 2016] was built to offer real-time appli-
cations while maintaining high-quality voice synthesis. At the time of publica-
tion, this vocoder was achieving SOTA results in objective and subjective evalua-
tion, and has since been a popular choice of audio representation when perform-
ing voice-modelling tasks. Often in previous literature, mel-cepstral coefficients
(MCCs) generated from WORLD’s spectral envelope [Suzuki et al., 2022, Zhang
et al., 2020, Li et al., 2022a, Tan et al., 2021, Huang et al., 2021b, Du et al., 2021,
Zhang et al., 2020, Kameoka et al., 2020, Tobing et al., 2019, Chen et al., 2019,
Arakawa et al., 2019, Fang et al., 2018, Kaneko and Kameoka, 2017] have been
used. Sometimes the spectral envelope itself [Lu et al., 2020, Zhou et al., 2021]
(with particular authors reducing its dimensionality by truncating it and apply-
ing frequency warping in the mel-cepstral domain before reproducing its spectral
envelope form as log-Mel Frequency Spectral Coefficients (MFSCs) [Chandna,
2021, Nercessian, 2021, Blaauw and Bonada, 2018]) has been used instead. Very
recently, there has been a trend of using WORLD simply for its F0-generative
capabilities [Takahashi et al., 2023, Shen et al., 2023, Li et al., 2023, Zhang et al.,
2022, Wu et al., 2022, Li et al., 2021a].

This vocoder uses several algorithms that had previously achieved SOTA re-
sults to produce the WORLD feature set, comprising F0, spectral, and aperiodic
information. By default, the vocoder uses the DIO algorithm to produce the F0,
the CheapTrick algorithm to produce the spectral envelope, and the PLATINUM
algorithm to predict the aperiodic parameter. A visualisation of how these algo-
rithms work together is provided in Figure 4.4.

The DIO algorithm [Morise et al., 2009] first applies a series of low-pass fil-
ters to its waveform audio input signal, until the filtered signal possesses only a
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Figure 4.4: Flowchart illustrating WORLD’s analysis algorithms extract F0, spec-
tral envelope and aperiodic information.

fundamental component. As this fundamental component should resemble a sine
wave, it should have the same periodicity between positive/negative zero-crossing
intervals and peak/trough intervals. The standard deviations of these intervals in
the filtered signal act as a reliability measure. After several F0 candidates are
obtained, the one with the highest reliability is chosen as the true F0 label.

An alternative pitch estimation algorithm available to users of the WORLD
vocoder algorithm7, is ‘Harvest’. It produces F0 candidates in a similar manner
to DIO, and overlaps F0 candidates across neighbouring frames to calculate the
likely fundamental frequencies in frames where there is too much noise. This
effectively reduces the amount of false unvoiced frame predictions. Further steps
involving F0 selection, contour interpolation, and VUV decision revisions, (all of
which are covered in detail in Morise [2017]) contribute towards Harvest’s refined
pitch estimation.

The CheapTrick algorithm [Morise, 2014] uses both DIO’s output and the in-
put waveform audio signal to generate a spectral envelope. This algorithm uses
a time-varying window frame in its spectral analysis function to remove the in-
fluence of the temporal position of the windowing function. Using a combination
of this F0-adaptive windowing, spectral smoothing, and liftering on the signal’s

7as provided in the Python-wrapped implementation at https://github.com/
JeremyCCHsu/Python-Wrapper-for-World-Vocoder,v0.3.2
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cepstrum, it generates the spectral envelope. This can then be convolved with the
glottal pulse signal supplied by the DIO algorithm.

The PLATINUM algorithm [Morise, 2012, Fang, 2021] uses the output of the
spectral envelope of CheapTrick and the output F0 of DIO to compute aperiodic
information. Unlike previous vocoders such as STRAIGHT, which convolve an
aperiodic response with white noise and a periodic response with a pulse train,
the PLATINUM algorithm instead first determines the excitation signal, which
is then convolved with the minimum phase response to produce the vocal fold
vibration, as seen in Figure 4.5. However, the temporal position of each vocal fold
vibration must be determined. To do this, the temporal centre ta of each voiced
section is determined. Values within the interval ta ± T0 (where T0 represents the
F0 period) are squared, and the maximal value indicates the origin point of the
vocal fold vibration. The other origins of the positions of the vocal folds can then
be determined based on the F0 contour. The flow diagrams for these processes
are shown in Figure 4.5. As WORLD only needs to do one convolution, it is
considered more efficient than the STRAIGHT vocoder.

The excitation signal, xp(t), is obtained by taking the IFT of the extracted
excitation spectrum Xp(ω)

xp(t) = F−1 [Xp(ω)] , (4.5)

which itself is determined by dividing the observed spectrogram X(ω) by its min-
imum phase response Sm(ω)

Xp(ω) =
X(ω)

Sm(ω)
. (4.6)

The minimum phase response itself is calculated by computing the FT of the
cepstrum cm(τ), determined as follows:

cm(τ) =


2c(τ) (τ > 0)

c(τ) (τ = 0)

0 (τ < 0)

(4.7)

where c(τ) is the cepstrum of Cheaptrick’s smoothed spectral output Pl(ω).
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Figure 4.5: Flowcharts illustrating how vocal fold vibrations are determined in the
STRAIGHT and WORLD vocoder systems. The ∗ symbol represents convolution.
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c(τ) = F−1 [log (Pl(ω))] . (4.8)

.
In summary, the PLATINUM algorithm uses the chain of formulas listed above

to determine aperiodic features that account for variances in the spectrum that are
not accounted for by the harmonic spectral envelope.

4.4 Neural Networks for Audio and Voice-Related
Tasks

This section discusses data representation transformations and adaptations of ex-
isting NN frameworks that have contributed toward analysis and synthesis tasks
relevant to singing attribute conversion. It is split into subsections focussing on al-
ternative loss components, audio analysis, disentanglement, conversion and audio
synthesis.

4.4.1 Alternative Loss Components

Audio-generative networks often rely on a pixel-wise comparison for reconstruc-
tion loss, such as those described in Section 2.3.1. While this type of loss has
been successfully and consistently implemented in this field of research, alter-
native domain-informed loss metrics have been proposed. These losses can be
categorised as embedding, latent, cycle-consistency and contrastive losses, which
will be discussed below.

Embedding Loss

Feature-matching describes the process of using the features generated by the acti-
vations of intermittent layers in an NN architecture [Mroueh et al., 2017, Salimans
et al., 2016, Larsen et al., 2016, Kumar, 2019, Caillon and Esling, 2021] as target
values from which loss values are computed. By doing this, embeddings of multi-
ple similar networks, or embeddings generated by different input representations,
are encouraged to be similar as training progresses.
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A particular type of feature-matching loss is the latent regressor loss, which
describes a measurement of the distance between the output embeddings of a net-
work. These embeddings will often relate to more perceptually relevant features,
representing higher-level characteristics [Johnson et al., 2016] that can be com-
pared between original and reconstructed data, or between two different instances
where the information being encapsulated in the embedding should be similar. It
is also motivated by the intuition that generative networks are forced to rely on
the relevant latent space embeddings in addition to other inputs.

Latent regressor loss has been frequently used to improve the results of vari-
ous audio-related tasks [Donahue et al., 2017, Nercessian, 2020, Lee et al., 2019,
Qian et al., 2019, Nachmani et al., 2018, Nercessian, 2020], and particularly with
speaker identity embeddings [Du et al., 2021, Liu et al., 2018, Cai et al., 2020,
Huang et al., 2021a, AlBadawy and Lyu, 2020]. Abstract but interpretable fea-
tures can also be generated by DSP-based feature extractors, such as encoders
for pitch, phones, and loudness. As these latter examples also represent high-
level characteristics of an audio signal, there is no reason why considering losses
between these features could not also assist models in evaluating their own per-
formance.

Latent Loss as Regularisation

Regularisation, as described in Section 2.3, is a component of the objective func-
tion that prevents a model from overfitting to a certain subset of data. Consider an
encoder that is pretrained on one domain (the source domain) of input data and an
untrained encoder that will use another domain (the target domain) reflecting the
same data. Examples of these domains could be solo and mixed tracks, or spec-
tral and MIDI representations. A loss taken between the embeddings of a target
encoder and a pretrained source encoder would encourage the target encoder to ex-
tract the same information as the pretrained source encoder. Chandna et al. [2020]
used this technique to train their autoencoder to extract embeddings from mixed
music tracks as if they were solo tracks. Luo and Su [2018] extracted MIDI rep-
resentations from audio, clean vocal recordings from distorted vocal recordings,
and clean solo vocal recordings from mixed music recordings.
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Esling et al. [2018] used MDS across a collection of 5 previous listening stud-
ies to produce a timbral map for different instruments. A loss between a VAE’s
bottleneck embeddings and the timbral maps facilitated a regularisation term that
would teach the VAE to extract information from its input data in a manner that
matched human perception, which led to better reconstruction and generalisation.
It is surprising to see that this technique has not been applied to SVAC. If per-
ceptual distances in NN latent spaces representing vocal attributes are shown to
be of a complex or non-linear nature, these could surely benefit from a similar
regularisation process.

Cycle-Consistency Loss

The cycle-consistency loss was formulated in response to the challenging task of
performing style transfer on data from domain X so that it matches the style of
domain Y . Previously, this required paired data that demonstrated how similar
classes differed only by their style (or attribute of interest). Zhu et al. [2017]
overcame this challenge by considering two separate generators A and B that
are the mathematical inverse of one another, implying that B(A(x)) ≈ x. This
equation represents back-translation, which describes a conversion process where
the source and target data have been reversed. In [Sennrich et al., 2016], they
used synthesised source-data in 50% of the training data, which was generated
by converting already-converted data of the target class back to the source class.
Cycle-consistency loss has been used in much subsequent research tackling tasks
related to style or attribute conversion [Amodio and Krishnaswamy, 2019, Zhou
et al., 2016, Kaneko and Kameoka, 2017, Zhu et al., 2017, Luo et al., 2020a,
AlBadawy and Lyu, 2020]. In voice conversion, this has primarily been applied
to the voice identity attribute. Investigating how well cycle-consistency will assist
in conversions where attributes are so tightly entangled, such as voice identity and
singing technique, would be an informative and progressive step in SVAC.

Contrastive Loss

Contrastive learning was briefly introduced in Section 2.1.5, which is facilitated
by a contrastive loss computation.

74



By utilising the multi-track recordings in the MUSDB18 dataset, Lee et al.
[2019] trained a triplet loss network with monophonic recordings as the anchor
and mixed recordings as the positive/negative items. With contrastive learning,
they were able to encourage the network to extract embeddings that were the same
for same-singer content, regardless of whether the input was just vocals or a mixed
track.

Wan et al. [2018] used constrastive learning to learn speaker embeddings from
speaker audio recordings using the Generalised End-to-End (GE2E) loss, which
is a particular contrastive loss that makes use of multiple classes within a batch,
clustering techniques in the latent space, and end-to-end functionality. The model
used to facilitate this was designed for extracting voice identity embeddings from
mel-spectrograms. This consisted of a straightforward architecture of 3 stacked
LSTM layers, the last output of which is fed to a linear layer. However, it is the
computation of the loss function that is unique and is worth describing in detail
here.

The GE2E loss takes M random clips of utterances i from N random vocalists
j packaged as a minibatch that is fed to the network during training. The output
embeddings of the model’s final linear layer are first subjected to L2 normalisation
as seen in the following equation, where x represents input features, w represents
model weights, and f() represents the forward pass function of the network that
produces the output embeddings.

eji =
f (xji;w)

||f (xji;w) ||2
(4.9)

The mean of all embeddings for each vocalist seen in each minibatch can then
be computed to represent the vocalist k’s embedding centroid, ck, in latent space:

ck =
1

M

M∑
m=1

ekm. (4.10)

Similarity scores are then generated between all utterance embeddings eji and
their corresponding vocalist centroids using the equation

Sji,k = w · cos (eji, ck) + b, (4.11)
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Figure 4.6: A Similarity matrix, arranged so that the first axis represents utterance
embeddings j , the second axis represents the vocalist centroids k , and the cells
represent the similarity scores between the corresponding pair of axes elements.
In this illustration, the coloured cells represent where the identity of the utterances
matches that of the centroid.

where w and b are learnable weight and bias parameters. w is constrained to
be positive to ensure larger similarity scores for larger cosine similarities. This
vector of cosine similarities is rearranged as a matrix, herein referred to as the
similarity matrix, as seen in Figure 4.6, where unmatched (with respect to vocal-
ists) embedding-centroid pairs are white and matched embedding-centroid pairs
are in colour.

From this similarity matrix, the softmax computation of the GE2E loss can
be derived, which has been shown to perform best for text-independent vocalist
verification tasks, where there are no lexical restrictions on the utterances being
used during training. The softmax loss for each embedding is defined as:

L (eji) = Sji,j − log
N∑
k=1

exp (Sji,k) (4.12)

The notation Sji,j refers to the similarity between embedding eji and the cen-
troid of the same vocalist. The log term normalises the similarity scores by sum-
ming the exponential of each element across all vocalists k. This encourages the
model to output similarity scores Sji,k close to 1 when k = j, or 0 if this is not the
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Figure 4.7: An illustration of the effects of the GE2E softmax loss. Circles and
triangles represent embeddings and centroids, respectively. Dotted arrows repre-
sent the repelling force between unmatched embedding-centroid pairs, while the
solid-line arrow represents the attracting force between matched elements.

case. This loss function has the effect of pushing embeddings of the same vocalist
towards their vocalist’s centroid while simultaneously being repelled by all other
vocalist centroids, as seen in Figure 4.7

Finally, the total GE2E loss over the entire similarity matrix, and therefore
batch of utterances, is computed by summing the losses for each embedding:

LGE2E(x;w) =
∑
j,i

L (eji) (4.13)

4.4.2 Audio Analysis

The task of voice analysis can be broken down into the tasks of utterance tran-
scription (relating to phonef, speech, and lyrical classification), music information
retrieval (relating to timbre, harmonic, or note/voice segmentation), and vocal at-
tribute classification or embedding. This section presents architectures and tech-
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niques used to generate voice identity labels or embeddings, both of which have
been used to facilitate voice conversion tasks. There are, of course, many ML
algorithms that are more than suitable for audio classification tasks if the prob-
lems are appropriately matched, such as support vector machines (SVMs), ran-
dom forests, logistic regression, and a number of clustering algorithms, although
these are outside the scope of this literature review.

Label and embedding generation is typically achieved with supervised and
unsupervised methods, respectively. McCallum et al. [2022] compared these two
approaches when developing general-purpose audio embeddings for downstream
MIR tasks. The embeddings generated by both methods yielded state-of-the-art
results for music tagging. They found that unsupervised learning benefited from
restricting the domain of the data between up and downstream tasks, and resulting
embeddings generalised across a wider range of tasks than those of supervised
learning. The question of how well such embeddings can generalise to down-
stream tasks of different domains would be of great interest to the field of voice
conversion, where speech datasets far outnumber singing datasets.

Log-magnitude mel-spectrograms have become a common alternative to wave-
form representations due to their intuitive structure where they present audio as an
image, and reduced dimensionality (depending on the required processing steps).
As a result, many techniques from the field of computer vision have been suc-
cessfully implemented when audio is presented as a spectrogram. CNN models
are capable of considering the shape, location, and/or textures of sounds found in
spectrograms. These can be indicative toward the identification of a sound event
or acoustic scene. CNNs have contributed to excellent results for music classifi-
cation tasks such as audio event detection [Hershey et al., 2017], audio tagging
[Choi et al., 2017], pitch detection [Kim et al., 2018], instrument classification
[Costa et al., 2017], and lyrics transcription [Demirel et al., 2020].

Derived from the popular VGG model Simonyan and Zisserman [2015] which
is a CNN architecture, the VGGish model8 inspired by Hershey et al. [2017], is a
pretrained CNN-based architecture, the pre-classification layer of which can pro-
duce fixed-size embeddings from audio files of an arbitrary length. These have

8https://github.com/tensorflow/models/blob/master/research/
audioset/vggish/README.md
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been shown to be suitable for various music and audio-based downstream tasks.
Clustering algorithms have also been used on mel-spectrograms and VGGish-
produced audio embeddings to effectively cluster audio events for downstream
tasks [Jansen et al., 2017].

Choi et al. [2017] extensively examined the application of CNNs and RNNs
w.r.t. music tagging. It was noted that RNNs do a better job of summarising the
temporal information than CNNs, as they operate on a global scale of observation
rather than a local one. However, a hybrid model of both called the Convolutional
Recurrent Neural Network (CRNN) could sequentially attribute detailed patterns
in local contexts, before analysis for temporal dependencies was executed, which
provided the best results for this task. In the same work, they also investigated the
performances of CNNs, the convolution kernels of which: delayed frequency axis
dimensionality reduction; advanced it; or gradually employed it with temporal
axis reduction using a 2D kernel of equally sized axes. They found that the latter
performed best and, while it did not perform as well as the CRNN, it did have
significantly fewer parameters that made it comparable.

The appropriateness of computer vision techniques must, however, be care-
fully considered in the context of spectrograms. A shape in a spectrogram can
mean something significantly different depending on where it lies on the fre-
quency axis. This means that the CNN’s property of translational invariance
across the frequency axis is not desirable. To avoid this, Blaauw and Bonada
[2018] and Luo and Su [2018] have used 1-dimensional CNNs and distributed
spectral frequency bins across the channel axis instead. While subsequent chap-
ters explore voice analysis and synthesis, experimentation was necessary between
2D and 1D convolutions to determine its appropriateness for the classification of
vocal attributes such as singing technique.

Recent research has enjoyed the luxury of using more modern architectures,
such as the Transformer [Vaswani et al., 2017]. Won et al. [2021] presented the
Music Tagging Transformer, which outperformed all previous architectures in au-
dio tagging. The model was trained using noisy teacher-student training. By
adding noise to the student’s input data with each student-teacher iteration, it be-
comes more robust than the teacher, and the two models can swap roles iteratively
to continually increase robustness. Knowledge distillation via parameter reduc-
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tion between the models was shown to improve the network’s performance of
semi-supervised audio tagging. Lu et al. [2021]’s SpecTNT model makes use of
two transformers that model the temporal and spectral-based features. Transform-
ers have also excelled in beat-tracking [Cheng and Goto, 2023], pitch transcrip-
tion [Toyama et al., 2023], and MIDI infilling [Malandro, 2023]. However, as
Damböck et al. [2022] highlight, the trade-off between slightly better results and
computational cost may not always be favourable.

4.4.3 Disentanglement

As initially described in Chapter 1, disentanglement describes the process of sepa-
rating information that relates to a particular attribute of the data. Examples of this
include removing melodic information from an instrument recording, colour from
a photograph, or patient-specific information from a medical report. This section
discusses methods that have been used to achieve disentanglement in tasks related
to audio and voice.

Conditioning

By continually providing a network with labels via an auxiliary input during train-
ing, it learns to depend on them to adjust its parameters to model the attribute class
the label represents. This is called conditioning.

One-hot encodings have been used to condition networks for the purpose of
disentanglement [Kameoka et al., 2020, Liu et al., 2021a, Wu et al., 2020, Chou
et al., 2018, Van den Oord et al., 2017, Lu et al., 2020, Kameoka et al., 2020]. If
there is a finite number of classes to which an attribute can belong, such as those
of pitch classes [Luo et al., 2020b], gender, or phonemes [Li et al., 2021b], then
the one-hot encoding format is a perfectly suitable representation. However, it
does not allow a model to consider a new class of data or variation of a predefined
class. The result of this restriction will be presented in Section 4.4.4.

Recent research, has focused more on zero-shot conversions, where systems
are able to take unseen examples as both the source and target signals. Such flex-
ibility in conversions can be achieved by replacing one-hot encoding vectors with
embedding vectors [Qian et al., 2020a, Lee et al., 2020]. When using descrip-
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tive embeddings, conditioning can encourage the encoder of an autoencoder to
prioritise encoding information unrelated to the conditioning vector, resulting in
disentanglement in the bottleneck. For a set number of classes, the mean values
of multiple feature embeddings across each class are often used to represent in-
dividual instances of those classes [Qian et al., 2019, Zhou et al., 2021, Li et al.,
2021b]. It should be considered however, that generalising over a large amount
of class instances would only be useful when the features of such classes are ex-
pected to have a narrow standard deviation. Experimentation may be necessary to
determine how useful averaging is for SVAC. It seems intuitive for voice identity
conversion, but modelling more elusive and dynamic attributes such as singing
techniques may require a different strategy.

Tan et al. [2021] discuss how averaged representations force models to rely on
a finite number of static embeddings, which helps them to perform better voice
identity conversion, but generalises more poorly to unseen target embeddings.
They report better conversion performance when using an additional network that
takes F0 information, plus live-generated and speaker-averaged embeddings to
produce a new adjusted embedding. Li et al. [2022b] proposed a U-net to model
voice identity embeddings (VIEs) with instance normalisation modules [Ulyanov
et al., 2017] after each downsampling block to produce hierarchical speaker em-
beddings at multiple granularities.

Other conditioning factors used to disentangle timbre include loudness [Liu
et al., 2021a, Nercessian, 2020], phonetics (usually from pretrained linguistic net-
works) [Liu et al., 2021a, Shen et al., 2018, Bonada and Blaauw, 2021, Nerces-
sian, 2020, Sun et al., 2016, Skerry-Ryan et al., 2018, Polyak et al., 2020, Li
et al., 2022b, Du et al., 2021, Li et al., 2021b], and pitch-related features either
as one-hot encodings or continuous data [Bonada and Blaauw, 2021, Qian et al.,
2020a, Nercessian, 2020, Li et al., 2022b, Polyak et al., 2020, Tan et al., 2021,
Fang et al., 2018, Lee et al., 2019]. With such deterministically generated fea-
tures that account for well disentangled attributes, the concatenation of these as
conditioning vectors could lead towards the disentanglement of attributes that are
rarely labelled or too abstract to be deterministically predicted. This concept is an
important motivation behind the work presented in this thesis.
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Vector Quantisation

Another method that facilitates attribute disentanglement is ‘vector quantisation’
(VQ). Van den Oord et al. [2017] combine discrete latent spaces of a VAE model
with VQ, which is the process of mapping an input vector to the most similar vec-
tor in a lookup table (also called a codebook or dictionary in relevant literature).
The encoder’s output is mapped to its nearest neighbour in the lookup table. As
this process of VQ breaks the differentiable chain, the gradients are simply copied
from the decoder to the encoder (straight through estimation). An L2 loss is then
used to bring the contents of the lookup table closer to the encoder’s outputs.
By conditioning the decoder on speaker identity, the network can disentangle lin-
guistic content from its input. However, VQ is restricted to modelling attributes
of a discrete nature where interpolation between them is not meaningful. There
are some attributes in SVAC where this would be desirable, such as gender. Con-
versely, it would be pointless for attributes of a more dynamic nature such as vocal
emotion.

Transfer Learning

Pan and Yang [2010] describes transfer learning as the transfer of knowledge be-
tween models and domains. This is implemented in many forms, such as taking
a pretrained network and inferring on a different dataset domain to the one it was
trained on [Bittner et al., 2022]; freezing a model’s weights and using its output
for downstream tasks [Qian et al., 2019]; or using the latent regressor loss regu-
larisation techniques discussed in Section 4.4.1.

Nercessian [2020] pretrained a singing voice identity conversion network on
a large amount of speech data, before fine-tuning it to learn specific details about
the voice in a musical context. They note that this kind of generalisation allows a
model to be used as a ‘Universal Background Model’, which means it can harness
any unlabelled voice-recorded data to improve its performance. Wiewel et al.
[2020] discuss how catastrophic forgetting (where a network can quickly forget
about features that are relevant across the global distributions of the data) can be
imposed when a network focuses on a new subset of data. In cases where there
is more than one dataset to be used for pretraining, the order in which a model
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learns from these datasets may affect its ability to model the final dataset, and is
therefore worth empirically investigating.

Auxiliary Classifiers

Attaching a classifier as an auxiliary output to a specific pathway of a main net-
work can facilitate disentanglement. It does this by ensuring that the information
that passes through such a pathway contains class-correlated features. Attaching
two classifiers to two parallel pathways would encourage the information to dis-
entangle itself so that each pathway contains information specifically filtered to
maximise each classifier’s performance. Luo et al. [2020b] used two classifiers
appended to parallel latent spaces in their VAE model to achieve attribute disen-
tanglement. Kameoka et al. [2020] used an auxiliary classifier in the latent space
to ensure their VAE encoded conditioning features as well as input features.

Confusion modules are classifiers that pass an inverted loss penalty to the main
network’s objective function. This encourages the network to avoid passing any
information to the confusion module that might help improve its classifications.
In other words, the confusion module ensures that class-correlated information
is removed from its pathway. Confusion modules have been used to improve
information disentanglement by Nachmani and Wolf [2019], Li et al. [2021b],
Deng et al. [2020], Mor et al. [2019].

Considering the ability of such auxiliary classifiers to rely on class-correlated
features, they could also be connected to the pathway of a NN to ensure that
the correct information is being transmitted (or is not in the case of confusion
modules) as expected between modules. Monitoring the performance of such
classifiers would therefore be an effective method for evaluating degrees of disen-
tanglement.

Gaussian Mixture Modelling

Vanilla VAE structures assume p(z) = N (0, I). However, the complexity of X
can often be oversimplified by operating on the assumption that it can be repre-
sented by a unimodal latent space. Multi-modal distributions in latent space are
therefore difficult to map to a single latent space. Gaussian Mixture Variational
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Autoencoders (GMVAEs) [Dilokthanakul et al., 2017] extend the prior to incor-
porate a mixture of Gaussians, each of which is linked to a particular aspect of
the observed data. This has been used to disentangle the data attributes in a hi-
erarchical manner, and can be facilitated using auxiliary classifiers to channel the
relevant information towards each distribution. Examples of its implementation
for the conversion of voice attributes can be found by Hsu et al. [2019], Luo et al.
[2020b]. This could be a promising mechanism to incorporate in SVAC systems
should multi-modal distributions exist that are too difficult to model.

4.4.4 Voice Conversion and Synthesis Systems

This subsection focuses specifically on how NN systems use analysis and disen-
tanglement methods to achieve voice conversion and synthesis tasks.

Although widely used across the vast majority of recent literature, the term
‘voice conversion’ is ambiguous, as it does not describe which attribute of the
voice is being converted. In order to make this clearer, terms that specify the
attribute of interest will be used. These include STC, voice identity conversion
(VIC), and singing VIC (SVIC).

VIC is the process of modifying a speaker’s acoustic vocal characteristics so
that their voice sounds like it belongs to another. The same definition applies to
SVIC, replacing ‘speaker’ with ‘singer’. However, consideration must be given to
the differences between speech and singing, as described in Section 4.1.3.

Considerations for Voice Conversion Tasks

Different models have different conversion capabilities, so it is often best to con-
sider this before deciding which model or architecture to use. The different types
of conversion include the following:

• one-to-one: Converting from a single class to only one other class

• one-to-many: Converting from a single class to a finite number of classes
(seen during training)

• one-to-any: Converting from a single class to any infinite number of classes
(classes not seen during training)
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• other permutations of the previous types, such as any-to-one, many-to-any
or any-to-any etc.

• interpolated conversions between target voices

• zero/one/few-shot conversion: Signifying the number of examples needed
before a network can convert the vocal attribute effectively.

When attempting VIC, it is also worth considering whether changing the pitch
range will improve the perception of naturalness and similarity of the converted
output audio, especially if the conversion is between genders. Qian et al. [2020a]
found that in their previous work [Qian et al., 2019], cross-gender conversions
led to inconsistencies in the F0 contours, which fluctuated unnaturally between
pitch ranges exclusive to either gender. This was solved by standardising the F0
contours and remapping them to the statistical values of the target speaker’s F0
contours during inference. For SVIC, Nercessian [2020] converted the features
of the spectral envelope, completely removing the information of F0 from the
conversion process. After conversion, the F0 contours were shifted to the octave
that best matched the range of the target singer and recombined with the other
voice attributes for resynthesis. However, such imposed octave shifts are naive to
the capabilities of the target singer, and do not consider how such a pitch range
would affect the timbre of the singer. This issue is more prominent in SVIC than
VIC, as pitch ranges standard deviations will generally be much larger for singers
than speakers. This entanglement between pitch and timbre in singing should be
addressed before imposing pitch-shifting.

To achieve vocal attribute conversion, a typical system consists of an encoder
that produces linguistic embeddings. Training an encoder to disentangle this from
an audio-based input can be achieved by conditioning it on attribute-specific labels
or embeddings from an auxiliary source, such as a pretrained/DSP-based encoder
or manual annotation. A decoder then combines these embeddings to resynthesise
the data in its voice-converted state. This system has been fitted to autoencoders,
VAEs, GANs, and other hybrid architectures, all of which are discussed in the
following subsections.
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Autoencoder Systems

Qian et al. [2019] proposed the conditioned autoencoder, AutoVC. This uses VIEs
as the conditioning factor for an autoencoder’s decoder, which originates from the
same speaker that produced the encoder’s input features. The bottleneck’s dimen-
sionality is calibrated manually so that the encoder can only store limited informa-
tion about its input data. As the decoder is conditioned on VIEs, the encoder can
learn to prioritise encoding information unrelated to voice identity during train-
ing, producing a disentangled representation of primarily linguistic content. After
training, the input features and conditioning VIEs can be generated from different
speakers, facilitating VIC. Jia et al. [2018] use the same concept for TTS, where
there is no need for bottleneck calibration since the input to the network contains
text, requiring no disentanglement from any voice attributes. The voice identity
information is provided by the embedding layer of an auxiliary encoder that was
pretrained to classify voice identity.

AutoVC’s bottleneck, however, contained leaked information relating to pitch
contours. This was addressed in [Qian et al., 2020a], where the issue was solved
by conditioning the decoder on extracted pitch contours as well. Qian et al.
[2020b] continued to add more conditioning terms to allow the network flexibility
in converting timbre, pitch, and rhythm.

While AutoVC provides an attractively simplistic solution to VIC, the manual
calibration of the bottleneck is a poorly constructed solution that can only be de-
termined after evaluating a previous calibration’s conversion capabilities. This is
especially time-consuming if relying on human evaluation and would benefit from
an automatic evaluation system and mechanism that is robust against information
that is leaked through the bottleneck.

Nercessian [2020] adapted AutoVC for the task of SVIC, by conditioning the
network on pitch contours and transposing them into a suitable register for con-
verted singing (omitting concerns about pitch shifting as addressed in Section
4.4.4), achievable through the implementation of the WORLD vocoder [Morise
et al., 2016]. They did not however, use a singer-pretrained encoder, leaving the
influence of this domain mismatch unexplored.

Li et al. [2021b] combine the work of Shen et al. [2018], Wang et al. [2017],
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and suggest that the approaches of Hsu et al. [2017], Luo et al. [2019] allow re-
dundant noise in datasets to worsen the generated audio quality. Their network
takes an audio input and disentangles it into F0 contour, VIE, and linguistic em-
beddings. An additional pathway is fed to an encoder that has the task of ex-
tracting residual information not captured by any of the first three disentangling
paths. This is called the mel encoder. Its input is a mel-spectrogram and its out-
puts are first regulated by a voice identity confusion module. The outputs are then
concatenated with the VIE and fed to a mel regression module, which is trained
to rebuild the mel-spectrogram. The effect of this is that the mel encoder’s out-
puts should equate to musical and acoustic information, such as intonation and
emotional features. This pathway was shown to improve the similarity and natu-
ralness of converted voices. This technique of using a confusion module to reduce
the amount of noise in pathways resulting from extensive disentanglement is a
promising mechanism that could be an essential tool when designing disentangle-
ment systems to expose unlabelled attribute information.

There is often a mirrored architecture between the encoder and decoder of an
autoencoder architecture. However, an additional module of CNN layers (some-
times called a spectrogram refinement module) appended to the decoder has been
shown to enhance the quality of spectral output representations [Lee et al., 2020,
Qian et al., 2019, Shen et al., 2018, Luo et al., 2020b].

VAE Systems

Kameoka et al. [2020] use a VAE to perform VIC, and use auxiliary classifier to
tackle mode collapse in the model. Mode collapse occurs when lower-dimensional
latent spaces z tend to provide weaker or noisier signals to a strong decoder, caus-
ing the decoder to generate mean representations of the data. VAEs typically
consist of a continuous latent space, the nature of which contributes to this prob-
lem, making it more complex. However, using a discrete latent space where only
a finite set of configurations relate to a given number of classes, decreases the
likelihood of mode collapse. As discussed in Section 4.4.3, Van den Oord et al.
[2017] introduced VQ to the VAE architecture for the task of VIC, and condi-
tioned the decoder with one-hot voice identity vectors to extract VIEs from the a
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learned lookup table. After training, VIC can be achieved by providing a target
voice’s VIE to the decoder while the source voice’s VIE is given to the encoder’s
input. However, shortcomings of the VQ-VAE include its limitation of being ca-
pable of only many-to-many VIC and its inability to interpolate between classes.
It is, however, easier to train because of the inherently less amount of variance re-
quired for modelling. As previously mentioned, this trade-off may be favourable
for voice attributes that are not typically dynamic, such as gender or potentially
the use of the vocal fry singing technique.

Hsu et al. [2019] use a GMVAE architecture, using Tacotron2 [Shen et al.,
2018] as the encoder base. They model two separate latent spaces using GMMs
- one for labelled and one for unlabelled attributes, incorporating two levels of
hierarchical latent variables, the first level being categorical, and the second level
being a continuous multivariate Gaussian variable. The GMVAE allowed them to
infer VIEs from noisy utterances of an unseen speaker and generate clean speech
that approximates the voice of that speaker. The unseen attributes can be con-
sidered as the residual variances apparent after removing conditioning labelled
attributes, which include noise level and speaker rate. Fine-grained control over
these attributes in the bottleneck was also possible, thanks to the hierarchical
breakdown of the input data’s components. The application of this research to
singing, where there may be more scope for expressivity, would be an exciting
extension of this research. Luo et al. [2020b] was able to achieve nonparallel,
many-to-many VIC and STC using a GMVAE, but the VAE’s ability to manipu-
late residual variances representing unlabelled attributes has yet to be applied to
singing. This domain may yield more dimensions for expression than in speech,
which could lead to more refined methods of singing voice manipulation.

Wu and Lee [2020] found that their use of VQ and instance normalisation
with an autoencoder allowed them to extract VIEs by subtracting post-VQ vectors
from pre-VQ vectors. VIC was achieved by using two trained encoders, one for
the source voice and one for the target voice. Their subsequent work [Wu et al.,
2020] restructured the VQ implementation in a U-net architecture, which was re-
ported to produce superior results to its predecessor. They also observed that the
more quantisation they apply, the better the reconstruction, but with less disen-
tanglement. This trade-off between audio quality and target-attribute similarity is
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commonly witnessed in VIC networks.

Other Architectures

Most of the GAN implementations explored in relation to voice synthesis are de-
vised for singing voice synthesis (SVS) or TTS, and so will be described in next
subsection. This subsection covers systems that utilise the autoencoder architec-
ture, and enhance its synthesis by appending a GAN to its output for high-fidelity
capabilities.

AlBadawy and Lyu [2020] use a VAE as the generator in a GAN system,
equivalent to a VAE-GAN, for VIC. They use one encoder to extract linguis-
tic content and a separate decoder is trained for every target singer. They use
the VAE’s reconstruction loss when the source and target speaker are the same,
and the GAN loss when evaluating how realistic a converted voice is. Cycle-
consistency and latent regressor losses are also used in this system. This system
however, seems inefficient, as the use of multiple decoders for each target speaker
is excessive, time consuming to create, and technically restricts each end-to-end
network to any-to-one conversions.

Lu et al. [2020] use a similar setup to Qian et al. [2019] with no mention of
bottleneck calibration, and uses one-hot identity and F0 vectors for conditioning.
As they tackle SVIC, they also condition this on F0. However, voices converted
between genders consistently lack the correct target F0 and sometimes intona-
tion. Like AlBadawy and Lyu [2020], the appendage of a discriminator, with a
Wasserstein loss that makes it a VAW-GAN, allows the autoencoder to further
improve its output, although there is no mechanism to guarantee that the F0 has
been appropriately transposed to the target singer’s range.

Zhou et al. [2021] use the same VAW-GAN architectural setup as in [Hsu
et al., 2017], and conduct voice emotion conversion. They use descriptive emo-
tional embeddings instead of one-shot vectors, allowing it to work with unseen
voices. The results, however, sound more like VIC than emotion conversion, or at
least seems to rely heavily on the conversion of pitch range and timbre to convert
emotion. Researchers should be cautious when asking participants to compare the
audio of a converted voice to a reference voice based on emotional similarity, as
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this is an unintuitive task that could lead towards choices heavily influenced by
confounding variables in the stimuli.

Caillon and Esling [2021] proposed the Realtime Audio Variational autoEn-
coder (RAVE). Due to its specific subnetwork architectures, it is specifically de-
signed to take audio waveforms as input. The RAVE architecture involves a stan-
dard VAE-style training strategy as a first stage. After acceptable reconstructions
are attained, an adversarial network is applied to the VAE’s output. The VAE’s
decoder and discriminator are then trained to achieve a finely tuned generator net-
work, mitigating the effect of issues highlighted by Kameoka et al. [2020] about
mode collapse and oversmoothed VAE output.

DiffSVC [Liu et al., 2021b] is a diffusion model that takes a mel-spectrogram
as its input, and uses auxiliary input channels for linguistic, F0 and loudness fea-
tures to control the attributes of the synthesised voice. The model is trained using
a dataset of one singer. After being sufficiently trained, DiffSVC has encoded
the timbre of the singer on which it was trained and uses the auxiliary inputs to
control the content. However, features not accounted that would also be encoded
include attributes such as emotion, accent, singing technique, and other confound-
ing variables that may affect realistic SVIC. One particular draw back about this
type of model is its restricted capability of exclusively performing any-to-one con-
versions.

TTS and SVS Systems

This section covers ML systems that take input representations such as text/lyrics
and pitch (usually leaving timbre as the remaining attribute to be encoded by the
model itself) and produce spectral envelopes, spectrograms, or waveforms - the
latter of which often require separately trained NN modules, which are covered
in Section 4.4.5. While these models address a problem outside the scope of
voice conversion, they do use analysis, disentanglement, conditioning, and audio
synthesis techniques that are commonplace in voice conversion networks.

Bonada et al. [2016] used a unit selection model with two databases to pro-
duce expressive singing. The first of these consisted only of expressive vowels to
assist their system in generating expressive songs. This database featured a singer
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performing various melodies with different vowels for each consecutive note in
an expressive manner (similar to the data produced in [Scherer et al., 2017]). A
second database for timbre consists of phonemes being spoken in monotonic fash-
ion, progressing at one syllable per beat. Using these datasets, expressive vowel
performance is first generated and used as input control to the proceeding syn-
thesis step which uses the monotonic phoneme dataset. The Viterbi algorithm is
used to apply unit selection-based costs to a string of samples from the respective
databases for concatenation.

Blaauw and Bonada [2018] proposed the Neural Parametric Singing Synthe-
siser (NPSS) - an SVS model that produces spectral envelopes of singing. The
model is trained on pitch, lyrics, and phonetic timing data, which are also used
for control during the synthesis phase. WORLD features originating from one
singer’s recordings were used as input features to the model. The SVS system
consists of a phonetic timing model, a pitch model, and a timbre model, each of
which is conditioned by the previous model. The latter is the main module of
interest, which houses a WaveNet architecture. It takes WORLD features as in-
put during training and uses F0 and linguistic features during inference. NPSS
is large and complex in how information flows through it, but demonstrates the
amount of engineering required to produce realistic versions of singer recordings
from a parametric NN. NPSS was later improved upon by Zhang et al. [2021],
where a new architecture involving a Wasserstein GAN was 219 times faster in
computational speed, while maintaining a similar performance.

Chandna et al. [2019] implement a GAN for SVS, using an autoencoder for the
generator. In addition to the GAN’s Wasserstein loss, a reconstruction loss is also
used during training. The autoencoder has skip connections between each layer
of the encoder and decoder, similar to the U-net architecture [Stoller et al., 2018,
Ronneberger et al., 2015]. It is conditioned by linguistic and VIE information
in the form of one-hot vectors, and continuous F0 data. It is also conditioned
on WORLD vocoder features. The network does not outperform NPSS, but is
comparable. However, when the conditional features stem from a singer that is of
a different gender to that of the VIE input, many phonemes are poorly articulated.
One way to improve upon this would be to include an auxiliary phonetic classifier
in the networks objective function.
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Lee et al. [2020] proposed a GAN, where the generator consisted of pitch and
formant mask encoders conditioned on VIEs, the outputs of which were multiplied
together to get a mel-spectrogram. A spectrogram refinement module up-scales
this to an uncompressed linear spectrogram, as would be derived by taking the
STFT of the original audio. The GAN was trained using an objective function
containing the following components: reconstruction loss of the mel-spectrogram,
reconstruction loss of the linear spectrogram, and discriminator loss. This is one
of the few examples that has directly dealt with the fact that both pronunciation
and tuning precision are conditional on the singer’s style and, by extension, their
identity.

Bonada and Blaauw [2021] trained an autoencoder on multiple source singers
and a single target singer to perform TTS using semi-supervised training. They
trained two encoders: the first, EA, trained on spectrograms, while the other, EL,
was trained on phonetic encodings. Neither input’s durations are more than sev-
eral hundred milliseconds. To ensure the encoders produce similar embeddings,
a stochastic mechanism randomly swaps the pathways between either encoder’s
output and the bottleneck (L1 loss between both outputs is used for training). The
bottleneck encodings are concatenated with F0 contours and VIEs, and then sent
to a decoder architecture to produce a spectrogram output, from which a recon-
struction loss is calculated. After training the autoencoder, the EA output is used
to train a new instance of the decoder that is specific to a target voice. After
this phase of training, EL can then be used in conjunction with the newly trained
target-singer-specific decoder to synthesise spectrograms from phonetic and F0
content. Like AlBadawy and Lyu [2020], this solution to semi-supervised TTS
requires a separately trained encoder for every target speaker, facilitating only
any-to-one conversions.

DSP techniques have in recent years entered the world of NNs, popularised
by the introduction of the differentiable DSP (DDSP) autoencoder [Engel et al.,
2019]. This model can be trained with a simple reconstruction loss, bypassing the
challenges of adversarial training or autoregressive predictions, which frequently
come with the territory of audio synthesis. From this, the network can learn the
parameters for the DSP components that determine the output audio waveform.
Since the DDSP parameters can be used in a modular fashion, the DDSP autoen-
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coder can take component configurations from one generation, superimpose them
on another, remove them entirely, or achieve timbral transfer by using a model
trained on one domain to infer from another.

This has paved the way for voice synthesisers such as SawSing [Wu et al.,
2022], which takes inspiration from DDSP’s modular nature, using NNs to gener-
ate filtering coefficients for its DSP components: a harmonic subtractive synthe-
siser which filters a sawtooth waveform (whose acoustic properties enforce phase
continuity between partials); and a noise subtractive synthesiser which filters uni-
form noise. The synthesised results are measured to be better than or comparable
to its competitors, with audibly fewer artefacts. Nercessian [2021] replace the
decoder of their previous architecture [Nercessian, 2020] with a Vocoder module
that contains convolution and dense layers connecting to a harmonic oscillator and
noise filter DDSP component. DDSP has been shown to perform approximately
20% worse than WaveRNN [Kalchbrenner et al., 2018]. As a trade-off, it offers a
40% reduction in its number of parameters, which may be suitable depending on
the demands of the user.

DiffSinger [Liu et al., 2022] is an SVS diffusion model that converts noise into
mel-spectrograms, while taking music score information as conditioning factors.
It is able to overcome the over-smoothing outputs and fragile training equilibrium
inherent in other generative systems such as GANs, but the nature of its architec-
ture means that it can only utilise the voice of a single singer. DiffVoice [Liu et al.,
2023] combines elements from a VAE, GAN, and diffusion model to produce a
TTS system. The authors encode training data to a VAE’s latent space (improved
upon by adversarial training) and model the temporal length and latent variables
with the diffusion architecture. The additional use of a VIE network as a condi-
tioning factor allows DiffVoice to achieve one-shot voice conversions that produce
consistently high-fidelity audio. However, its sampling speed is considerably slow
during inference.

4.4.5 Audio Synthesis

Before the field of audio synthesis was saturated with NN applications, there were
a number of alternative synthesis methods that converted acoustic features into
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waveform audio. In the field of voice synthesis, this included concatenative syn-
thesis, Linear Predictive Coding (LPC), and vocoders. The following subsection
describes several seminal voice synthesis methods that have been continually used
by researchers to synthesise waveforms from acoustic features - an indispensable
step used for illustrative purposes by most researchers of voice conversion that do
not use end-to-end models.

Digital Signal Processing

The Griffin-Lim algorithm [Griffin and Lim, 1983] is a deterministic method of
estimating waveforms based on magnitude spectrograms where there is no phase
information retained. The generated audio usually possesses many artefacts, since
half of the data (the phase) of the original waveform is missing in a magnitude-
only spectrogram. Kumar et al. [2019] had reported in their experiments, that
when evaluated in listening tests, audio synthesised by the Griffin-Lim algorithm
achieved a MOS of 1.72, while the corresponding original recordings achieved an
MOS of 4.19. Considering the number of higher-quality audio synthesis options
available, Griffin-Lim is best left for situations where one needs a quick wave-
form conversion for demonstrative purposes, or does not have access to an ML
framework.

GANs

The most common type of architecture used for audio synthesis has been the GAN.
MelGAN [Kumar et al., 2019] was proposed 3 years after WaveNet (described
in Section 3.2.1), and while it did not perform as well for subjective perceptual
evaluations, it was comparable with WaveNet, with one sixth the amount of pa-
rameters and 100s to 1000s of times the speed on CPU and GPU, respectively.
MelGAN does not take noise as input to its generator, which is fully convolu-
tional, but a mel-spectrogram instead. It uses a multiscale discriminator (MSD)
architecture, which downsamples the audio for different rates of analysis. It is
non-autoregressive, and could replace any autoregressive model that synthesises
waveforms.

Parallel WaveGAN [Yamamoto et al., 2020] (PWG) significantly outperformed
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WaveNet in listening tests, achieving an MOS of 4.16 over WaveNet’s MOS of
3.33. PWG also trains 2.5 times faster than WaveNet, with nearly a third of the
amount of parameters. PWG’s generator uses a WaveNet, using non-causal con-
volutions, noise as input during training, is non-autoregressive at both training and
inference time, and uses multi-resolution STFT losses as well as adversarial loss.

Shortly after, Kong et al. [2020a] proposed HiFi-GAN. Its generator is sim-
ilar to MelGAN’s, and uses multi-receptive field fusion to analyse its output for
patterns at multiple scales. Three sub-discriminators operate on different chunks
of the audio signal. HiFiGAN also uses the MSD architecture from Kumar et al.
[2019] to consecutively analyse the audio. It outperformed all publicly available
models at the time (but was not compared to PWG), scoring an MOS of 4.36 while
MelGAN scored 3.79.

Diffusion Models

DiffWave [Kong et al., 2020b] is a diffusion model that can produce high-fidelity
audio while being both unconditioned or conditioned, on either mel-spectrograms
or one-hot VIEs. For each of these tasks, its results are significantly better or com-
parable to its competitors. Takahashi et al. [2023] found the PriorGrad diffusion
model [Lee et al., 2022], to be suitable for speech but not for singing because of
the wider range of expression across multiple dimensions. To better model the
singing voice, they used three diffusion layers, each of which operated at different
sampling rates. The higher sampling rates are conditioned on the output of the
lower sampling models. This provides a hierarchical model that produced SOTA
synthesis results, outperforming PWG and PriorGrad without adding computa-
tional cost.
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Chapter 5

Perceptual Spaces for the Singing
Voice
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5.1 Introduction

The subsequent sections provide a comprehensive account of the experiment de-
tailed in the author’s publication [O’Connor et al., 2020]. However, since this
publication, considerable revisions have been made to the data analysis section in
order to make the research more understandable, justify the choice of statistical
tests, and exchange less relevant results for more relevant and interesting ones.
The experiment entailed the collection of data through listening studies, wherein
participants were exposed to a repertoire of vocalisations and tasked with rating
their dissimilarities. The dissimilarity ratings were then subjected to clustering
and statistical analysis to ascertain the number of ways in which participants per-
ceive vocalisations under different gender and pitch register conditions. Further-
more, the study sought to evaluate the alignment between participants’ percep-
tions and the designated ground truth labels for different singing techniques. The
data then underwent dimensionality reduction to yield singular points represent-
ing each technique, projected onto a two-dimensional plane to facilitate a visual
understanding of participants’ perceptual spaces. This chapter culminates in a dis-
cussion encompassing the notable findings concerning the perception of singing
techniques and potential avenues for further improvement in research methodolo-
gies.

This research aims to fill a significant gap in the existing literature pertaining
to timbral perception of singing voices. Limited research has delved into the tim-
bral spaces of human voices, particularly in the context of singing techniques. To
address this gap, the present study endeavours to visually represent and quantita-
tively assess the perceptual dissimilarities among various singing techniques. A
critical examination of the validity of the prevailing terminology for categorising
singing techniques is needed, as the extent to which distinct techniques possess
perceptual salience warranting their classification as separate entities is not well
documented. The existing ontology for singing techniques however, is justified
in that it appropriately categorises vocal utterances in a singing context based on
the mechanical processes of the relevant vocal organs [Sundberg, 1977, Blomgren
et al., 1998]. It has also been noted that terminologies have been convoluted over
time by diverging interests between artistic and scientific communities [Garcı́a-
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López and Gavilán Bouzas, 2010, Gerratt and Kreiman, 2001].
This investigation also explores the question of whether listeners coming from

diverse musical and audio backgrounds perceive these techniques in divergent
ways. Previous work [McAdams et al., 1995, Serafini, 1993] reported significant
differences between participants of musical backgrounds, while Carterette and
Miller [1974], Wedin and Goude [1972] reported none. Kreiman et al. [1993]
and Labuschagne and Ciocca [2016] have highlighted the significant amount of
variance present across listening studies, and Proutskova [2019] has shown that
even experts in vocal physiology can be in considerable disagreement about vocal
mechanics or technique classification when listening to vocal recordings.

Finally, a dataset of perceptual dissimilarity ratings would also prove useful to
future research in generative networks for the singing voice. Esling et al. [2018]
have shown that utilising timbral spaces as a regularisation component in VAE
training has led to latent spaces that are more interpretive, offer more control, and
enhance the quality of synthesised output. It was anticipated that the perceptual
ratings collected in this experiment could be used in a similar way if the results
were satisfactory.
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5.2 Method

The aim of this experiment is to explore and present the structure of perceptual
space for a given number of singing techniques. Volunteering participants were
asked to listen to every pair of audio clips in a given set of stimuli and rate how
dissimilar they sound from one another. The following five singing techniques
as labelled in the VocalSet dataset [Wilkins et al., 2018] were used: vocal fry,
breathiness, neutral, belt, and vibrato. These were cherry-picked from VocalSet’s
selection of 17 singing techniques, as they are the most recognisable and com-
monly used vocalisation types in Western popular music [Kayes, 2015].

Once a sufficient number of participants had submitted dissimilarity ratings,
the data was then subjected to a combination of clustering and statistical analy-
sis. Multidimensional scaling (MDS) was used to visualise how these techniques
relate to one another in perceptual space on a two-dimensional plane. The pro-
ceeding subsections discuss the stimuli, listening study and analysis methods in
greater detail.

5.2.1 Stimuli

Experimental Requirements

The term ‘listening session’ is used here to describe an online listening study ses-
sion which presents audio clips for participants to rate. Each session is randomly
assigned to a participant and contains recordings of a single singer. The total
number of required ratings per listening session is determined by m, the number
of stimuli available for pairwise distance evaluation. The calculation for the total
number of independent pairwise distances C, is:

C =
m · (m− 1)

2
. (5.1)

As we are including self-similarity comparisons for evaluation in this experi-
ment, we add the value of m to this formula, giving us the final equation as shown
in Eq. 5.2 [Cameron, 1994, McAdams et al., 1995]. As each singing technique
should be featured evenly in these listening sessions, the number of examples per
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technique n, would be the value of m divided by the number of classes, which is
5.

C =
m · (m+ 1)

2
(5.2)

While a large value for the total number of dissimilarity ratings C would pro-
vide more robust statistical measurements, a trade-off between C and how much
listening fatigue would be experienced by participants was considered. It was
empirically calculated with prior pilot studies, that it would take approximately
one minute to produce five pairwise distance ratings. 25 minutes of listening was
considered a reasonable amount of time to expect participants to remain alert and
attentive to detail. Considering this amount of time, the average speed of partici-
pants, and the anticipated interest from potential participants, three examples per
class was deemed an appropriate choice. This leads to a total of 15 (5× 3) unique
stimuli and 120 ratings per listening session. These decisions were influenced by
similar past work on listening studies [McAdams et al., 1995, Grey, 1977].

However, due to an unfortunate error in the design of the listening study, dis-
similarity ratings involving 1 of the 15 stimuli was not recorded. This reduced the
total stimuli to a size of 14 examples and 105 pairwise distance ratings per listen-
ing session. An example of a dissimilarity matrix generated from a participant’s
ratings is shown in Figure 5.1.

Figure 5.2 shows the hierarchical structure of the stimuli for each listening
session. Three male and three female singers were randomly selected from Vo-
calSet. Each listening session contains two versions of a singer’s vocalisations:
high or low-register singing. Each of these sessions contains 3 examples of 5
singing techniques. There are twelve sessions in total that participants could be
assigned to.

VocalSet

At the time of this study, there were several datasets available to the public that
contain annotations for different singing techniques, such as the Phonation Modes
Dataset [Proutskova et al., 2013], The Singing Voice Dataset [Black et al., 2014],
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Figure 5.1: Example of a dissimilarity matrix generated from participants’ pair-
wise ratings. Shortened versions of the labels straight, belt, breathy, fry and vi-
brato are featured along the axes. Values closer to 1 indicate very strong dissimi-
larity, while values closer to 0 indicate strong similarity. In this case, data relating
to one of three straight singing audio clips is missing.
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Figure 5.2: Hierarchical diagram of sampled stimuli. Colours represent different
levels of conditional groups, while ellipses signify that the contents of its con-
dition block imitate the contents of the block representing the same hierarchical
condition group on the far left.

VocalSet [Wilkins et al., 2018] and the Vocobox dataset1. Of these candidates,
VocalSet was chosen as the source of stimuli, as it contains 20 singers of diverse
ranges and ages, 10.1 hours of recordings, claims to be unbiased toward any genre,
contains strong annotations and focuses on a range of vocal techniques. Wilkins
et al. [2018] have also expressed that their dataset was designed especially for
vocal technique classification and style transfer tasks. The singers perform arpeg-
gios, scales, sustained tones, and short musical excerpts using different vowels
and vocal techniques.

From VocalSet, only audio clips of the five aforementioned singing techniques
were considered. Audio clips were randomly selected from this subset, restricted
by the required conditions for each listening session. This subset initially con-
tained an unbalanced number of classes, so examples were randomly deleted from
the larger class sets until the subset was class-balanced. Recordings labelled as
excerpts were also omitted, as these were disproportionately long compared to all
other examples, and only existed for the vibrato class.

1www.github.com/vocobox/human-voice-dataset
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5.2.2 Sampling from VocalSet

As 15 examples satisfying singer, gender, register and technique conditions had
to be selected from the VocalSet subset, a random sampling process with imposed
restrictions was required. One second of audio per example was considered suit-
able for this study, which allows time-varying features in the voice to become
evident to participants, reflecting considerations in previous works such as that
of McAdams et al. [1995]. The next section describes how audio clips were
randomly selected for auditioning before being added to the listening sessions’
stimuli pool.

Register-Matching

A register-matching algorithm was applied in order to determine whether an audio
clip would satisfy the singing register condition (low or high) of a given listening
session. To do this, reference pitches that are close to the lower and upper-bound
limitations of a singer’s range (to maximise the diversity between low and high
registers without unduly restraining the amount of potential candidate content)
must be calculated. They are therefore determined by analysing the pitches of
each singer’s entire repertoire prior to the random sampling process.

To do this, a series of continuous pitch values were generated for all audio files
in the VocalSet subset using Sonic Annotator2 [Cannam et al., 2010] in conjunc-
tion with the pYIN algorithm [Mauch and Dixon, 2014] plugin, which possesses
specified parameters to mimic the output of the annotation software, Tony3. A me-
dian filter window of 77 frames (approximately 0.45s in length) was empirically
chosen to adequately smooth out the resulting pitch contours.

Next, global means and standard deviations were computed across all record-
ings for each singer. Any sections of pitch contours that contained zero values
were excluded from the statistical calculations. These zero values indicate un-
voiced, excessively noisy, or silent segments that do not provide meaningful pitch
information. Subsequently, the pitch references for the low and high registers

2https://code.soundsoftware.ac.uk/projects/sonic-annotator
3https://code.soundsoftware.ac.uk/projects/tony/wiki/PYIN_

Parameters
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were determined by subtracting or adding one standard deviation to the global
mean for each singer.

During the random sampling process, the register-matching algorithm com-
putes a mean pitch value from the sampled candidate audio clip in a similar fash-
ion. It then compares this local mean value to reference pitches for that singer’s
low/high register. However, if more than 25% of the pitch contour contains con-
secutive zero values, the audio clip is deemed unsuitable and the random sampling
process is restarted.

It was hypothesised that the task of rating dissimilarity w.r.t. technique would
be too difficult if vocalisations possessed a wide range of pitches within a listening
session. Conversely, restricting pitches to be precisely the same had proven to
be too restrictive for the sampling process to select a sufficiently random set of
stimuli satisfying all conditions simultaneously. Therefore, a tolerance of two
semitones in pitch variance was applied, as it allows for an adequately diverse
representation of vocalisations without applying significantly diverse changes in
timbre. If a sampled audio clip yielded a mean pitch value within two semitones of
the relevant register’s reference pitch, it passed this stage of the sampling process.

The pitch contours generated for many instances of vocal fry techniques, how-
ever, were frequently very poor. These vocalisations often featured a significant
amount of aperiodicity, where the fundamental frequency is difficult to determine,
if it indeed exists at all. The technique can also produce sub-harmonic frequencies
a number of octaves below all other singer vocalisations, often making it impos-
sible to obtain a meaningful local mean pitch value that is close to a central pitch.
If sampled audio clips cannot satisfy the listening session’s register condition re-
quirements after 20 iterations of randomly sampling from a given singer, then the
pitch-matching requirement is bypassed.

Stimuli Post-Processing

There was a large amount of variance in perceived volumes between singers and
techniques. Extracted audio clips were therefore normalised to make the com-
parative task easier for participants, which is a common step in preparing stimuli
for listening studies [McAdams et al., 1992, 1995]. They were also converted to
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128kps mp3 format using Pydub4, which was assessed to be a suitable quality for
the task.

5.2.3 Listening Study Setup

As this research was conducted in late Spring of 2020, COVID restrictions made
it impossible for listening studies to be conducted in person. In response to this,
an online version was created that could instead be done remotely. The Web
Audio Evaluation Toolkit (WAET) [Jillings et al., 2015] was used to design the
listening study interface. This was chosen over other listening study interface
designs due to its flexibility in interface development and currently active support
from C4DM alumni creators. The first web pages of the listening study covered
a written introduction, ethical documentation, and instructions to participants on
how to interact with the interface. The WAET API collected relevant personal
information from the participants relating to their listening environment, musical
training, perceptual abilities, and individual profile data such as age and gender
(although neither of these were used in the analysis).

The interface consisted of 20 web pages. Each page presented one reference
audio clip and up to 8 comparative audio clips, each of which was accompanied
by its own slider as seen in Figure 5.3. Participants were instructed to move the
sliders to a position that represented how dissimilar each comparative audio clip
was to the reference audio. From the lowest to the highest value, the sliders were
annotated with the following evenly spaced text prompts: ‘Extremely different’,
‘different’, ‘similar’ and ‘extremely similar’. These prompts were placed to as-
sist participants by indicating the sliders’ polarity, encouraging consistency, and
implying some linearity across the sliding space.

5.2.4 Participants

A call for participants was sent out via mailing lists within QMUL and among
the international MIR-related community of ISMIR, to which 61 volunteers re-
sponded. The minimum requirement for the study was to have an interest in mu-

4https://github.com/jiaaro/pydub
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Figure 5.3: View of interface used by participants for rating dissimilarities be-
tween a single reference recording and multiple comparative recordings.

sic, which allowed for a wide range of participants from different levels of mu-
sical background to contribute. Previous literature (see Section 4.1.2) on general
timbral mapping has reported diverse findings regarding the differences between
participants of various musical backgrounds. How this affects the perception of
vocal techniques remains to be determined.

Participant Questionnaire and Instructions

The following list presents a set of questions given to participants regarding their
age, gender, listening environment and musical abilities [McAdams et al., 1995,
1992]. Square brackets after each question containing a list indicate that the ques-
tion is multiple choice. Questions 1-5 were asked before the practice round. Ques-
tion 6 was asked after the practice round, and Question 7 was asked at the end of
the study:

1. Please indicate what listening equipment you intend to use for this experi-
ment (Headphones are preferable). If you wish to change your setup, please
do so before continuing and refresh this page [Inbuilt speakers, external
speaker, ear/headphones]

2. How would you assess your current listening environment on a scale of 1
(very noisy) to 5 (very quiet)?
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3. Please provide your age in the space below.

4. Please provide your gender identity in the space below.

5. What instrument are you best at playing?

6. Having just done the practice round, do you think you have any hearing
impairments that would affect your ability to perform similar tasks? [Yes,
No]

7. Do you have any other comments regarding your evaluations or any other
aspect of the study?

It also contained a set of questions from the ‘Perceptual Ability’ subsection of
the GOLD-MSI questionnaire [Müllensiefen et al., 2014], which were developed
to provide information regarding the participants’ musically relevant perceptive
skills. These are presented in Appendix A. As a precautionary start to the study,
participants were first asked to set their volume to the minimum value, and then
click ‘play’ for a test audio clip that featured a speaker. Participants were asked
to fade up the volume until the speaker roughly sounded as if they were one me-
ter away, which ensured an audible and safe listening volume for the rest of the
study. They were then given instructions regarding the main task, which involved
listening to pairs of vocalisations and rating their dissimilarities. The description
of how they should conceptualise and rate dissimilarity is quoted below:

We are interested in measuring how differently listeners perceive the sounds

of a singer’s voice when utilising various singing techniques. In this experi-

ment, you will be comparing multiple unedited and unprocessed recordings

of one individual singer. Your task is to rate how similar or different the

singer’s sustained vocalisations sound to you, due to different singing tech-

niques. The challenge, therefore, is to rate vocal similarities IRRESPEC-

TIVE of the singer’s changes in pitch (notes) and utterance (vowels) between

recordings.

At the end of the experiment, participants were invited to give open feedback
regarding their experience of the experiment and the techniques they used for
rating dissimilarity.
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Data Reliability Management

Before participants began the recorded section of the study, they were first in-
troduced to the format of the experiment via 3 ‘practice rounds’ where their re-
sponses to the given task were not recorded. This allowed them to become familiar
with the interface and format, with the added benefit of exposing them to a wide
range of vocalisations. To counteract any bias the order of the tasks might cause,
they were presented in a randomised order, and vocalisations from the practice
rounds came from singers who did not feature in the recorded section of the same
listening study. To minimise the participants’ fatigue, they were prompted to take
short breaks twice during the study (another frequently used technique in listening
studies).

Pilot Study Feedback

Participant feedback during pilot study sessions led to several changes in the pub-
licised version which are as follows: the practice rounds were increased from
one to two pages; the task description was refined to inform participants that per-
ceptual differences in audio production, audio quality, and the singer’s musical
abilities could be ignored when rating dissimilarity. It was also made clear that
none of the voices were synthesised and that all vocalisations in each listening
session were performed by a single singer.

5.2.5 Data Encoding

The questionnaire that participants answered was designed in such a way that
the answers to multiple-choice questions could be ranked. This section describes
several methods used to combine, interpret and convert participants’ answers so
that they may be used in automatic processing and statistical analysis.

Potential answers to Question 1 regarding participants’ listening equipment
were ranked in the order they were shown from 1-3. The answers to Question 2
about their listening environment were ranked 1-5. The sum of these two answers
provides an overall listening potential score ranging from 2-8.

Questions requiring written answers were converted by the author to integers
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representing either ordinal or categorical data to facilitate subsequent analysis.
Participants were asked at the end of the study in Question 7, to optionally pro-
vide comments regarding their ratings or the study itself. It was found that during
the pilot study, this type of question would coax participants to disclaim any un-
certainties they had about doing the task correctly. This answer was converted by
the author to ordinal categories ranging from 0 to 4, reflecting how well the par-
ticipant understood their task. As part of the screening process, participants who
scored 0 were removed from the dataset.

The GOLD MSI’s perceptual ability questions allowed participants to answer
on a 7-point Likert scale ranging from ‘strongly disagree’ to ‘strongly agree’.
These were summed up in accordance with the GOLD-MSI subscale scoring tem-
plate to determine each participant’s perceptual ability score.

An additional method for assessing musical aptitude for this listening study
was derived from participants’ answers to Question 5 where they were asked what
instrument they played, if any. From this, ordinal category values were assigned
as 0, 1, or 2, depending on whether the participant was a non-musician, musician
or vocalist.

Finally, a post-hoc evaluation of participant feedback to Question 6 provided
some insight regarding how well they understood the task, or what they found
challenging due to particular interface design features. The researcher interpreted
these answers and assigned an ordinal score from 0-3. This reflected the partic-
ipants self-proclaimed understanding of the task and is termed the task compre-

hension score. An additional category ‘4’ was reserved for participants who chose
not to answer.

5.2.6 Participant and Data Screening

Kreiman et al. [1993], Labuschagne and Ciocca [2016] have highlighted a number
of issues that relate to poor perceptual ratings, such as listeners’ diverse back-
grounds, biases, poor task descriptions, task-listener interactions, and random
errors. To counteract these potential pitfalls, participants’ submitted data was
screened in several ways to ensure that the dataset used for analysis was reason-
ably reliable. The result of these screening processes was evaluated by manually
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examining the dissimilarity matrices generated from the participants’ data (see
Figure 5.1), which provides some visual indication of how much structure and
noise is likely in a participant’s submitted ratings. All data screening took place
after the listening studies had finished, except in cases where participants reported
hearing impairments that might affect their ability to perform similar tasks, or
yielded a listening potential score less than 3, their listening study was terminated
with an explanation, as they were considered ineligible.

If participants understood the task properly, their generated dissimilarity ma-
trices would have a vector of zeros along the diagonal axis. This would reflect
their assertion that there is no difference in singing technique between two audio
clips of the same recording. If participants did not understand the task or provided
unreliable data, the diagonal axis would possess a considerable amount of noise.
Due to the design of the listening study’s interface, which facilitates multiple com-
parative audio clips to rate against one reference clip per page, it is reasonable for
participants to make at least one mistake in identifying identical vocal techniques
(same audio clips). It is also reasonable to consider that participants may not be
perfectly accurate in dragging the sliders all the way to ‘exactly’ zero. We there-
fore omit participants who have more than 2 ratings for self-audio comparisons
that are more than 0.1, and refer to this metric as poor identity recognition.

During a listening session, participants were unknowingly subjected to two
repeated pages randomly hidden among the unique pages. Participants who were
careless or lacked attention were expected to be unlikely to accurately repeat
their ratings between repeated pages. Mehrabi [2018] used Spearman’s rank-type
correlation between repeated tasks to detect unreliable data, while Gerratt and
Kreiman [2001] calculated percentage errors for repeated ratings deviating from
more than a single point on a Likert scale. Neither of these approaches seemed
suitable in this context due to the continuous nature of the rating interface. Instead,
an RMSE value was calculated between ratings for repeated tasks. Participants’
data were removed from the dataset if their corresponding RMSE value was above
a given threshold value. During the pilot studies, we asked some participants to
perform careless and rushed ratings, while others were asked to provide cautious
and considered ratings. Examining this data allowed us to determine the RMSE
threshold that separates good from poor raters to be 0.4. Participants’ generated
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RMSE values above this threshold will be intuitively referred to as the inconsis-

tency score.
To visualise how much inter-participant agreement existed in the reduced dataset,

a correlation matrix was generated between each dissimilarity matrix of all partic-
ipants. This step was proposed by McAdams et al. [1995] in order to find outliers,
or participants who had a suspiciously different style of rating to others. How-
ever, in order to compare dissimilarity matrices, we must ensure that the order
and number of classes per participant matrix are the same. As an error with data
collection led to omitting ratings relating to one random audio clip per session,
dissimilarity matrices did not contain information in a uniform manner. To make
up for this discrepancy, a dummy row and column were added to each matrix
in the place where the randomly omitted ratings should be. Each cell in these
added vectors contained an average of the participant’s ratings across their listen-
ing session. This ensured that ratings would be uniformly presented across all
participants’ dissimilarity matrices without inducing a bias.

5.2.7 Analysis

Clustering

All data that passed the screening tests were subjected to a combination of clus-
tering analysis techniques, as in the work of McAdams et al. [1995], Gerratt and
Kreiman [2001], Grey [1977] to deduce whether the existing labels of the stimuli
were appropriate, as well as how different groups of participants perceived the
stimuli in relation to their ground truth labels. Clustering algorithms were fed the
dissimilarity matrices of each participant, where each row can be thought of as
a data point representation, and each column as a feature vector. Clusters were
first predicted using two methods for solutions {k ∈ Z | 2 ≤ k ≤ 14}: the
agglomerative clustering using Ward linkage; and the K-means algorithm.

To estimate the accuracy of participant’s perceptual space w.r.t. the ground
truth, sklearn’s adjusted rand score metric was used, which provides a
measure of similarity between the groups of predicted and ground truth labels.
This is calculated by considering all pairs of samples and counting all pairs that
are assigned to the same or different clusters between the ground truth and pre-
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dicted cluster assignments. This provides a list of comparisons that are true posi-
tives (TP), true negatives (TN), false positives (FP) and false negatives (FN). The
following formula produces the Rand Index (RI) [Rand, 1971]

TP + TN

TP + TN+ FP + FN
. (5.3)

Finally, the Adjusted Rand Index (ARI) is computed using the following for-
mula in order to consider chance level similarities between clustering solutions,
calculated as

ARI =
RI− ExpectedRI

max(RI)− ExpectedRI
(5.4)

where Expected RI is the expected RI if clustering was randomised.
Cluster cohesion (how similar data points to one another within a cluster) is

measured by getting the mean intra-cluster distance, while cluster separation (how
far data points are to other clusters) is measured by getting the mean nearest-
cluster distance between clusters. The following equation calculates each of these
measurements w.r.t. individual samples, and combines them to produce a silhou-
ette score. This is computed as

(b− a)/max(a, b), (5.5)

where a represents the distance between a sample and other samples of the same
cluster (cohesion), and b represents the distance between a sample and the nearest
cluster it is not a part of (separation). The silhouette score for the entire solution is
the average of these scores across each sample. Scores of 0 and 1 imply clustering
solutions that heavily overlap or separate, respectively, and a negative score im-
plies incorrect clustering where a data point is not assigned to its nearest cluster.
The distribution of these metrics for different numbers of cluster solutions k, were
compared across all participants, as well as between groups of participants that
were subjected to a different register (low/high) or gender (male/female) condi-
tion.
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Statistical Tests

Participant features are the answers participants provided to the questionnaire that
were converted to interval or ordinal data, which reflect the following: hearing im-
pairments, listening potential, musician category, MSI score, task comprehension,
poor identity recognition, and inconsistency. Participants’ silhouette and accuracy
scores were also included in the feature sets. The combination of these features
leads to a collection of ordinal and continuous data, and so Spearman’s and Pear-
son’s rank correlation was used to test for the strength of monotonic relationships
between them.

Kruskal-Wallis and Mann-Whitney U tests were used to determine whether
the imposed conditions of a listening session led towards better or worse clus-
ter silhouette or accuracy scores for values of k that provided the best clustering
scores on the majority of the dataset. The choice of statistical test methods was
primarily informed by Greene and D’Oliveira [2005], Mumby [2002].

Matrices to 2D-plots

Perceived distances between specific classes (and not specific audio clips) will be
referred to as pairwise class distances (PCDs). As there are 5 technique classes
to rate between, the total number of PCDs using Eq. 5.2 is 15. The collected
105 pairwise distance ratings were first reduced to a 5-dimensional dissimilarity
matrix to present the 15 PCDs. These matrices were then summarised across all
participants to yield a single dissimilarity matrix per condition. The methods used
to do this summarisation were dependent on whether the PCDs were found to be
normally distributed or not.

These condition-specific PCD dissimilarity matrices were then projected onto
a 2-dimensional plane using MDS, which has been frequently used in the literature
to visualise perceptual data [Grey, 1977, Kruskal, 1964, Shepard, 1962a,b, Gerratt
and Kreiman, 2001]), leading to an intuitive visual representation of the percep-
tual space. The non-metric MDS algorithm5 was used to produce the best-fitting
dimensionally reduced representation of the data points.

5https://scikit-learn.org/stable/modules/generated/sklearn.
manifold.MDS.html
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5.3 Results and Discussion

In this section a combination of parametric and non-parametric statistical tests
will be used. All data will be tested for normal distributions using the Shapiro-
Wilk test with a p-value of 0.05 [Shapiro and Wilk, 1965], and visual verification
of distributions before choosing an appropriate statistical test. The distributions
of participant features are shown as histograms and bar charts in Appendix A.2,
illustrating the diversity among participants.

5.3.1 Data Screening

After closing the call for participants, data of 61 listening sessions was extracted
from WAETs XML files in which they were stored. The screening process from
Section 5.2.6 was applied to ensure participants and their ratings met the minimal
criteria. Six participants failed to provide data that passed this process. These
included three whose feedback scored ‘0’ on task comprehension, 2 who failed
inconsistency test, and 2 who failed the poor identity recognition task (one of
whom already failed the inconsistency test).

A resulting dataset of 55 participants was encoded in HDF5 format and used
for analysis. The results of a Spearman correlation matrix between participants’
15-dimensional dissimilarity matrices (generated as described in Section 5.2.6)
can be seen in Figure 5.4. This shows that there is a considerable lack of cor-
relation and a large amount of variance between participants’ ratings across that
dataset.

As each listening session was used roughly 5 times, it is also sensible to view
correlation matrices between participants’ data when grouped by session. Figures
5.5 and 5.6 show these correlations. The unbalanced matrix dimensionality be-
tween subplots is due to the removal of certain participants’ data due to screening
processes. These plots also surprisingly demonstrate a considerable lack of cor-
relation between participants, meaning that even when participants listened to the
same stimuli, there was a considerable amount of variance between their dissimi-
larity matrices.
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Figure 5.4: Correlation matrix between dissimilarity matrices of each participant,
indicating significantly more uncorrelated matrices than correlated ones.

5.3.2 Cluster Scores

Clustering algorithms for values of {k ∈ Z | 2 ≤ k ≤ 14} were first applied
across all participants’ data, from which accuracy and silhouette scores could be
calculated. Values of k with the highest cluster scores were stored for each partic-
ipant, and the k value that most frequently yielded the highest scores was consid-
ered the optimal value w.r.t. the score measured. The distribution of these values
is presented in Figure 5.7.

We can infer from this that there are more participants perceiving the stim-
uli in a manner that leads towards clustering that best fits the ground truth labels
when k = 5 than for any other value of k. Conversely, the optimum k value for
silhouette scores was 2, suggesting that the compactness and separateness of clus-
ters among participants’ data are poor and need the minimal number of clusters
to obtain high silhouette scores. This suggests that participants are not perceiving
the different classes as particularly salient from one another.

As the distributions between both clustering algorithms were similar for accu-
racy and silhouette scores, a correlation test was conducted between them. After
confirming normal distributions for all score types, the Pearson correlation test
was used. Results shown in Figure 5.8 illustrate correlations for silhouette and
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(a) Data Correlation for Session ‘m1low’ (b) Data Correlation for Session ‘m1high’

(c) Data Correlation for Session ‘m2low’ (d) Data Correlation for Session ‘m2high’

(e) Data Correlation for Session ‘m4low’ (f) Data Correlation for Session ‘m4high’

Figure 5.5: Correlation matrices of data between individual listening sessions of
male singers
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(a) Data Correlation for Session ‘f2low’ (b) Data Correlation for Session ‘f2high’

(c) Data Correlation for Session ‘f3low’ (d) Data Correlation for Session ‘f3high’

(e) Data Correlation for Session ‘f5low’ (f) Data Correlation for Session ‘f5high’

Figure 5.6: Correlation matrices of data between individual listening sessions of
female singers

117



(a) (b)

(c) (d)

Figure 5.7: Distributions across all data for best accuracy (left column) and sil-
houette (right column) scores across all values of k, using agglomerative (top row)
and k-means (bottom row) clustering.
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(a) (b)

Figure 5.8: Scatter plots displaying correlations between metrics using k-means
and agglomerative clustering algorithms.

accuracy scores of 0.99 and 0.96 (p < 0.001) respectively. For this reason, the
k-means algorithm is no longer reported in this analysis, as it was considered a
redundant measurement.

5.3.3 Experimental Conditions (Controlled Variables)

In this section, we examine how collected data may have been affected by the
conditions imposed by the listening sessions, namely the register and gender con-
ditions. The dataset was split to group listening sessions of specific conditions
together for these analyses.

Best k Distributions

After defining the conditional groups, clustering scores were generated for each
one in the same way as described in Section 5.3.2 above. The results for samples
grouped by register conditions are shown in Figure 5.9, while the gender condi-
tions are shown in Figure 5.10. None of the silhouette best-k distributions were
found to be normally distributed, and only some distributions of accuracy best-
k distributions were normally distributed. A Kruskal Wallis test concluded that
there were no statistically significant differences between register or gender con-
ditions for silhouette scores. A Kruskal Wallis and one-way ANOVA test (both
were investigated due to the ambiguous nature of the distributions) concluded the
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(a) ‘high’ condition best accuracy (b) ‘high’ condition best silhouette

(c) ‘low’ condition best accuracy (d) ‘low’ condition best silhouette

Figure 5.9: Distributions for best accuracy (left column) and silhouette (right col-
umn) scores across all values of k, for each register condition.

same for accuracy distributions. This suggests that the conditions had no effect on
how well participants’ perception of the stimuli related to the ground truth labels,
or how well the stimuli clustered in their perceptual space. However, given the
nature of what is being measured, a considerably larger sample size would be re-
quired to give statistical analyses enough power to reject the null hypothesis with
confidence.

Cluster Score Distributions

Using the number of ground truth labels in the stimuli as a frame of reference,
accuracy and silhouette scores were regenerated using agglomeration clustering
with k = 5, and split into conditional groups for comparative analysis. Accuracy
scores were normally distributed and subjected to a one-way ANOVA test, while
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(a) ‘female’ condition best accuracy (b) ‘female’ condition best silhouette

(c) ‘male’ condition best accuracy (d) ‘male’ condition best silhouette

Figure 5.10: Distributions for best accuracy (left column) and silhouette (right
column) scores across all values of k, for each gender condition.
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Table 5.1: Mann Whitney U results for significant differences between register
conditions

PCD U p Higher Median Lower Median Effect
belt-belt 532.5 <0.01 low=0.32 high=0.24 0.41
straight-belt 526.5 <0.02 low=0.59 high=0.5 0.39
fry-vibrato 501.0 <0.05 low=0.85 high=0.76 0.33
belt-vibrato 497.0 <0.05 low=0.56 high=0.47 0.31

Table 5.2: Mann Whitney U results for significant differences between gender
conditions

PCD U p Higher Median Lower Median Effect
straight-breathy 575.0 <0.001 male=0.7 female=0.47 0.52
fry-vibrato 205.0 <0.005 female=0.91 male=0.72 -0.46
vibrato-vibrato 226.5 <0.02 female=0.22 male=0.11 -0.4
breathy-breathy 234.0 <0.02 female=0.2 male=0.09 -0.38
belt-fry 257.5 <0.05 female=0.82 male=0.67 -0.32

half the silhouette scores were non-normally distributed and therefore subjected
to a Mann-Whitney U test. No significant differences existed between conditions
for either score, indicating that neither register nor gender conditions influenced
how well participants’ perceptions agreed with ground truth labels, or the salience
of clusters in their perceptual space.

Pairwise Class Distance Distributions

When split into conditional groups, PCDs were found to be non-normally dis-
tributed. Accordingly, these were subjected to Mann-Whitney U tests, the re-
sults of which (along with the reported effect size [Cohen, 1988, Perugini et al.,
2018, Fritz et al., 2012]) are displayed in Tables 5.1 and 5.2 respectively. While
it may not be necessary to discuss each result for PCDs, it is interesting to note
that within-class distances such as vibrato-vibrato or breathy-breathy PCDs were
significantly larger for females than males. It is also interesting to note that the
majority of detected differences between gender conditions are larger for female
voices, while all detected differences between register conditions were larger for
low registers.
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5.3.4 Multidimensional Scaling

As described in Section 5.2.7, the 14-dimensional matrices were compressed to
a dimensionality of 5, combining stimulus-specific dissimilarities into PCDs. To
determine the best method of summarisation, the distribution of the relevant class-
pair ratings first had to be considered. This type of data analysis check has often
been side-stepped in the pursuit of presenting a conclusive generalised behaviour
of the data, [McAdams et al., 1995, Iverson and Krumhansl, 1993, Wan et al.,
2018], admittedly in cases where the end seems to justify the (statistical) means.
In this case, the Shapiro-Wilk test and visual assessment of the histogram distri-
butions led to the conclusion that the majority of these ratings were not normally
distributed. Many of the distributions featured a ceiling or floor effect, where
a strong majority of participants chose rating ‘0’ or ‘1’, representing the maxi-
mum or minimal difference in the aural perception of singing techniques. Using
methods such as square root or logarithmic transformations to normalise the dis-
tributions did not seem appropriate as the interpretation of these w.r.t perceptual
dissimilarities would not be intuitive or useful, nor would such transformations
help against such ceiling or floor effects where values would remain the same. To
mitigate the effects of non-normally distributed data and better represent the cen-
tral mass of these distributions, the median was used instead of the mean [Sainani,
2012]. MDS was then performed on these median PCD values to produce percep-
tual maps of singing techniques, shown in Figure 5.11.

Some general observations can be made but with caution due to non-normal
distributions. The perceptual spaces between low and high registers are generally
very similar. Although multiple significant differences were detected between
these conditions in the previous section, they were generally medium in size.
Gender conditions, on the other hand, display more visible differences between
their perceptual maps. With respect to straight, belt and vibrato techniques, male
singers’ vocal fry technique seems to be closer than females, while female singers’
breathy technique seems to be closer than males. The distance between straight

and belt is noticeably smaller in male singer perceptual spaces than in females.
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(a) Low Registers (b) High Registers

(c) Male Singers (d) Female Singers

Figure 5.11: Plots displaying the perceptual space of singing techniques after
dimensionality reduction, grouped by low, high, male and female singing condi-
tions. Axes are not labelled as MDS does not produce coordinates based on prede-
fined measurable concepts, due to its inherent objective of summarising data based
on shared correlations, variances and relative distances. Further post-hoc objec-
tive and subjective evaluations however, could be used to determine the meaning
of each dimension.
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Testing by Participant Conditions

Statistical analyses were also conducted when data was grouped by participant
conditions, which refer to categorical participant features as described in Section
5.2.7.

A Kruskal Wallis test was initially used to compare accuracy scores when
samples were grouped based on whether participants were non-musicians, mu-
sicians, or vocalist-specialists. Results showed a significant difference between
one of these groups, which resulted in a posthoc Mann-Whitney U test being
conducted with the Bonferroni correction applied to the significance threshold.
Significant differences were found in accuracy samples between non-musicians
and vocalists (U = 10, p = 0.005) as well as musicians and vocalist-specialists
(U = 76.5, p = 0.006), where the vocalist accuracy medians were highest. It
should be noted however, that all statistical reports involving participant’s instru-
mentation must be considered with caution, as the ‘non-musician’ and ‘vocalist’
categories consisted of small sample sizes of 10, while the ‘musician’ category
contained 35 samples.

Correlations Among Participant Features

Participant features as described in Section 5.2.7 were compared against one an-
other using the Spearman’s rank or Pearson correlation, based on the type of data
and distribution. Statistically significant correlations are shown in Table 5.3. They
are also illustrated via scatter-plots in Figure 5.13 for continuous data, and box-
plots for ordinal data in Figure 5.12. The highest of these correlations is be-
tween silhouette and accuracy, which was not surprising as it implies the percep-
tive spaces that best agreed with ground truth labels also featured strong clus-
ter structures. The second highest correlation was between instrumentation and
MSI scores. It is hypothesised that singers had a tendency to attain higher MSI
scores as the questions were slightly biased towards singing ability or percep-
tion of singers. Instrumentation and MSI were also mildy to strongly correlated
with silhouette and accuracy scores respectively, intuitively suggesting that spe-
cific knowledge one has on the stimuli grants one an informed perceptual bias that
adheres to the existing taxonomy, with confidence reflected in well-defined clus-
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Table 5.3: Statistically significant differences between the different participant
features including accuracy and silhouette scores. The subscript ‘S’ or ‘P’ indi-
cates whether the correlation was of type Spearman or Pearson.

feature A feature B r-value p-value
Silhouette Accuracy 0.62P <0.001
Instrumentation MSI 0.48S <0.001
Instrumentation Accuracy 0.47S <0.001
MSI Accuracy 0.47P <0.001
MSI Silhouette 0.36P <0.01
Instrumentation Silhouette 0.27S <0.05
Inconsistency Silhouette −0.27S <0.05

ters. Participants’ inability to repeat ratings for repeated pairwise comparisons
(inconsistency) was correlated negatively with silhouette scores. This intuitively
suggests that participants who were less consistent in their rating criteria produce
poorly defined clusters in perceptual space.
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(a)

(b)

(c)

Figure 5.12: Box plots illustrating distributions of scores for each category across
the y-axis, where there was measured correlation with the instrumentation cate-
gories of an ordinal nature shown on the x-axis.
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(a) (b)

(c) (d)

Figure 5.13: Scatter plots illustrating a mild correlation between the measure-
ments of the attributes labelled on the x and y-axes.
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5.4 Conclusion

5.4.1 Results

The results of this experiment cover numerous aspects regarding the participants,
their PCD ratings, and the perceptual space between these PCDs. These were
compared between the conditions of register and gender.

While k = 5 (the number of ground truth classes) resulted in the highest
count above any other value for best accuracy scores, it was still not the case
for a majority of participants’ data. This combined with low silhouette scores
for k = 5 across the dataset implies participants had difficulty perceiving salient
features among the stimuli and frequently provided data that did not perceptually
match the ground truth classes. No statistically significant differences were found
between the best k distributions for clustering scores when grouped by conditions.
This was also the case when comparing distributions of accuracy and silhouette
scores under the same conditions, suggesting that these conditions had no effect
on how participants’ perceptions of the stimuli clustered.

When testing for statistical differences between PCDs however, a number of
differences were detected between conditions. Interestingly, all detected differ-
ences in distances were significantly lower in low register conditions, and the ma-
jority of detected differences were larger for female conditions. The low register
condition resulted in larger within-class variances for belt vocalisations, while the
female singer condition had the same effect on vibrato and breathy vocalisations.

MDS was used to convert dissimilarity matrices into coordinates for each
singing technique on a two-dimensional plane. This gives readers a visual of how
the perceptual space of the singing technique is mapped out for different condi-
tions. They suggest perceptual maps are very similar between register conditions,
and significantly different between gender conditions.

Testing for correlations between participant features resulted in a number of
findings presented in Table 5.3 in the previous section. Accuracy and silhouette
scores were the most correlated of participant features. In general, participants
with a more relevant musical background to the task produce better clustering
scores.
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5.4.2 Reflection

A global correlation matrix across all participant data showed very little correla-
tion between them. Further posthoc tests confirmed that there was a large amount
of noise even between data generated from the same listening sessions. In con-
junction with the findings summarised in the previous section, it seems clear that
a considerable amount of noise exists among participant ratings. This could be
due to the task description needing further refinement; the fact that the task itself
may have been too difficult; or the choice of interface. Revisiting any of these
aspects may improve the listening study, and lead to more normally distributed
data, where differences between conditions might be more pronounced.

Many participants reported in their feedback the factors that influenced or dic-
tated their dissimilarity evaluations. An exhaustive list of these factors is as fol-
lows: performer’s lack of control, soft/harshness, clean/dirty, distortion, dynam-
ics, temporal pitch variation, subglottal pressure, larynx placement, resonance,
nasalness, open/closed mouth, total amount of notes per sample, melody, emotion,
register mechanisms and assumed class types. Many of these attributes imply that
there is a considerable degree of uncertainty regarding the dissimilarity evaluation
task and it is reasonable to believe this has caused a significant level of noise in
the results.

The amount of noise in collected data could also be related to the fact that the
VocalSet dataset itself has its own shortcomings. Many recordings contain multi-
ple techniques, despite being labelled with only one. The quality of performances
seems to vary considerably between singers. Due to the nature of the fry technique
and variance in performance style, its pitch is often a number of octaves below the
singer’s intended pitch (and the dataset’s implied pitch label). Wilkins et al. [2018]
specify that singers were placed close to the microphone, but it may be the case
that there is variance in this ‘closeness’, deduced from an audible proximity effect
(an increase in lower frequencies due to the singers’ closeness to a microphone)
between singers - however this has not been quantitavely measured.
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5.4.3 Future Work

A repository for this work is available online6, where an anonymised version of
the collected data is available, as well as a walkthrough of the clustering, MDS
and statistical analysis techniques used. It is the author’s hope that this will be
useful to other researchers interested in doing the same type of study, and steer
them towards designing an experiment that gives more robust results. Another
potentially interesting question to investigate (that wasn’t covered in this chapter)
in future research is whether the gender of a listener affected how they perceived
same or different-gendered singers.

The PCDs can also be used to generate coordinates that can be used as part
of a regularisation term in generative NNs. If there is an improved difference in
voice synthesis when using this additional data as a contributing loss component,
then it is clearly a meaningful representation of perceptual space.

As five was still the most frequently successful value of k across the dataset
w.r.t accuracy scores, it is appropriate to assume that the existing taxonomy is well
suited to most informed listeners and can continue to be used in future studies.

6https://github.com/Trebolium/VoicePerception
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Chapter 6

Zero-shot Singing Technique
Conversion
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6.1 Introduction

Chapter 5 explored the perceptual spaces of singing techniques, where it was sug-
gested that listeners from a more musical background (along with clustering met-
rics) were more likely to perceive timbral structures that favoured the ground truth
labels. Although some shortcomings of VocalSet have been listed, it was found
to distribute vocalisations into the most perceptually appropriate sets, making it
a potentially suitable dataset for facilitating singing technique conversion (STC).
Perceptual spaces between pitch register conditions were not significantly differ-
ent, while those between gender conditions induced more noticeable but not large
differences. These findings suggest that it is reasonable to attempt to use one
system to model singing techniques across all conditions to perform STC.

The task of STC could have an influence on music production similar to other
voice manipulation tasks described in Section 1.1.2, as it opens up the possibility
of artistically manipulating a singer’s performance, rather than simply quantising
their pitch or swapping out their voice for another. With the explosion of prob-
abilistic ML techniques in recent years, there has been a great deal of research
focused on voice transformation for speech, while less attention has been given to
singing. The topic of transforming the expression of the singing voice is almost
untouched, leaving an unexplored gap in voice synthesis.

This chapter covers research that was presented at the CMMR 2021 sympo-
sium [O’Connor et al., 2021]. Section 6.2 describes the components and architec-
ture used in Qian et al. [2019]’s implementation of their spoken voice conversion
system. Section 6.3 describes how this is repurposed for the task of STC, high-
lighting the number of ways in which this research differs from that of Qian et al.
[2019]. Section 6.4 documents a listening test where participants were asked to
rate the similarity (w.r.t. the target singing techniques) and naturalness of con-
verted audio produced by a trained STC network. These ratings are then analysed
and discussed in order to evaluate the performance of the model. Examples of
models’ synthesised audio output are available to audition online 1.

1https://trebolium.github.io/singing_technique_conversion/
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6.2 AutoVC System

At the time of initiating this experiment in Winter of 2020, a number of varia-
tions on autoencoder and GAN architectures were available that largely relate to,
or are specifically designed for, VIC (see Section 4.4.4). However in this experi-
ment, the singing technique is the attribute of interest being tested for conversion,
and so the question remains as to whether existing architectures are appropriate
for the singing voice domain, and whether solutions to the conversion task can
be applied specifically to the singing technique. Among these, the AutoVC sys-
tem [Qian et al., 2019] was considered as the most suitable candidate for singing
technique conversion, due to its state-of-the-art results for the task of VC, elegant
solution towards linguistic disentanglement, zero-shot capabilities, and influence
on proceeding literature and research. The remainder of this section will cover
all aspects of the original implementation. Section 6.3 will describe proposed
alterations to facilitate STC.

6.2.1 Input Features

AutoVC is designed to take mel-spectrograms as input features. In the origi-
nal implementation, the audio was first resampled to a standard sampling rate
of 16kHz. It was passed through a Butterworth highpass filter to remove low-
frequency components below 30Hz using a filter order of 5. A small amount of
white noise was added to the audio signal to improve AutoVC’s generalisation
to new audio, improving its robustness. The audio signal was then converted to
a log mel-spectrogram representation, using the processes described in Section
4.3.1. The parameters for this transformation included an FFT length and hopsize
of 1024 and 256 respectively, a mel-filter bank of dimension 80, and a frequency
range of 90Hz to 7.6kHz. The resulting computed log mel-spectrograms (herein
simply referred to as spectrograms) were normalised between a range of 0 and 1,
and stored. Spectrograms were randomly sampled from a dataset, and a random
chunk of T frames was extracted from the sampled spectrogram.
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Figure 6.1: Flowchart illustrating the information flow of the AutoVC system.
The secondary cycle illustrates how AutoVC’s output is re-inserted as its input
for a secondary pass of the system to obtain new embeddings generated from the
synthesised output.

6.2.2 Details of AutoVC

As described in Section 4.4.4, AutoVC is an autoencoder that relies on the com-
bined approach of VIE conditioning and bottleneck calibration. Figure 6.1 illus-
trates the AutoVC system as a flowchart from left to right. After training, it has
learned a disentangled representation of the input data, which allows it to perform
VIC.

AutoVC can be broken down into two sub-networks. The first sub-network
will be referred to as the VC network. It is an autoencoder and is the primary
engine behind the conversion task, the encoder of which will be referred to as
EVC . The second is the VIE network, EVIE , which was pretrained to produce
embeddings exhibiting feature variances that describe the unique, discriminative
qualities of each voice.

VIE Conditioning

As shown in Figure 6.1, the output embeddings of EVIE are concatenated with its
spectrogram input features, X, before being fed to VC network’s encoder, EVC .
As EVIE (X) is a one-dimensional feature vector while its prospective concatena-
tive partners are 2-dimensional representations, it is broadcast across their tempo-
ral axis, allowing the two representations to be of the same temporal dimension
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(a) Too small (b) Too large (c) Just right

Figure 6.2: Flowcharts illustrating three scenarios where: (a) the bottleneck is too
small to encode linguistic content; (b) the bottleneck is too large, allowing it to
also encode voice identity content; (c) the bottleneck is just the right size to allow
EVC to disentangle only linguistic content from the spectrogram.

for concatenation.
While this step makes the input dimensions significantly larger, it is advanta-

geous in that it presents an embedding which represents voice identity information
entangled with linguistic content, and an embedding that represents the already
disentangled voice identity information. Inherently, the network will have a much
easier time extracting information unrelated to voice identity from these combined
embeddings. The embeddings from EVC are again concatenated with VIEs before
being fed to the decoder DVC .

Bottleneck Calibration

If the network is continuously provided with accurate, consistent VIEs, it only
needs to encode non-VIE content (such as linguistic content) at the bottleneck
in order to reconstruct the original spectrogram representation using DVC . If the
bottleneck is made to be too small, reconstruction will suffer due to insufficient
data encoding. However, if it is too large, this allows room for other non-linguistic
information from the spectrogram (such as voice identity) to be encoded, compro-
mising the amount of disentanglement. Ideally, the bottleneck should be calibrated
so that it has just enough capacity to encode the amount of information that needs
to be disentangled. Fig. 6.2 illustrates each of these scenarios.
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Training Phase

Like a standard autoencoder, the VC network is trained to reconstruct its input
using a reconstruction loss Lrec , which is obtained by getting the L2 loss between
the input and reconstructed spectrograms, computed as

Lrec =
1

m× n

m∑
j=1

n∑
i=1

(Xij − X̂ij)
2, (6.1)

where m and n are the dimensionality of the time and frequency axis of X, and j

and i are the indices of each dimensions.
An additional loss component LBN calculates the L1 loss between the bottle-

neck encodings for the original data EVC (X) and the reconstructed data EVC (X̂):

LBN =
1

n

n∑
i=1

|EVC (X)i − EVC (X̂)i| (6.2)

While the original paper [Qian et al., 2019] says very little about why this
loss component is included (upon personal contact, the author only stated that
it was empirically found to improve convergence), it is presumed the rationale
behind it is based on its ability to encourage the linguistic content of the original
and reconstructed data to be the same, and also discourage the inclusion of voice
identity information in a bottleneck that suffers from condition (b) in Figure 6.2.
This has been described in the literature as a latent regressor loss.

The first section of DVC is close to a mirrored version of EVC , and repro-
duces the estimated spectrogram X̃ with this architecture alone. However, Shen
et al. [2018] proposed the postnet mechanism, which is an additional CNN that is
trained to produce the residual spectral data Xresidual from its input spectrogram.
This residual spectral information is added to the estimated spectrogram, resulting
in the final output of DVC being the high-fidelity reconstructed spectrogram, X̂:

X̂ = X̃+Xresidual . (6.3)

A reconstruction loss Lrec−est between the original and estimated spectrogram,
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Lrec−est =
1

m× n

m∑
j=1

n∑
i=1

(Xij − X̃ij)
2, (6.4)

is added to the loss function of the VC network, which was empirically shown
to improve convergence. The final loss function therefore consists of a weighted
combination of the two reconstruction losses and a latent regressor loss, param-
eterised by µ and λ (in the original work, these were simply set to a value of
1):

Ltotal = Lrec + µLrec−est + λLBN . (6.5)

Conversion Phase

After the VC network has been satisfactorily trained, VIC can be achieved by
providing EVIE with the spectrogram of a target speaker, Xt, while EVC is pro-
vided with the spectrogram of a source speaker, Xs. As DVC has been trained to
combine disentangled VIEs with linguistic content, it will be able to process the
source linguistic content EVC (Xs) with the target VIE EVIE (Xs) to produce the
voice-converted spectrogram representation Xs→t. This process is illustrated in
Figure 6.3.

Architectures and Hyper-parameters

Figure 6.4 is provided to aid readers in visualising the architecture of the VC
subnetwork in AutoVC as described in this section.

EVC consists of three 5x1 convolutional layers, the first layer of which is de-
signed to accept tensors of the same size as X. 1-dimensional convolutions are
preferable for the task at hand, as they avoid the translational invariance inherent
in 2-dimensional CNNs [Blaauw and Bonada, 2018]. Each of these layers has 512
channels and proceeds with batch normalisation and ReLU activation, and will be
herein abbreviated as conv-norm layers. The output of the last conv-norm layer is
passed to a stack of 2 BLSTM layers, outputting forward and backward cells of
dimension 32, which in turn yields a 64 dimensional embedding when combined.
To facilitate a condensed bottleneck representation, downsampling by a factor of
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Figure 6.3: Flowchart illustrating the flow of information in AutoVC, with in-
terchangeable pathways (indicated by dashed modules and edges) to be used for
either the training or conversion phase.

Figure 6.4: Flowchart providing an in-depth illustration of the architecture of the
VC network portion of AutoVC. The numbers seen above individual layers dis-
play the dimension size of their output. Numbers below the resampling layers
indicate the factor by which they are up/downsampled.
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16 across the temporal axis is applied to the BLSTM outputs.
The bottleneck embeddings are reconcatenated with VIEs, after which the

combined tensor is upsampled by copying, to restore the original size of the tem-
poral axis. They are then fed to DVC , which contains the following chain of
layers: a single uni-directional LSTM, a sequence of 3 conv-norm layers using
5x1 kernels, a stack of 2 LSTM layers, and a 1× 1 convolutional layer to project
the LSTM’s encodings to the target dimensionality, n. This produces the initial
estimated spectrogram, X̃, (from which the Lrec−est loss is obtained). This repre-
sentation is then fed to the postnet CNN, which consists of five more conv-norm
layers. As the postnet is trained to output the residual information of the spectro-
gram, this is added element-wise to its input as a skip connection, the summation
of which produces the high-resolution X̂ that is used to obtain the Lrec loss.

Waveform Synthesis

The final module in the AutoVC system converts the refined spectrogram to an
audio waveform. This module consists of a WaveNet pretrained on the VCTK
dataset [Veaux et al., 2017], the parameter states of which are available at an
online repository provided by the first author of the AutoVC paper [Qian et al.,
2019]2. It was trained using teacher-forcing, where spectrograms were resampled
to match the audio signal and used as the ground-truth conditioning features [Shen
et al., 2018].

2https://github.com/auspicious3000/autovc
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6.3 AutoSTC System

As this chapter explores the possibility of using the AutoVC framework for STC,
the network that conditions the VC network will be pretrained to produce singing
technique embeddings (STEs) rather than VIEs. A detailed description of the VIE
encoder will be presented in Chapter 7, where the AutoVC system will be used for
the task of singing voice conversion (SVC). The implementation of AutoVC used
in the experiment described in this chapter will be referred to as AutoSTC. This
section describes the datasets used, architecture, and training process. Objective
metrics are reported for the STE encoder as a classification model as well as for
AutoSTC reconstruction losses.

6.3.1 Datasets

As in Chapter 5, VocalSet was again used to train the STE encoder. It underwent
the same process as described in Section 5.2.1 to obtain a class-balanced subset.
However, in this experiment the lip-trill technique was also included, as there was
no concern about how an additional class would require exponentially more time
in a listening test. The subset comprised of 1182 vocal recordings, estimated to be
roughly 3 hours of recorded material covering the belt, straight, vibrato, lip trill,

vocal fry and breathy singing techniques. As this reduced version of VocalSet
was so small, it was only split by voices into training and test subsets at a ratio
of 4:1. When training the STC network, a total of 1800 training steps would be
required in order to effectively cover a single epoch of data. Spectrograms were
normalised to have zero mean and unit variance, which sped up convergence by
approximately 50%.

Given the fact that VocalSet is already a relatively small dataset, it was im-
portant to ensure that the STC network (equivalent to the VC network portion of
AutoVC as described in Section 6.2.2) was trained on additional data to facilitate
more accurate modelling of the voice. Nercessian [2020]’s work on singing voice
conversion highlighted the fact that AutoVC could be trained as a universal back-
ground model [Hasan and Hansen, 2011]. The same can be done with AutoSTC,
and so a 20-speaker subset of the VCTK dataset [Veaux et al., 2017] the raw
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singer recordings from MedleyDB [Bittner et al., 2014], and the VocalSet subset
were also used for training. These datasets were chosen because they represent
the voice in diverse ways. VCTK presents the voice as speech, while MedleyDB
presents the voice as a studio stem with varying levels of processing applied.

The audio from each dataset was subjected to a desilencing algorithm, which
determines the energy envelope of an audio signal and outputs a probability as to
whether vocal activity is occurring or not (the script for which was taken with per-
mission from the work of Sarkar et al. [2022]). A probability threshold was empir-
ically chosen for each dataset. Sections below this threshold were discarded and
the neighbouring sections were concatenated together, yielding stitched versions
of audio clips that were dense with recorded vocal material. After desilencing,
MedleyDB yielded approximately 3.5 hours of singing material, equating to 2189
training steps per epoch. After desilencing, the VCTK subset yielded roughly
13 hours worth of content (8,030 steps per epoch). Both datasets were split into
training and test subsets by a ratio of 4:1.

6.3.2 STE Encoder

The STE encoder ESTE was built specifically to produce features relevant to
singing techniques. This was achieved by building a singing technique classifier
and using the output of its pre-classification layer as the conditioning embeddings.

Initially, classification was attempted using the network proposed for this task
by [Wilkins et al., 2018] who introduced the VocalSet dataset. This architecture
consisted of 1D convolution, batch-normalisation, and max-pooling layers, per-
forming convolutions of audio waveforms. A version of VocalSet as described in
the same publication was prepared from which the Wilkins model could be trained
and evaluated. A random grid search was performed for hyper-parameters optimi-
sation, which concluded that no deviation from Wilkins et al. [2018]’s suggested
configurations was necessary. The model was trained ten times using different ran-
dom seeds for parameter initialisation and dataset splits, from which the highest
results for metrics of 0.67 precision and 0.69 recall were obtained. The similarity
between these scores and those reported by Wilkins et al. [2018] confirmed the
model was constructed as described and performing as expected. The model was
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then trained with the VocalSet subset described in Section 6.3.1 to provide a base-
line accuracy score, which yielded an average accuracy score of 60% on the test
subset.

A similar architecture was explored, differing only by the convolutional ker-
nels which were 1-dimensional while frequency bins were separated across the
network’s channel/filter axis. This however, achieved an underwhelming average
accuracy of 30%, which in hindsight is likely due to the fact that 1D convolution
networks do not facilitate pattern detection across frequency bins or translational
invariance on a 2D plane.

A customised architecture was explored, the development of which was heav-
ily influenced by the VAE system used by Luo et al. [2020b]. The intuition of
combining CNN, LSTM and Dense layers was informed by Choi et al. [2017].
The final proposed architecture is shown in Figure 6.5.

It takes the same spectrogram, X, as the STC network of AutoSTC. Each in-
put spectrogram was split into multiple chunks of duration 0.5 seconds, which
was considered to be a suitably small length of time from which a reasonable pre-
diction could be made for singing technique classification from audio [Luo et al.,
2020b]. These chunks are distributed along the batch axis to facilitate parallel
processing, allowing the network to accept inputs of any length of time, rounded
off to the nearest half-second. They are fed to a feature extraction network con-
sisting of four 2D-convolutional layers of kernel size 3 × 3 with padding. Each
of these layers is followed by batch normalisation, ReLU activations, and max-
pooling. The max pooling kernel sizes were determined to gradually funnel the
dimensionality towards a single output after the 4th convolution layer for each of
its 512 channels. Tensors are first reshaped to remove the individual chunks from
the batch axis. These are followed by two dense layers, the output of which are
of dimensions 512 and 256. The output is then reshaped to allow a stack of two
bi-directional LSTMs to process each chunk in its original sequential context, of
which there are 6 parts each representing 0.5s of information. The BLSTM out-
puts are reshaped so that chunks are distributed along the batch axis once more
and fed to two final dense layers of output size 64 and 256. Finally, a 6-way clas-
sification layer determines which of the 6 singing techniques is being used in the
input spectrogram.
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Figure 6.5: Flowchart illustrating the architecture of the STE encoder. The num-
bers seen above individual layers indicate the dimension size of their output, while
the numbers below indicate the max-pooling kernel size. This diagram shows re-
shaping as if the batch size is 1, and the number of chunks is 6 (0.5s each)

A self-attention mechanism was originally included in the architectures as
used in [Raffel and Ellis, 2016, Luo et al., 2020a]. However, this led to no sig-
nificant improvement in accuracy or loss convergence, likely because the BLSTM
layers already extracted sufficient context information.

A hyper-parameter optimisation grid search concluded that a learning rate of
0.004 and no dropout led towards the best convergence. This architecture was
trained on the VocalSet subset 20 times with randomly initialised weights and
dataset splits. The highest classification accuracy score on the validation subset
was 86%, while its average performance was 75% after 13 epochs of training.
It is worth noting that upon a post-hoc revision of this chapter’s research, it was
verified that removing the two dense layers (marked in grey in Figure 6.5) and the
subsequent reshaping did not hinder the network’s performance in any significant
manner.
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6.3.3 Training

STE Conditioning

In Qian et al. [2019]’s provided AutoVC implementation3, averages of speaker
embeddings were precomputed for multiple recordings of the same speaker. For
STC however, these embeddings were individually generated for each example
used during training, instead of preparing predetermined, averaged embeddings
for each vocal technique. Unlike with speaker identity, the extent of use of most
singing techniques is continuous in nature, and there are many examples where
singing techniques have only been fractionally present. By providing examples
with their own technique embeddings during training (as opposed to a predefined
embedding determined only by the singing technique label), all variances between
the established techniques are provided to the network.

The target embeddings however were always determined by averaging em-
beddings across the established vocal techniques. To verify the discriminative
nature of these embeddings w.r.t. singing techniques, 200 vocalisations from Vo-
calSet were randomly selected and fed to the STE encoder. The resulting em-
beddings were subjected to KMeans analysis, where clustering compactness was
determined by obtaining the sum of squared distances (SSD) between embeddings
e and their corresponding speaker j’s centroid, Cj . Figure 6.6 displays a plot of
SSDs for all values of {k ∈ Z | 2 ≤ k ≤ 10}, where a distinct elbow can be
observed for k = 6. Embedding clusters were therefore significantly more com-
pact when the number of clusters was equal to the number of ground truth classes,
indicating that the embeddings indeed had discriminative qualities w.r.t. types of
singing techniques, and are appropriate for averaging.

Hyper-Parameters

As in the original implementation, X consists of 192 spectral frames of log mel-
spectrums of 80 dimensions (herein simply refereed to as the spectrogram), equat-
ing to roughly 3 seconds of audio. Hyper-parameters optimisation was applied
using a randomised search, which has been shown to cover search spaces more

3https://github.com/auspicious3000/autovc

145

https://github.com/auspicious3000/autovc


Figure 6.6: Sum-of-squared distances for STEs (y-axis), plotted across a range of
k values (x-axis)

efficiently than a grid search [Bergstra and Bengio, 2012]. The search space was
based on a uniform distribution, centred on the values proposed by Qian et al.
[2019]. The random search variables included weight regularisation, dropout, and
the learning rate, and underwent 50 iterations. After doing so, it was concluded
that the original batch size and learning rate were indeed most suitable and led
towards the model’s best convergence w.r.t. its total loss metric. However, using
an L1 reconstruction loss instead of L2 led towards faster convergence and better
quality outputs. The L1 loss was therefore used for the remainder of the experi-
ment, defined as

Lrec =
1

m× n

m∑
j=1

n∑
i=1

|Xij − X̂ij| (6.6)

Qian et al. [2019] have claimed that their inclusion of the LBN loss in addi-
tion to the standard reconstruction loss helped preserve the original content and
balance reconstruction quality with speaker disentanglement. However, this was
found not to be the case in the preliminary runs of this experiment. The total
losses for models trained over 100k training steps with and without the bottleneck
encoding loss resulted in final loss values of 0.0237 and 0.0185 respectively. Out-
put spectrograms of the model with both losses were also blurry and the audio
lacked microtonal variation or vibrato, leaving a ‘bubbliness’ artefact in its ab-
sence. Vowels were also not consistently reproduced. These shortcomings how-
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ever are less noticeable for speech than singing. This result is worth highlighting,
as the latent regressor loss has been used in architectures of a similar nature [Ner-
cessian, 2020, Jia et al., 2018, Qian et al., 2019].

Further preliminary trials were conducted to fine-tune AutoSTC’s bottleneck
size. The quality of reconstructed audio outputs were noted to relate only to the
net size of the feature space, rather than having any exclusive correlation with the
reduction of either temporal or frequency axes. The ideal downsampling factor
was empirically found to be 16, resulting in a reduced temporal dimensionality of
(192 ÷ 16) = 12. When the output dimensionality of the BLSTM is 32 in each
direction (the combined size being 64), the resulting net size of the bottleneck
becomes 12× 64 = 768. Lower dimensionality representations resulted in deteri-
oration in the reconstructed audio with artefacts of a very similar nature to those
of the network trained with LBN .

Sequential Datasets

All audio was converted to spectrograms to be used as input features to Au-
toSTC, using the process described in Section 6.2.1. These datasets were used
sequentially one after another in the STC network’s training schedule. This daisy-
chaining of dataset training was repeated for all permutations of the three datasets
while monitoring reconstruction losses. By doing this, the permutation that al-
lowed the network to progressively learn from each dataset while minimising
catastrophic forgetting (a common phenomenon in continual learning Wiewel
et al. [2020]) can be determined. Early Stopping was employed so that AutoSTC
stopped training with a dataset once the loss function w.r.t. that dataset’s test sub-
set no longer significantly improved after 50k training steps, at which point the
next dataset was used for training.

Evaluation metrics

While AutoSTC was being trained on one of the three datasets, it was periodically
evaluated on the VocalSet and MedleyDB validation subsets. Loss values and
training cycle counts were recorded after each dataset was used. The purpose of
evaluating on MedleyDB allows us to assess how well the STE encoder trained
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Loss-Iteration for Vs
Vs 0.0274 (100k) Md ˆVc 0.0653 (300k) Md 0.0386 (150k) Vs 0.0268 (50k)
Vc ˆ Md -

Vs 0.0347 (150k)
Md ˆ Vs -
Vs 0.0290 (50k) Vc ˆ

Md 0.0500 (200k)
Vc ˆ Vc -

Table 6.1: Table presenting losses (and training step count in parentheses) when
using the VocalSet dataset for evaluation. All sequences of dataset combinations
are shown, with the first, second and third dataset in the sequence being reported in
the left, middle and right sections of the table. The optimum training path is high-
lighted in bold. Training on a dataset that leads to an increase in loss is indicated
with a circumflex, at which point that path is abandoned. For space, the dataset
names have been shortened as follows: VCTK:Vc, VocalSet:Vs, MedleyDB:Md.

Loss-Iteration for Md
Vs 0.0474 (150k) Md 0.0265 (100k)Vc 0.0479 (500k)
Md 0.0295 (150k) Vs ˆ
Vc 0.0474 (100k) Md 0.0301 (50k)

Vs 0.0562 (150k)
Md 0.0370 (100k) Vs ˆ
Vs ˆ Vc -

Md 0.0367 (150k)
Vc ˆ Vc -

Table 6.2: Table presenting losses (and training step count in parentheses) when
evaluating on the MedleyDB dataset.

on VocalSet generalises as a conditioning factor to other singing datasets. Tables
6.1 and 6.2 present these values. In addition to demonstrating which datasets led
to better generalisation, it shows that the order in which datasets are fed to the
network has a considerable impact on the final loss. The paths Vc->Vs->Md
(spanning 750k training steps) and Vc->Md->Vs (500k steps) led to the lowest
loss values for MedleyDB and VocalSet reconstruction respectively, and were used
to train models that generated the examples used in our listening test presented in
the next section.
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6.4 Listening Study

To assess the proposed network’s performance of STC, a listening study was con-
ducted in which the converted audio was evaluated by 19 participants, recruited
in the same manner as in Section 5.2.4. The evaluation focused on determining
the naturalness of singing technique-converted audio tracks, and the similarity be-
tween them and the target singing techniques. The stimuli in listening sessions
were prepared with an equal number of conversions for each of the following
conditions: model version, gender, source singing technique, and target singing
technique.

Three models were utilised in the study: Vs1, trained solely on VocalSet data;
Vs2, trained on all three datasets using the optimal path w.r.t. VocalSet evaluation
as shown in Table 6.1; and M1, trained on all three datasets using the optimal
path w.r.t. MedleyDB evaluation as shown in Table 6.2. Vs1 and Vs2 produce
converted audio originating from the VocalSet subset, while M1 converts only
samples from the MedleyDB subset. The pretrained WaveNet mentioned in Sec-
tion 6.2.2 was used to convert spectrograms to waveform audio formats.

6.4.1 Setup

Aspects of this listening study relating to the online web location, recruitment
process, interface design toolkit (WAET) and delivery of documentation and in-
structions, were set up in the same manner as in Section 5.2.3. The Gold-MSI
questions were omitted because it was not necessary to gather knowledge about
musical aptitude for the task, and the more compressed question asking partici-
pants about their relationship with audio/music would suffice without consuming
too much of the participant’s time. This question, along with other questions re-
lating to hearing impairments, device type, listening equipment, gender and age
are presented in Appendix B.1. Two practice rounds were also presented, were
participants were given 7 tasks from each type of question to perform.
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(a) Naturalness Task

(b) Similarity Task

Figure 6.7: Interfaces used for (a) the naturalness task, and (b) the similarity task

6.4.2 Task Description

Each participant assessed 8 random examples from each model, while a balanced
representation of gender and dataset subsets (for seen and unseen conversion) was
maintained among the stimuli. Figure 6.7 is presented to assist readers in under-
standing the tasks described in this section. For evaluating naturalness, partici-
pants were asked to rate the synthetic voices on a scale from 1 (very unnatural) to
5 (very natural), similar to a MOS interface. While the MOS scale is technically
by nature an ordinal scale, the descriptions accompanying each degree offer some
implication that these points are evenly distributed. The vast majority of previous
literature has reported the mean value of MOS results, and the word ‘mean’ is al-
ready present in its name. For these reasons, the means will be reported, although
some may argue that reporting the median would be more appropriate.

In a separate task to evaluate similarity, participants were provided with a
reference recording of a converted singing technique, along with 6 unlabelled
candidate recordings from the same singer. The candidate recordings featured
potential target techniques assigned to the reference recording. Participants were
required to select the recording that they believed best represented the singing
technique closest to that of the reference recording. Participants could select more
than one if they felt uncertain.

As MedleyDB does not have annotations for singing techniques, candidate
MedleyDB recordings showcasing each of the 6 singing techniques did not exist.
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Therefore for cases where the reference recordings were converted MedleyDB
examples, a singer of the same gender was randomly selected from VocalSet to
represent the 6 candidate singing techniques.

Each participant completed these tasks for each of the 24 stimuli. Additionally,
6 resynthesised recordings of unconverted audio were evaluated for naturalness.
These unconverted clips were obtained by converting audio waveforms into spec-
trograms and using WaveNet to convert them back to waveforms (without passing
through the AutoSTC model). It was expected that due to WaveNet’s training data
being of a different domain, it would produce some artefacts when inferring from
spectrograms of singer recordings, which should be accounted for. Rating un-
converted clips quantifies the amount of unnaturalness caused by the conversions
between spectrograms and waveforms. It allows the MOS for unconverted audio
to be considered as a normalising constant factor that can be applied to natural-
ness, and therefore attribute the appropriate amount of naturalness resulting from
the learned parameters of AutoSTC.
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6.4.3 Results

Naturalness and Similarity Scores

The MOS for unconverted data was 3.75 with a standard deviation of 0.34, and
is important to consider when analysing the results of the study. This highlights
the fact that a considerable amount of perceived naturalness has already been lost
during the wavenet resynthesis process, and that the MOS values for technique
conversion should be considered with this in mind. Having said that, it should
be restated that this experiment did not seek out SOTA results, but was instead
investigating the difference between converted audio under different conditions.

To calculate the similarity score S for each condition, we used the formula in
Equation 6.7, where Pn is a binary vector reflecting a participant’s true/false pre-
dictions (identifying whether each candidate technique was the same as what was
presented in the reference audio) for the nth task, Cn is a 1-hot vector reflecting
the correct technique for the task, and N is the total number of tasks in the given
condition. The similarity score is an average count of correct predictions weighted
by the reciprocal of the number of predictions made for the corresponding task.

S =
1

N

N∑
n=1

Pn.Cn

||Pn||1
. (6.7)

For example, consider a participant was tasked with finding the correct target
technique for a reference recording containing a belt→vibrato converted audio
clip. If the participant chose vibrato, belt and breathy, the final similarity score
for the reference recording would be 1

3
. If the participant incorrectly chose vocal

fry, then the similarity score would be 0.
Figure 6.8 displays the results obtained from the listening study. These are

colour-coded by the condition groups: model (blue), subset (green), gender (cyan),
source technique (magenta) and target technique (yellow), where ‘subset’ differ-
entiates whether the source singer was seen during AutoSTC training or not. The
graphs’ whiskers indicate the confidence intervals. The top graph displays MOS
values for naturalness. It displays the MOS for unconverted audio in red above the
‘org’ label. This inclusion inherently normalises the graph scale which is intuitive
as ‘org’ MOS represents the upper bound ceiling score. The lower graph displays

152



Figure 6.8: Bar graphs displaying listening test scores. Condition groups are
colour-coded together from left to right as: models, subsets, genders, source tech-
niques and target techniques. Top: Naturalness (MOS values and confidence in-
tervals) for all conditions. Bottom: Similarity scores as determined by Equation
6.7.

similarity scores. The combination of these two graphs provides insight into how
each of the models performs, and what conditions influence the naturalness and
similarity of the converted singing. The majority of similarity scores across all
conditions were higher than the probability of random guessing, which is 0.167.
From a Spearman’s rank analysis, it was observed that naturalness and similarity
scores exhibited no significant correlation.

Discussion

Samples of naturalness scores of each condition were tested against other sam-
ples of the same condition for statistically significant differences using a Mann-
Whitney U test, after the samples failed the normalised distribution test described
in Section 5.3. The same was done with samples of similarity scores. Tables 6.3
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and 6.4 present statistically significant differences detected among samples for
naturalness and similarity ratings, respectively.

Condition Group Group 1 Group 2 U p
Model Vs2 Vs1 13088 < 0.04
Model Vs2 M1 13884 < 0.002
subset seen unseen 30362 < 0.001

source technique fry belt 658 < 0.018
source technique fry trill 1209 < 0.03
source technique fry straight 1750 < 0.02
source technique fry vibrato 2932 < 0.001
source technique fry breathy 2864 < 0.001
target technique belt trill 4123 < 0.001
target technique belt fry 3421 < 0.04
target technique belt vib 2323 < 0.03
target technique trill breathy 1114 < 0.001
target technique trill straight 915 < 0.001
target technique trill fry 2164 < 0.001
target technique trill vib 1201 < 0.001
target technique fry vib 2090 < 0.001
target technique fry breathy 1830 < 0.001

Table 6.3: Mann Whitney U results for significant differences between sample
groups relating to naturalness.
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Condition Group Group 1 Group 2 U p
Model M1 Vs1 8378 < 0.001
Model M1 Vs2 9143 < 0.001
target t trill belt 3595 < 0.01
target t trill straight 2247 < 0.001
target t trill fry 4353 < 0.001
target t trill vib 4503 < 0.001
target t breathy belt 3541 < 0.01
target t breathy straight 2261 < 0.001
target t breathy fry 3786 < 0.001
target t breathy vib 3899 < 0.001

Table 6.4: Mann Whitney U results for significant differences between sample
groups relating to similarity.

The Vs2 sample was significantly higher than Vs1 and M1. This suggests
that providing the network with multiple datasets improves its ability to synthe-
sise more natural-sounding data, but suggests that AutoSTC does not generalise
well to unseen datasets of different distributions. The source technique fry led to
significantly lower naturalness ratings. This is likely because there may be large
acoustic variances among singers’ execution of the fry technique. The target tech-
nique trill received the lowest score and was statistically lower than all other target
condition samples, It is possible that the acoustic features for this technique re-
quire high-fidelity synthesis due to its salient features residing in high frequency
content. The target technique condition vibrato scored the highest, and was statis-
tically higher than all other samples, except that of breathy. This may be because
the network is making very subtle changes when synthesising the vibrato tech-
nique that do not relate to frequency modulation, resulting in fewer audio artefacts
(this will be expanded upon in the last paragraph of this section). It could, how-
ever, also be the case that participants perceive the singing voice as more natural
when vibrato is present.

The inclusion of all datasets in training Vs2 seemed to diminish its ability
to accurately convert techniques, although the similarity samples for this condi-
tion were not statistically significant from Vs1. The M1 model was statistically
worse than both other models, indicating that the features learned to generate tech-
nique embeddings from the STE encoder were not generalisable to data outside
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the dataset it was trained on. No statistically significant difference was found
between the condition groups for gender, subset or source technique groups.

When the target techniques were trill and breathy, this lead to the highest
scores, and samples from these groups were statistically higher than all other
groups apart from each other. This suggests that the conversions to a trill tech-
nique may be easily identifiable, even if its not very natural. The model also seems
do comparatively well at converting to breathy techniques, possibly because the
acoustics of air turbulence are easier for the model to synthesise, or present a clear
aural cue for this type of phonation.

Notably, when the target technique was vibrato, models scored the lowest for
similarity (although this was only statistically significant when compared to the
trill and breathy techniques). This suggesting that synthesising this technique was
particularly challenging. This difficulty can be attributed to the fact that many
non-vibrato examples in VocalSet also feature a substantial amount of frequency
modulation (the fundamental feature of vibrato), implying the multi-class nature
of the data, despite the fact that the ground truth labels only feature a single class
per recording. As a result, disentangling this confounding feature from other tech-
niques was likely a challenge for AutoSTC, and it would have instead focused on
other features associated with vibrato (such as the phonation mode), which would
be less apparent to listeners than the presence of frequency modulation.
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6.5 Conclusion

In this experiment, a network for vocal technique classification has been proposed,
achieving an average score of 75% accuracy on VocalSet data. The design of
this network made it possible to re-purpose the influential AutoVC network for
the task of STC, making it the first network to perform zero-shot conversion on
singing techniques at the time of publication. Preliminary experiments demon-
strated that including the LBN loss (Eq. 6.2) significantly slowed down conver-
gence w.r.t. reconstruction loss and led to significantly worse audio output. It has
been demonstrated that the order in which the model is trained on datasets makes
a difference to how well it is primed to perform on the final dataset, and thereby
improves its ability to reconstruct input spectrograms.

However, it has been observed from the results of the listening study that im-
provements to reconstructed data does not necessarily imply that the performance
of STC will also improve. As the inclusion of multiple datasets seemed to dimin-
ish the model’s performance in STC, the conclusion can be drawn that features
generated by the STE encoder were not robust enough to generalise to recordings
from other datasets.

6.5.1 Future Work

As the STE encoder was trained via supervised learning using the VocalSet data,
it is reasonable to deduce that the contents of VocalSet are too restrictive in their
representation of the singing voice to be generalisable. Additionally, it is consid-
ered that the presence of frequency modulation in other techniques in VocalSet
may have influenced the STE encoder to give less importance to this feature w.r.t.
encoding vibrato. During the developmental stage, there were some limited cases
where AutoSTC successfully converted to a vibrato technique with frequency
modulation, suggesting that AutoSTC is capable of converting singing technique
features of a temporal dependency. To train a robust STC model, however, would
require datasets with multi-class labels.

The use of augmentation techniques when training the STE may potentially
improve the generalisation of the network for unseen data. Applying the GE2E
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loss [Wan et al., 2018] to the STE to fine-tune its output embeddings is an alterna-
tive unexplored method. However, due to VocalSet’s shortcomings, it seems clear
that using this dataset is not an optimal solution to achieve STC.

In addition, it may be worth investigating how AutoSTC performs when con-
ditioned on more attributes such as speaker identity, pitch contour, and vowel
sound. Considering STC as a similar task to VC and the availability of consid-
erably larger datasets for speech, it may also worthwhile to explore the effects of
pretraining the model for VC using a VIE encoder, before switching to the STE
encoder and training it for STC.

In future work, alternative options to the speech-trained wavenet vocoder will
be considered, as it has introduced artefacts to the audio and proven to induce
lower MOS ratings on converted resynthesised audio. Recent alternatives have
been proposed in Section 4.4.5.
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Chapter 7

Singing Voice Identity Embedding
and Conversion

7.1 Introduction

7.1.1 Motivation

In the previous chapter, an STE encoder was the conditioning factor to an STC
network. The converted results were generated using the VocalSet evaluation set,
and were only partially convincing. It was deduced that the dataset the encoder
was trained on, VocalSet, represented singing techniques in a way that did not gen-
eralise to unseen data. This was concluded when STC was performed on audio
from external datasets using an STE encoder pretrained on VocalSet was consider-
ably less successful than within-dataset inferences. It therefore seems appropriate
to consider alternative methods of STC that do not rely on specifically labelled
data and can generalise to the majority of singer recordings.

One method of approaching vocal attribute disentanglement for which labelled
data is scarce, is to exhaustively disentangle all information for which labelled
data is already available. This would leave residual information encoded from
vocal input signals relating to attributes such as singing techniques and other in-
formation that is unaccounted for by labelled data [Hsu et al., 2019]. These resid-
ual encodings, if captured as probability statistics in a VAE system, could then be
manipulated to perform more realistic conversions than those achieved in Chapter
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6. Attributes that are strongly labelled or can be deterministically inferred in-
clude pitch, loudness and phonetics. However, the most frequently sought-after
vocal attribute for conversion is voice identity. While this is often considered a
global attribute for each vocalist, it is more elusive in that it requires descriptive
embeddings that heavily rely on timbral qualities which are dynamic in nature.

7.1.2 Chapter Summary

As a step towards unlabelled singing voice attribute conversion (SVAC) by ex-
haustive disentanglement, this chapter focuses on the process of VIC (first de-
scribed in Section 4.4.4), ensuring that the established conversion systems are
also appropriate for SVIC. It repurposes AutoVC for the task of SVIC, which as
done in the previous chapter, can be separated into two parts: the SVIC network
(the autoencoder) and the pretrained VIE encoder. This model will herein be re-
ferred to as AutoSVIC, reflecting the purpose of its current implementation, and
will be discussed in detail over two separate sections.

The first section compares how a VIE encoder performs when trained on dif-
ferent features. After establishing the ideal feature set, it proceeds by investigating
the difference in performance between same and cross-domain inference. Often in
literature, the concept of transfer learning is used to justify cases where a model
trained on one domain can be used on another related domain, such as using a
VIE encoder pretrained on speech to infer from singing data [Nercessian, 2020,
Demirel, 2022, Polyak et al., 2020, Toda et al., 2023]. There is not a lot of research
that attempts to measure how similar the speech and singing domains are, and the
potential differences in performance between same and cross-domain applications
are seldom measured.

The second section describes the process of SVIC, where an AutoSVIC model
is used to investigate the effects of using pretrained VIE encoders for same and
cross-domain applications. It also challenges the justification of including certain
loss components in the objective function and offers alternatives. Objective met-
rics and subjective human evaluations were collected w.r.t the audio outputs of
models trained on these different loss functions to deduce how they affected the
model and audio.

160



Audio examples relating to this chapter can be heard in the accompanying
online repository1.

7.2 VIE Experiments

The VIE encoder is a NN designed to encode spectrograms finite embedding space
that represents the voice. As described in Section 6.2.2, it is trained to ensure
that its output embeddings represent variances of the input signals that are most
relevant towards the identity of the vocalist. The VIE encoder is a fundamental
component in the architectures of many VIC models, used to provide descriptive
representations (unlike one-hot encodings) of voices that can be used for attribute
disentanglement.

This section covers a set of experiments focused on the VIE encoder, which
will later be applied as a conditioning factor to the SVIC network (the autoen-
coder) in Section 7.3, the combination of which amounts to the AutoSVIC sys-
tem. Feature sets are explored, optimised and tested in the speech and singing
domain to determine which ones lead to the encoder’s best performance. The best
features are then used to investigate how well the encoder performs cross-domain
inference in comparison to same-domain inference. In this chapter, ‘vocalist’ will
be used as an umbrella term that can refer to either speakers or singers, depending
on the context.

The VIE encoder’s generalised end-to-end (GE2E) loss function [Wan et al.,
2018] facilitates self-supervised training by contrastive learning, encouraging the
model’s output embeddings to cluster together in latent space when they originate
from the same vocalist. Details on how this is achieved are provided in Section
4.4.1.

1https://trebolium.github.io/vc_for_singing
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7.2.1 Input Features

DAMP Intonation Dataset

The performances of VIE encoders used under the various feature conditions de-
scribed in this section were trained and evaluated on the DAMP Intonation (DI)
Dataset [Wager et al., 2019]. This dataset is a collection of 4702 recordings
(consisting of 3556 singers and 474 songs) of singers with strong intonation, ex-
tracted from the parent repository, the Digital Archive of Musical Performances
(DAMP)2, which is available to the public by request. These recordings were
originally collected by the karaoke application, Smule3, primarily consisting of
amateur singers recorded with amateur equipment, such as smartphones. This
means there is inherently a considerable amount of background noise such as
faintly heard backing tracks, ambience and other miscellaneous sound events.
It also consists of many non-singing segments due to singers waiting for their
backing tracks’ instrumental sections to conclude. The contents of the Intonation
dataset were selected from the DAMP dataset by its authors [Wager et al., 2019]
based on semi-supervised methods using MIR-related features. For this experi-
ment, silences of the DI dataset were removed using the same desilencing process
described in Section 6.3.1.

WORLD Spectral Envelope Generation

Since its publication in 2016, the WORLD vocoder’s features [Morise et al., 2016]
have been frequently used for voice-modelling tasks across the literature. As pre-
vious voice conversion literature primarily makes use of either mel-spectrograms
or features originating from the WORLD spectral envelopes, WORLD features
were selected as a contending feature input to the VIE encoder. A Python wrap-
per for WORLD4 was used to generate these features. However, there is a consid-
erable amount of inconsistency regarding how these features are generated, and
little explanation for the specifications used.

2https://ccrma.stanford.edu/damp/
3https://www.smule.com
4https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder,

v 0.3.2
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In an attempt to rectify this, multiple parameter adjustments were made, devi-
ating from their default settings, to determine whether any of these changes had
a significant effect on the task of generating well-defined VIEs. The adjusted pa-
rameters included: expanding the F0 range from 71-800Hz to 50-1100Hz, based
on the extended frequency range of singers’ capabilities [Hess, 2012]; switching
between the two pitch estimation algorithms, ‘Dio’ and ‘Harvest’; and frame du-
ration between 5ms and 10ms, based on what has been used in previous literature.

The harmonic output features of WORLD were then reduced to 80 dimensions
(and where applicable, the aperiodic features were reduced to 4 dimensions), via
the dimensionality reduction process outlined in Section 4.3.55, yielding a com-
pressed 80-dimensional version of a harmonic spectral envelope, computed for
human perception in the form of log MFSCs. Mel-cepstral coefficients (MCCs)
have also been predominantly been used in previous literature for voice-modelling
tasks. WORLD’s original output spectral envelope, MFSCs, and MCCs were
tested as input features to the VIE encoder in chunks of 128 successive frames,
representing a total duration of approximately 2 seconds of audio.

Additional WORLD Features

The effect of including WORLD’s aperiodic information in the feature input was
also investigated. If effective, a post hoc comparative test with a clean dataset
without noisy recordings, like VocalSet, would be necessary to determine whether
the aperiodic information contains voice-specific information, or whether the GE2E
loss improves due to cues in the background noise informing the encoder which
recording (and therefore voice) is which.

Considering the differences found in the perceptual maps in Section 5.3.4 be-
tween low and high registers, as well as Sundberg [1977]’s report on pitch registers
affecting the voice organs, the inclusion of pitch information was also investigated
to determine whether it would lead to more efficient convergence. Pitch informa-
tion was first obtained from the WORLD vocoder, which comes in a tuple format
of F0 frequency floats and voiced/unvoiced booleans. The F0 data was converted

5The implementation of WORLD feature post-processing by the authors of https://
github.com/MTG/WGANSing was used to transform the spectral envelope.
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F0 Range Pitch
Algorithm

Pitch Aperiodicity Frame
duration

Post-
processing

50-1100Hz Dio False False 5ms MFSCs
71-800Hz Dio False False 5ms MFSCs
50-1100Hz Harvest False False 5ms MFSCs
50-1100Hz Dio True False 5ms MFSCs
50-1100Hz Dio False True 5ms MFSCs
50-1100Hz Dio False False 10ms MFSCs
50-1100Hz Dio False False 5ms MCC
50-1100Hz Dio False False 5ms None

Table 7.1: WORLD parameter configuration comparison. Entries for Pitch and
Aperiodicity columns indicate whether these were included in the input features,
while text in bold highlights the change being tested from the baseline (top row)
configuration.

to a MIDI one-hot encoding format. This ranged from 31 (note G1) to 84 (C6), re-
flecting the singers’ extended range of frequencies. An additional dimension was
added for unvoiced segments, giving a total dimensionality of 55 × 128 = 7040

(pitch × timesteps).
Table 7.1 presents a comprehensive display of what configurations were changed

when engineering WORLD features to be used as input features to the VIE en-
coder.

Results

Figure 7.1 shows the resulting loss contours for VIE encoders when trained on
each variation of the aforementioned features, where the legend’s labels indicate
which parameter was changed. It is clear that WORLD’s unprocessed spectral
envelope led to the worst results. MCCs performed significantly better. However,
MFSC-based features performed best, and all variations of these features (except
for frame duration adaptation) had no effect on either the speed of convergence
or minimal loss values. It can be concluded from this result that: the pitch range
71-800Hz (WORLD’s default setting) is enough to capture the frequency range of
singing voices in this dataset that is relevant to voice identity; WORLD’s different
pitch estimation algorithms have a negligible effect on spectral representation; the
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Figure 7.1: GE2E loss contours for VIE encoders using different variations of
WORLD feature. Legend indicates which parameter of the WORLD generation
process was changed. The contour for ‘frame duration’ only covers training steps
from 12500 to 27500 due to lost data, but still conveys the drop in loss caused by
this adaptation.

behaviour of aperiodic features is not unique to each singer; and pitch information
was not useful for discriminative VIE generation. The latter result was particu-
larly surprising, as it was expected that providing some register-based information
would imply some expectancy of how the vocal organs’ configurations might af-
fect the timbral output. Accepting the null hypothesis, however, suggests that this
effect is negligible or indistinguishable among vocalists.

While doubling the frame duration significantly reduced the GE2E loss, this
adjustment effectively doubled the length of the input window and was retrospec-
tively disregarded as a meaningful configuration manipulation. This is because as
the temporal context of the input increases, the corresponding averaged embed-
dings will be inherently closer to the centroid of the cluster for a given vocalist,
which leads towards a reduction in GE2E loss values which is not related to an
improvement in VIE generation.
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7.2.2 WORLD versus Mel-Spectrogram Features

Having concluded that WORLD’s MFSC-based features of any variation led to
the VIE encoder’s best GE2E loss contours, this variation of WORLD features
using WORLD’s default settings as seen in the first entry of Table 7.1 was used
(herein simply referred to as WORLD features). These features could then be
compared against mel-spectrogram features for the task of VIE generation. Both
feature types were generated from data represented at a sampling rate of 16kHz,
using an FFT frame length of size 1024 with a hop length of 256 samples (frame
duration of 16ms). Each feature set was reduced to a dimensionality of 80 and was
again fed in chunks of 128 timesteps to the VIE encoder. Detailed descriptions for
how each of these feature types is generated can be found in Section 4.3. The DI
and VCTK datasets, representing singing and speech data respectively, were used
to see how the use of each of these features affected VIE generation in the context
of singing and spoken domains.

Results

Figure 7.2 shows the GE2E loss contours of the VIE encoder when trained on
each dataset with each set of features, amounting to four training sessions in total.

The WORLD loss contours (dashed lines) begin with a considerably lower loss
value than the mel-spec loss contours, suggesting that the reduction of information
in the spectral envelope is an effective approximation towards the concept of VIEs.
However, after approximately 30k training steps, the mel-spectrogram contours
cross over the WORLD contours, suggesting that while spectral envelopes are
suitable approximations, the spectral detail of mel-spectrograms provides addi-
tional information that correlates with the identity of the vocalist. This behaviour
between mel-spectrograms and WORLD features is the same for both the speech
and singing datasets and so it can be concluded that mel-spectrograms are the
superior feature representations for such tasks.

Pitch features (generated in the same manner as described in Section 7.2.1)
were concatenated with mel features in a separate training session in an attempt to
speed up convergence. However, no noticeable difference was observed between
this model and one trained with only mel-spectrogram features.
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Figure 7.2: GE2E loss contours for VIE encoders over 160k training steps, trained
on the DI (blue) and VCTK (red) when trained on mel (solid lines) and World
(dashed lines) features.

7.2.3 Domain Task Comparisons

This section describes the process of generating datasets, and training and evalu-
ating VIE encoders in the context of same and cross-domain inference.

Dataset Curation

As the most suitable set of features for VIE encoding have been established, an
investigation into how VIE encoders perform cross-domain tasks between speech
and singing could now be conducted using these features. Customised subsets of
the LibriSpeech [Panayotov et al., 2015] and DI datasets were used to separately
train two VIE encoders on either speech or singing.

A subset of the LibriSpeech dataset, labelled as ‘other’, contains noisy audio
recordings of a similar nature to the DI dataset. Preliminary auditions of the Lib-
riSpeech subset confirmed that it consisted of amateur recording techniques with
imbalanced frequency responses and background noise that are comparable with
DI’s audio quality (for this reason, LibriSpeech was chosen over VCTK to rep-
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resent speech in this experiment). It was subjected to the same aforementioned
loudness detection algorithm as the DI dataset. It was then curated so that the
durations of content per vocalist were the same as those of the DI dataset. A sub-
set of the DI dataset was also generated, so that it contained the same number of
vocalists as the LibriSpeech subset. Both subsets contained 1233 vocalists and an
average of 166 seconds of content per vocalist. These subsets are herein referred
to as DI 1.2k and LS 1.2k. Furthermore, these were randomly split by vocalist
into train and validation subsets by a ratio of 8:2.

As the intention of this experiment was to compare how well the two trained
VIE encoders generalised to cross-domain and same-domain data, it would be
biased to compare inferences from a dataset that either encoder was trained on.
For example, it would not be particularly useful to compare the loss values of
both encoders on the DI dataset, while one of them was already pretrained on data
from this same distribution.

A third dataset was therefore chosen for evaluation, allowing for a more robust
claim of generalisation between all domain comparisons. The NUS dataset [Duan
et al., 2013] was an ideal choice for dual-domain comparisons, as it conveniently
contains 12 vocalists, both singing and speaking the same text in different parti-
tions, making it well-balanced in content. This was also subjected to the same
desilencing process as previously described. Each partition was independently
used to evaluate the VIE encoder for same-domain and cross-domain inference.
The average GE2E losses for each model were obtained to determine how effec-
tively they produced vocalist-specific VIEs.

Imbalanced Dataset Comparison

It is well known that speech datasets are of many orders larger than singing
datasets. It is therefore also relevant to investigate whether enough information
can be extracted from very large speech datasets in order to generalise to singing
data. The VIE encoder used was supplied by [Qian et al., 2019]6 and pretrained
for 1 million training steps on the entirety of LibriSpeech and VoxCeleb1 [Nagrani
et al., 2017] (herein abbreviated together as LSVC), the latter of which contains

6The trained model’s parameters were provided at https://github.com/
auspicious3000/autovc
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noisy, untreated spoken audio segments extracted from YouTube clips. It has
therefore been trained on roughly 22k hours of diverse spoken content (roughly
500 times as much data as seen in the DI 1.2k pretrained encoder), giving it an
advantage of potentially learning more information that may lead towards better
generalisation for singing voice inference. This encoder is also included in our
NUS evaluations.

GE2E Losses

Figure 7.3 displays the GE2E loss contours of models trained on DI 1.2k and
LS 1.2k. During training, both models stopped converging at a GE2E loss value
of approximately 0.094, within the 90kth iteration period (although models re-
mained training until 100k training steps were completed). Both contours display
similar bumps when reaching loss values of 0.6 and 0.4, suggesting some struc-
tural similarities in data encodings between the singing and speech domains. It
can also be seen that the encoder trained on singing initially converges slightly
faster.

Pretraining a network on one domain has been known to prime it with priors
that are partially generalisable to another related domain, giving it a head start in
comparison to a network that is initialised with random weights. This is illustrated
via the solid pink contour in Figure 7.3, which represents the GE2E loss of an
encoder that was trained on the DI 1.2k dataset, but was pretrained on LS 1.2k.
This model only requires approximately one-tenth the number of training steps
as an encoder without pretraining to converge. This encoder has benefited from
seeing both datasets, allowing it to achieve the lowest recorded loss of 0.076.

GE2E losses generated from NUS-based inferences are presented in Table
7.2, with a breakdown of the differences in loss when comparing cross-domain
to same-domain applications. An increase in the GE2E losses is evident when
comparing cross-domain to same-domain inferences. This gap is significantly
smaller for the encoder pretrained on singing. This suggests that using a speech-
pretrained encoder on singing data for VIE generation would be less success-
ful than the inverted scenario of using a singing-pretrained network on speech
data. Interestingly, the loss gap between same and cross-domain inferences for the
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Figure 7.3: GE2E contours displaying VIE encoders separately trained on
LS 1.2k (red) and DI 1.2k (blue) datasets. The pink contour is based on an en-
coder that was pretrained on LS 1.2k and continued training on the DI 1.2k.

LSVC-pretrained encoder is slightly larger than that obtained from the LS 1.2k-
pretrained encoder. This suggests that the provision of more speech data further
fined-tuned the LSVC-pretrained encoder for speech, and consequentially led to-
wards a larger loss when inferring from singing data.

Training Data Evaluation Data GE2E Loss Loss Difference
DI 1.2k (singing) NUS (singing) 0.52

0.09
DI 1.2k (singing) NUS (speech) 0.61
LS 1.2k (speech) NUS (speech) 0.33

0.42
LS 1.2k (speech) NUS (singing) 0.75
LSVC (speech) NUS (speech) 0.42

0.45
LSVC (speech) NUS (singing) 0.87

Table 7.2: Presents GE2E losses for multiple VIE encoders, pretrained on either
the LS1.2k or DI 1.2k and evaluated on NUS speech or singing subsets. The ‘Loss
Difference’ column displays the increase in GE2E loss incurred when the encoder
goes from same to cross-domain inference.
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Embedding Visualisations

Differences in GE2E loss metrics alone do not provide much intuition about how
exclusively these embeddings describe their respective vocalist, which in latent
space would be reflected by compact clusters of same-vocalist embeddings. It
is also unclear how significant these differences are for downstream tasks. To
visualise this, the t-SNE algorithm was applied to VIE encoder outputs generated
from the NUS dataset. This allows each embedding to be represented as a point
on a 2-dimensional plane. The distance between points indicates how different the
embeddings are from one another. This allows for a visualisation of how compact
singer embedding clusters are. The results of this process are shown for encoders
pretrained on the LS 1.2k (Figure 7.4), DI 1.2k (Figure 7.5) and LSVC datasets
(Figure 7.6) when inferring from the NUS speech data, as well as singing data.
Male and female embeddings are represented by circles and ‘x’s respectively.

All encoders for each domain produce clusters of vocalist-specific VIEs. VIE
clusters exhibit more separation in same-domain cases than in cross-domain cases.
While Figure 7.6 suggests that the LSVC-pretrained encoder produces the strongest
clustering cohesion and separation seen among these maps, which was for same-
domain speech inferences, the difference between same and cross-domain infer-
ences are generally similar between the LS 1.2k and LSVC pretrained encoders.
These observations are in line with the results shown in Table 7.2, where the loss
difference between the LSVC and LS 1.2k was very small.

A segregation between the genders can be seen for speech domain t-SNE
maps, while singing domain maps do not exhibit separation to the same mag-
nitude. It is hypothesised that this is due to the fact that in the case of speakers,
the F0 range has smaller variances and larger differences in mean between the
genders. The same gap is less pronounced, with wider variances in singing data.
Genders were not explicitly given as part of the NUS dataset, and so they were
inferred upon aural examination by the author to provide some insight7. Any
other patterns of clustering behaviour among the t-SNE plots are too ambiguous
to comment on.

7While subjective gender approximation is currently a delicate topic, it should be clear that this
was only done as a last resort due to lack of data, and provides some general insight into how the
models encode the aural qualities that most frequently succeed in differentiating the two genders.
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(a) Speaker embeddings generated from the LS 1.2k-trained encoder

(b) Singer embeddings generated from the LS 1.2k-trained encoder

Figure 7.4: t-SNE generated maps of VIEs representing (a) speech and (b) singing
clips from the NUS dataset, generated from encoders trained on the LS 1.2k
(speech) data.
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(a) Speaker embeddings generated from the DI 1.2k-trained encoder

(b) Singer embeddings generated from the DI 1.2k-trained encoder

Figure 7.5: t-SNE generated maps of VIEs representing (a) speech and (b) singing
clips from the NUS dataset, generated from encoders trained on the DI 1.2k
(singing) data.
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(a) Speaker embeddings generated from the LSVC-trained VIE

(b) Singer embeddings generated from the LSVC-trained VIE

Figure 7.6: t-SNE generated maps of VIEs representing (a) speech and (b) singing
clips from the NUS dataset, generated from encoders trained on LibriSpeech and
VoxCeleb1 data.
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Differences and similarities between balanced and imbalanced dataset com-
parisons have been measured and illustrated. As a matter of relevant interest to
the field, the implications of the differences between speech and singing-trained
encoders on SVIC will be examined in the proceeding section, along with other
conditions devised from separate motivations.

7.3 Singing Voice Conversion Task

This section describes experiments using the AutoSVIC network to facilitate the
task of SVIC. The architecture (excluding the conditioning encoder) is the same
as that of the AutoSTC model used in Chapter 6. As AutoSVIC makes use of VIE
encoders, it inherently is trained to disentangle voice identity information from
the input signal. If this is done correctly, the bottleneck should have the capac-
ity to encode only non-identifying information such as pitch infrmation, singing
techniques, phonetics and other variances that are unaccounted for. In the speech
domain, there is some dispute over whether accent is included in timbral percep-
tion. However, this is usually outside the scope of SVIC research, likely due to
very little accent diversity within datasets.

In this section, trained models are compared against one another to determine
how they are affected by several conditions which include using VIE encoders
trained on different domain data, and different loss functions. SVIC and resyn-
thesis are achieved in the same manner as described in Section 6.2.2: during the
inference phase, the pretrained encoder receives target singer data and the same
WaveNet vocoder described in Section 6.2.2 facilitates spectrogram-to-waveform
conversion. These voice-converted audio clips are subsequently used in a lis-
tening study in order to evaluate the models’ performances. Objective measure-
ments such as reconstruction loss, cosine similarity, and singer classification are
also used to provide more insight into the models’ performance and how this was
achieved.
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Figure 7.7: Diagram of the VIE encoder and the SVIC network components in the
AutoSVIC network, with a secondary cycle partition illustrating how encodings
for the reconstructed data are obtained (as explained in Figure 6.1). Vector com-
parisons used for reconstruction loss (Lrec), bottleneck regressor loss (LBN ) and
singer identity embedding regressor loss (LVIE ) are shown with dotted connec-
tors. X represents a mel-spectrogram and BN represents the residual data (singer
identity-independent information) encoded in the bottleneck.

7.3.1 Loss Function Comparison

Findings in Chapter 6 included the fact that AutoVC’s LBN loss (described in
Section 6.2.2) hindered performance when doing singing technique conversion
tasks [O’Connor et al., 2021]. This experiment was designed to deduce whether
the exclusion of this loss would also be beneficial in the context of SVIC. As an
alternative solution, the notion of a latent regressor w.r.t. the VIE embeddings was
also proposed, as this was hypothesised to improve performance without the need
for bottleneck capacity calibration. An illustration of how each of these losses
relates to the AutoSVIC system is provided in Figure 7.7.

Three AutoSVIC models were trained for 500k iterations using a batch size
of 2, an L1 reconstruction loss, a learning rate of 10−4, the ADAM optimiser, and
mel-spectrogram features (extracted from the DI dataset in the same manner as
described in Section 7.2.2) as input features to both the VIE encoder and SVIC
network.

The effects of loss components on SVIC are being investigated in this experi-
ment, and no claims are being made regarding SOTA results. Consequently, the DI
dataset by which AutoSVIC was trained was reduced to 25% of its original size
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(a different reduction to the subset generated for VIE training, but maintaining
the same train and test subset ratios) for the sake of economical experimentation.
Computational time was further reduced by precomputing singer VIEs. This was
done by computing the mean of all VIEs collected for each singer. The precom-
puted VIEs are stored in a lookup table for retrieval during the training phase.

The models are listed as follows, accompanied by a description of how they
differ from one another:

• DI: Use of the DI-pretrained VIE encoder, using the reconstruction loss
only

• DI-VIE: Use of the DI-pretrained VIE encoder using the reconstruction and
LVIE loss

• DI-BN: Use of the DI-pretrained VIE encoder using the reconstruction and
LBN loss

7.3.2 Disparity between Same and Cross Domain Inference

To confirm that there is a significant difference in performance when a VIC model
pretrained on one voice domain must infer from another, a preliminary experi-
ment was first conducted to demonstrate the disparate outcomes between same
and cross-domain inferences. This was done by training an AutoVC model on 20
speakers from the VCTK dataset as described in the original work [Qian et al.,
2019] for 500k training steps, using the LSVC-trained encoder. A second model
was trained on a reduced DI dataset. Multiple examples of speech and singing
audio clips were then fed to the AutoVC models for resynthesis in their voice-
converted forms. Examples of this can be heard in the online repository provided
at the beginning of this chapter.

While speech-converted audio generated from a speech-trained model mimics
the phonetic content, prosody and timbre of the source recording, none of these
aspects remain intact when the model attempts to convert singing data. The con-
verted audio contained very different phonetics to the original audio. There are
often fast successions of variable phonetics being produced in place of sustained
vowels. While some phonetic approximations are reasonably similar, the majority
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are unpredictable and rapid, suggesting that the speech-pretrained network has dif-
ficulty dealing with sustained vowels, causing shifts in the probabilistic outcome
that would be of a frequency more typically seen in speech data. Converted audio
clips possess some changes in pitch that are influenced by the input. However,
the variance of the pitch in converted audio is significantly smaller than that of
the source inputs, matching the frequency range of speaker prosody rather than a
singer’s F0 range. Most importantly, the converted voice identity (or even gender)
is seldom similar to the target singer’s voice.

The reverse case, where a singing-trained model takes speech as its input for
conversion, also yields peculiar artefacts. The converted audio clips frequently
exhibit a pseudo-quantization of the speaker’s pitch, resulting in melodic instead
of prosodic pitch contours. There are also octave leaps that cause disjointed pitch
contours, counteracting the general shape of the prosodic line. As with the speech-
trained conversions on singing data, the resulting audio frequently does a poor job
of converting the singer identity and can even get the gender wrong.

Based on these artefacts and differences, it is clear when comparing speech
conversions against singing conversions that using a voice conversion model for
cross-domain inference is far from suitable, thereby justifying an investigation
into how much the history of the pretrained encoder contributes towards Au-
toSVIC’s reconstruction and conversion capabilities.

7.3.3 Same and Cross-Domain VIE Encoder Comparison

In the previous section, differences between GE2E losses were established for
same and cross-domain applications of the VIE encoder. Visualisations via t-
SNE plots affirmed these differences, but the question of how significant these
differences are and how they affect downstream tasks remained uncertain. It was
concluded that singing data has more generalisable information than speech data.
It would be reasonable to assume that SVIC models conditioned on these same
VIE encoders would perform similarly in comparison to each other. Having now
demonstrated disparity in cross-domain applications of VIC models, an investiga-
tion on how this is affected when only the VIE encoder of an AutoSVIC model is
pretrained on speech data can be conducted, while the rest of AutoSVIC is trained
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on singing data. It was anticipated that this would have a smaller but noticeable
effect of deterioration in AutoSVIC’s performance.

However, another unanswered question that would be of considerable interest
to other researchers is whether a VIE encoder pretrained on large-scale speech
datasets would yield similar results in a downstream SVIC task, as this addresses
more real-world circumstances where VIE models have been pretrained on speech
datasets many times larger than singing datasets. For this reason, the following
fourth AutoSVIC model was trained in the same way as the original three from
Section 7.3.1, and compared against the DI-BN model:

• LSVC-BN: Use of the LSVC-pretrained VIE encoder, using the reconstruc-
tion and LBN loss

7.3.4 Evaluation

Listening Study Evaluation

For subjective evaluations, a listening study was conducted, consisting of 23 par-
ticipants aged between 24 and 53 years old. Aspects of this study relating to
the online web server, recruitment process, interface design toolkit (WAET) and
delivery of documentation and instructions, were set up in the same manner as
in Section 5.2.3. Each participant was given two tasks for each of the stimuli,
instructed via the following prompts:

• Naturalness Question: ”Click the PLAY button and rate how natural/realistic
this voice is, on a scale of 1 (very unnatural) to 5 (very natural)”

• Similarity Question: ”Do the vocalisations from the REFERENCE and
PLAY audio sound like they could have been made by the same singer?
Rate using the scale from 1 (definitely not) to 5 (definitely)”.

The interface for each type of question consisted of a reference recording and
a 5-point Likert scale. The similarity question also included an audio clip of the
target singer that participants used for comparison with the reference recording.
While the wording of the similarity question might seem awkwardly phrased, it
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was carefully crafted so as not to give participants the impression that the voices
were meant to sound the same. It also ensures that participants consider only
the identity of the singer in their rating, rather than conditioning their answer on
the similarity of other vocal attributes alone such as timbre, singing techniques,
resonance, or musical ability.

Participants were given a practice round consisting of 4 naturalness and 4 sim-
ilarity questions, to get familiar with the interfaces and tasks before beginning
the recorded part of the study. The results of this study will be presented and
discussed in Section 7.3.5.

Objective Metrics Evaluation

As the audio quality in the models’ outputs degrades, participants’ ability to as-
sess similarity between a target singer and the converted audio’s singer may suffer.
Perception of naturalness and similarity could therefore be correlated. Analysis of
the models’ performances therefore included cosine similarities between VIEs of
converted audio clips and the target audio from which they were generated. This
allows for the investigation of the models’ conversion performance in a manner
that is disentangled from naturalness. Having observed the results between cosine
and subjective similarity, analysing the visualisations of the embedding space and
reconstruction loss contours was necessary, providing further information regard-
ing AutoSVIC’s performance. Vocalist classification metrics are also presented
in this section to determine how different loss functions affected VIE information
disentanglement.

Stimuli

In previous work on singing voice conversion [Nercessian, 2020], a similar archi-
tecture was trained with pitch-conditioning embeddings. During the conversion,
pitch information from the source data were transposed by an octave to match the
octave closest to the average range of the target singer. This is a forceful applica-
tion of pitch shifting that does not take the source singer’s pitch range into con-
sideration or how singer timbre can change with pitch - but in the context of some
SVIC methods or contexts the necessity to do so can be appreciated. However, for
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complete authenticity in SVIC, octave shifts were not applied. Instead, a pitch-
matching algorithm was applied so that a random target singer was selected from a
pool of singers with roughly the same vocal range as the given source singer clip.
This also ensures that evaluations of the network’s performance can compare the
speaker identities of two audio clips without being affected by changes in pitch
register.

The listening study featured audio clips from the four models. Each model
generated four converted audio clips using the test subset of the DI dataset, each
of which represented one of the four source-target gender conditions M−M,M−
F, F −M,F − F , where M and F stand for male and female, respectively. Sim-
ilarity and naturalness tasks were required for each of these stimuli. Four uncon-

verted audio clips were also included (see the last paragraph of Section 6.4.2 for
a description of how and why these clips were used), bringing the total number of
stimuli per listening session to (4×4)+4 = 20, with each stimulus requiring two
ratings from participants.

7.3.5 Results

In this section we sequentially describe the results of the listening study, embed-
ding space visualisations, cosine similarities and disentanglement metrics. Sec-
tion 7.4 combines these findings and discusses their implications.

Participant Ratings

Subplots (a) and (b) of Figure 7.8 display the results of the listening study for
perceived naturalness and similarity as MOS results under different conditions.
Condition groups are colour-coded together from left to right as ‘models’, ‘source
genders’, ‘target genders’, and ‘gender pairs’. Note that the naturalness rating for
unconverted audio clips was 3.72, which can be considered as the approximate
upper bound ceiling of perceptual evaluation due to the resynthesis process.

While most rating distributions for various experimental conditions were vi-
sually interpreted as normally distributed, a significant number did not pass the
Shapiro-Wilk test. Consequently, we employed the Mann-Whitney U test to as-
sess the statistical significance of rating samples across different conditions. The
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(a) Naturalness results

(b) Similarity results

(c) Cosine Similarity results

Figure 7.8: Bar graphs displaying results for naturalness, similarity and cosine
similarity.

182



Rating Type Condition Group Group 1 Group 2 U p

Naturalness model DI DI-BN 7013 <0.001
Naturalness model DI LSVC-BN 5616 <0.001
Naturalness model DI-VIE DI-BN 7256 <0.001
Naturalness model DI-VIE LSVC-BN 5845 <0.001
Naturalness model LSVC-BN DI-BN 2420 <0.001

Similarity model DI DI-BN 6394 <0.001
Similarity model DI-VIE DI-BN 6252 <0.001
Similarity model LSVC-BN DI-BN 2671 <0.001
Similarity target gender F M 13388 <0.001
Similarity gender-pair F → F M → M 3110 <0.005
Similarity gender-pair M → F F → M 4948 <0.05
Similarity gender-pair F → F M → F 3193 <0.005
Similarity gender-pair F → F F → M 2648 <0.001

Cosine model DI DI-BN 6122 <0.001
Cosine model DI-VIE DI-BN 5957 <0.001
Cosine model LSVC-BN DI-BN 7144 <0.001

Table 7.3: Mann Whitney U results of significant differences between samples of
different conditions relating naturalness, similarity and cosine similarity.

results of this analysis can be found in Table 7.3.
Audio generated by DI and DI-VIE scored significantly better for naturalness

than the LSVC-BN and DI-BN. Those of DI-BN where significantly lower than
all other models’ audio, which was also the case for similarity scores, indicating
that the inclusion of the LBN significantly hindered AutoSVIC’s overall perfor-
mance. The reason for this is likely because an additional loss component has
been included in the loss function with equal weighting, which has the potential
to slow down the network’s convergence rate when it needs to optimise for multi-
ple objectives.

It is worth noting that despite the similarity in nature between the DI-VIE and
DI-BN models’ latent losses, there is no corresponding statistically significant
drop in performance when the DI-VIE model is compared to the DI model. This
observation underscores the importance of ensuring that the decoder gives prior-
ity to the utilisation of the conditioning VIEs by preserving this information in the
output via the LVIE loss, leading to significantly enhanced SVIC compared to the
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utilisation of residual information from the bottleneck via the LBN loss. The LVIE

loss also regularises AutoSVIC weight updates in favour of the SVIC decoder
(while the LBN inherently favours the SVIC encoder), forcing the network to fo-
cus on its resynthesis capabilities, which may account for the higher naturalness
scores attributed to it.

The performance of the LSVC-BN model was particularly surprising. While
this model was trained using a VIE encoder pretrained on a large speech corpus,
it was still perceived to have produced more natural and convincing conversions
than the DI-BN model (which also has the advantage of being trained on data from
the same dataset as the rest of the AutoSVIC model). This seems counter intuitive
as the GE2E losses shown in Table 7.2 suggest that cross-domain inference was
less successful when using a speech-pretrained encoder to infer from singing data.

No other statistically significant differences were found between any other
samples of naturalness scores. When the target gender was female, generated
audio was rated significantly higher than its male counterpart. The M → F and
F → F both scored higher than their male counterparts, although only the latter’s
score was of statistical significance. This suggests either that AutoSVIC has more
success in converting audio to female voices, or that these conversions and their
target voices sound more similar to participants.

AutoSVIC Loss

Figure 7.9 offers an objective metric for loss contours that reinforces some of
the naturalness ratings reported in the listening study. These losses represent the
sum of all the loss components in each model’s objective function. It is, there-
fore, important to note that the variations in loss between the DI model and other
models may be attributed to the fact that no additional losses were added to the
reconstruction loss in the DI model. Notably, the LSVC-BN and DI-BN models
exhibited similar performance, suggesting they should yield similar naturalness
scores. Meanwhile, the DI-VIE model’s loss contour falls between the models
using either Lrec alone or Lrec with LBN . These observations will be considered in
the context of a broader examination of multiple evaluation methods, which will
be discussed in the subsequent sections.
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Figure 7.9: Total loss contours for each of the four trained AutoSVIC models.

Embedding Space Visualisations

Figure 7.10 features t-SNE plots which illustrate the clustering structures of differ-
ent vocalist VIEs, where subplot (a) and (b) represent embeddings inferred from
the DI-pretrained encoder and LSVC-pretrained encoder respectively. It is clear
from these plots that the DI encoder produces vocal clusters that are significantly
more separated and compact that those of the LSVC encoder. As the listening test
results indicate that the LSVC encoder produces better results, the question must
be asked: Why do the LSVC encoder’s embeddings, which exhibit poor clustering
tendencies, produce VIEs that contribute towards superior voice-converted audio
outputs? Hypotheses attempting to explain this will be offered in Section 7.3.5

Cosine Similarity Metrics

During the analysis of the listening study’s results in Section 6.4.3, no significant
correlation was detected between similarity and naturalness. In this case, a strong
correlation between the two types of ratings was visually evident, and a Pearson
test revealed a correlation coefficient of r = 0.82, p < 0.002. In light of the ro-
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(a) DI test data embeddings generated from the DI-pretrained encoder

(b) DI test data embeddings generated from the LSVC-pretrained encoder

Figure 7.10: t-SNE generated maps of DI-originating VIEs using the (a) DI-
pretrained and (b) LSVC-pretrained encoders.
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bustness of this positive correlation, caution should be exercised in assuming that
the perception of successful SVIC is independent of the perception of naturalness
by participants. It is hypothesised that when participants were prompted to evalu-
ate the confidence that the reference recording and the voice-converted recordings
originated from the same singer, lower similarity ratings may have resulted from
one or both of the following circumstances: artefacts introduced by the SVIC pro-
cess in the audio file would lead to a loss of timbre clarity, or the timbre of the
converted voice itself was dissimilar to the target voice.

Converted and target voice similarity is therefore assessed using cosine sim-
ilarities between the respective VIEs, which are displayed in subplot (c) of Fig-
ure. 7.8. As shown in the lower entries of Table 7.3, the only statistically signifi-
cant differences are between the DI-BN model and all other models. Statistically
significant differences in other condition groups for subjective similarity were not
present in cosine similarity scores, which is also the case for naturalness scores.

Singer Identity Disentanglement

The amount of disentanglement between singer-identifiable and residual informa-
tion was analysed by appending a classification layer to the output of the SVIC
encoders of the three trained AutoSVIC models using the DI-pretrained VIE en-
coder. 20 singers from the DAMP test subset were used for this classification
task. The resulting classification accuracies enable a comparison of the amount
of singer-identifiable information remaining in AutoVC’s bottleneck vectors be-
tween different models.

The summary of accuracy results pertaining to bottleneck classification layers
across the three models is presented in Table 7.4 and shown for intuitive visual-
isation in Figure 7.11 for the sake of convenience. Notably, the DI model em-
ploying solely Lrec , demonstrates a classification accuracy of 45%. This finding
suggests that while a bottleneck of dimension 256 (equivalent to 16 timestep by
16 frequency bin dimensions) may suffice for disentanglement in the context of
the VCTK speech dataset, as previously reported in the work of Qian et al. [2019],
it does not hold true for the DAMP singing dataset. Consequently, it becomes ev-
ident that a significant proportion of voice identity information remains entangled
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Loss components used Classification accuracy
Lrec 45%
Lrec and LVIE 35%
Lrec and LBN 23%

Table 7.4: Classification accuracy results for models using different loss functions.

in the bottleneck.
In contrast, the DI-BN model implementing both Lrec and LBN , produces the

lowest classification accuracy of 23%. This observation suggests that the net-
work’s SVIC encoder minimally encodes singer identity information, thereby fa-
cilitating maximum disentanglement of singer identity from the input data. This
outcome is driven by the SVIC encoder’s incentive to prioritise encoding the resid-
ual content, which in turn results from the presence of conditioning VIEs.

Furthermore, the DI-VIE model incorporating Lrec and LVIE loss functions
achieves an accuracy of 35%, representing a 10% decrease in classification com-
pared to the DI model trained solely with Lrec . Its scoring between the DI and
DI-BN models is reflected in the accuracy contours of Figure 7.9, which indicates
a moderate amount of disentanglement. This decline from the DI model’s accu-
racy score signifies enhanced disentanglement and is attributed to the network’s
greater reliance on the decoder, leveraging the conditioning VIEs. Nevertheless,
this improvement does not guarantee the avoidance of voice identity information
being encoded by the SVIC encoder, a distinction elucidated by the persistently
higher accuracy in comparison to the DI-BN model. This affirms that the LVIE

loss component offers the additional advantage of resilience against sub-optimal
disentanglement within the bottleneck. Hence, the utilisation of LVIE obviates
the need for manual bottleneck capacity calibration, which can be a long process,
especially when human evaluations are required to determine this.

Discussion

By observing both subjective and objective similarity metrics, a few conclusions
can be drawn. Firstly, while cosine similarities exhibited no significant difference
between gender-pair conditions, participants perceived conversions to be more
successful when the conversion was between two female singers, while objective
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Figure 7.11: Classification accuracy of classification layers being appended to the
encoders of the DI, DI-BN and DI-VIE models, indicating the amount of singer
identity information still entangled in the models’ bottlenecks.

measurements showed similarity to be generally equal for all gender-pair conver-
sions. This serves as a clear illustration of the critical importance of employing
both subjective and objective evaluation methods when assessing model perfor-
mance. One possible explanation for this observation might be that the diversity
of timbre among females may be lower than it is for males, meaning that any
conversion towards a female voice will be more likely to be heard as similar to a
target female voice than if the target were male.

The LSVC-pretrained encoder led towards better SVIC than the DI-pretrained
encoder even though the latter produced strong clustering VIEs, while both cor-
responding AutoSVIC models’ loss contours seen in Figure 7.9 were roughly the
same. From these seemingly contradictory results, it can only be concluded that
despite strong clustering tendencies, the DI encoder does not represent the aural
cues of voice identity as well as the LSVC encoder. Their corresponding Au-
toSVICs could therefore still achieve similar loss, only that in the case of the
DI-BN model, the conversions were not only related to voice identity cues.
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This may be because features relating to voice identity (and largely to tim-
bre) exhibit significantly more variance in the singing domain than the speech
domain, due to more dimensions of expressivity such as timbre and singing tech-
nique. These expressive manifestations can often redirect or mask the default
representation of voice identity. Coarsely speaking, vocalists of the same gender
with similar pitch ranges and singing techniques would be less distinguishable in
a singing context than a spoken one. Additionally, the fact that cues such as ac-
cents, pace and intonation are less relevant in the singing domain makes the task
of voice verification and discrimination even more challenging. Consequently, the
DI-pretrained encoder may have attempted to encode additional features that are
constant cues across singer recordings, but not directly related to singer identities,
such as:

• background noise

• microphone frequency response

• room acoustics

• singer’s proximity to the microphone

These variances are far less apparent in the datasets seen by the LSVC-trained
encoder. By producing embeddings that relate to these non-vocal confounding
features, AutoSVIC could then perform decent conversions w.r.t. these embed-
dings, while listeners would not perceive strong conversions of singer identity.

7.4 Conclusion

7.4.1 VIE Encoder Experiments

The first half of this chapter covered the VIE encoder. WORLD feature engineer-
ing was explored, from which the conclusion was drawn that none of the imple-
mented changes in WORLDs algorithmic configurations improved the encoder’s
ability to generate singer-specific VIEs for the singing voice using the GE2E loss.
These changes included:

190



• Expanding WORLD’s default configuration (71-800Hz) for F0 range

• Including WORLD aperiodic features

• Including WORLD pitch features

• Using either of WORLD’s alternative pitch estimation algorithms

Simultaneously, it was concluded that WORLD’s unprocessed spectral enve-
lope features, and MCCs derived from these features performed more poorly than
MFSCs derived from these features. As a result, the MFSC representation of
WORLD features was used in subsequent experiments.

After establishing this version of WORLD’s feature representation as most
suitable for VIE generation, they were compared against mel-spectrogram fea-
tures. It was found that although the feature engineering that goes into generating
WORLD’s features provided the encoder with a head start in providing explicit
VIE-relevant information, after 30k training steps, mel-spectrograms outperform
these features consistently across both singing and speech domains.

The effects of cross-domain applications of the VIE encoders were then tested,
where they were given mel-spectrogram features from either singing or speech
domain datasets, and evaluated on a third dataset consisting of both domains
in its separate partitions. Results showed that intuitively, there was an increase
in the GE2E loss for cross-domain applications for both singing-to-speech and
speech-to-singing conditions. However, the increase in loss (and therefore de-
terioration in performance) was larger when inferring from singing data using
a speech-pretrained encoder. The gap in performance between same and cross-
domain applications was slightly wider for an encoder pretrained on large speech
datasets (LSVC), suggesting that in realistic cases where models are trained on
very large speech corpora, there is still a larger drop in performance when in-
ferring from singing data than in the domain-inverted (singer-to-speech) circum-
stances. Two-dimensional plots of embeddings in a latent space provide a visual
for how the differences in GE2E loss measurements affect clustering tendencies,
which were in line with the observed differences in GE2E losses between same
and cross-domain inferences.
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In summary, the findings from this research determined that changing the de-
fault configurations previously listed for WORLD feature generation did not im-
prove the VIE encoder’s task of VIE generation. MFSCs derived from WORLD
features facilitated VIE generation better than MCCs or unprocessed WORLD
spectral envelope features. However for this same task, mel-spectrograms per-
formed better than these features, and were therefore used in all remaining ex-
periments. Cross-domain inferences yielded measurably higher loss values than
same-domain inferences. The differences in loss values between same and cross-
domain inferences were measured to be larger for speech-to-singer than for singer-
to-speech cross-domain conditions, indicating that for VIE generation, singing
data has more information that is transferable to speech data than the inverse sce-
nario.

The interpretation of these findings, however, is adjusted in the proceeding
section which takes new data into account.

7.4.2 SVIC Experiments

The second half of this chapter addresses the two following research sub-questions
in relation to the task of SVIC:

1. How does a speech-pretrained VIE encoder affect AutoSVIC when trained
on singing data for singing data inference?

2. How do alternative regularisation terms in AutoSVIC’s objective function
affect its performance?

Results for Question 1

Results from Section 7.2.3 indicate that cross-domain inference for VIE genera-
tion performs worse than same-domain inferences, although the effect size of this
on downstream tasks was unclear. To determine this, the encoder pretrained on
a large corpus of speech data and encoder pretrained on the DI dataset were ap-
plied to AutoSVIC networks. A listening test was conducted where participants
were asked to rate the converted recordings’ similarity to target singers, as well
as their naturalness (audio quality). Results suggested that the AutoSVIC model
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using the speech-pretrained encoder produced converted audio that was better in
quality and similarity than those using the singer-pretrained encoder. Cosine met-
rics (generated between the converted VIEs of the recordings and the target singer
recordings) produced similar results.

From this, it was deduced that the DI dataset’s diverse recording conditions
may have contributed towards optimising same-vocalist clusters’ VIEs in a latent
space influenced by these non-vocal acoustic features. The weighting of impor-
tance to these confounding features may be increased by the fact that there are
a number of singer-domain considerations that can make differentiating between
singers particularly difficult. The speech-pretrained encoder, on the other hand,
was trained on a large speech dataset, containing a large amount of professional,
well-constrained recording conditions as well as some amateur recording condi-
tions.

Results for Question 2

Results described in Section 6.3.3 suggested that the LBN loss hindered AutoSTC’s
convergence, exposing the uncertainty of whether it was similarly detrimental to-
wards VIC. The LVIE loss was proposed as an alternative regularisation term to the
LBN loss, which is attributed more to the network’s decoding capabilities rather
than its encoder. AutoSVIC networks were therefore trained with the following
objective functions (with model names in parentheses):

1. Lrec (DI model)

2. Lrec + LBN (DI-BN model)

3. Lrec + LVIE (DI-VIE model)

Listening tests concluded that the DI-BN model produced the worst quality au-
dio with the least convincing VICs, while the other two performed similarly to one
another. However upon disentanglement metric generation, it was found to best
disentangle voice identity information from the bottleneck. The DI-VIE model
was measured to have some disentanglement while the DI model had the least
amount of disentanglement. This indicates that while the DI-VIE model could
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perform on par with the DI model, it was more capable of disentangling informa-
tion, while its conversion capabilities remained robust against the remaining voice
identity information in the bottleneck. This makes it an attractive regularisation
term for voice conversion systems and tasks where bottleneck disentanglement
is not a primary concern, as calibration requires subjective evaluations, slowing
down the optimisation process considerably.

In summary, the LVIE is favourable over the LBN loss as it achieves the same
qualities as a model without regularisation terms, but remains robust against dis-
entanglement, inherently requiring less bottleneck calibration, and explicitly acts
as an assurance that the voice identities will be successfully encoded in the de-
coder of AutoSVIC. Of course, the advantages of this regularisation term will be
dependent on the goals of the researcher. While including an LVIE loss has not
been shown to cause better audio outputs than its exclusion, it is proposed that this
precautionary loss may be more advantageous when training an SVIC network for
longer on larger, more complex datasets, which can be confirmed in future work.

Analysing results from the listening test showed that naturalness and similarity
ratings were strongly correlated. For this reason, cosine similarities between con-
verted and target voices were also measured, which yielded similar results. This
suggests that the AutoSVIC network’s reconstruction capabilities incrementally
improved with its conversion capabilities.

7.4.3 Future Research

Verifying whether the conditions of the DI dataset recordings affected the VIEs
exclusivity to singer identity information is fairly straightforward. Based on the
list of potential confounding variables provided in Section 7.3.5, this could be
addressed with augmentation via audio processing such as injecting noise, altering
frequency responses, gain etc. More advanced options include some light pitch
shifting (perhaps no more than a semitone, with corrected formant positioning) to
avoid any potential conditioning by musical key, or a preprocessing step that uses
sound-source separation to remove the background noise instead of masking it.

Listening test naturalness MOS results were in most cases lower than 3.0.
Compared to other literature, this would be considered quite low, but can be at-
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tributed to several aspects of the research. The primary loss of quality and simi-
larity likely comes from the resynthesis process. In the interest of time, an older
spectrogram-to-waveform converter was used, which is now likely superseded by
newer models that produce cleaner audio, such as Parallel WaveGAN [Yamamoto
et al., 2020] or Hifi-WaveGAN [Wang et al., 2022]. The number of training steps
was capped at 500k, and only a quarter of the DI dataset was used for training.
Both of these aspects could be extended to improve the model’s performance.
Pitch conditioning has also been shown to improve disentanglement and conver-
sion processes [Qian et al., 2020a], and would allow for more efficient training.
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Chapter 8

Conclusion

8.1 Summary of Contributions

In this thesis, considerations related to the attributes of the singing voice were ex-
plored. These include human perception of singing techniques, disentanglement
and conversion of specific attribute information from a recording, the utility of
voice datasets that present the voice in different contexts, feature selection, and
converted audio evaluation.

8.1.1 Perception of Singing Techniques

Dissimilarity ratings between vocalisations demonstrating different singing tech-
niques were collected in Chapter 5. Clustering analysis concluded that five (the
number of hidden singing technique labels) clusters best represented the partici-
pants’ perception of the data, indicating that VocalSet’s ground-truth singing tech-
nique classes are suitable. Statistical analyses revealed differences between PCDs
under different conditions. Timbral maps were generated from participant rat-
ings using MDS, which also illustrated these differences. These results are use-
ful to musicologists who wish to better understand how humans perceive singing
techniques and software engineers who wish to utilise such perceptual data as a
regularising factor in their ML models.

Correlation analyses between participants’ features and cluster scores revealed
that, in general, participants with more musical knowledge produced better ratings
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with stronger clustering tendencies and agreement with the ground truth data. This
is an important finding that should be considered when researchers recruit for
future listening studies.

8.1.2 Conversion Models

Chapter 6 presented a singing technique classifier. It scored an average accuracy
of 75% on a six-way classification task of VocalSet data. After training, the clas-
sification layer was removed, allowing the classification network to become an
STE encoder. The output STEs were used to condition an AutoVC-like model to
achieve disentanglement and conversion of the singing technique. This was re-
ferred to as AutoSVC. Unlike AutoVC, AutoSTC produced the most natural con-
verted spectrograms when using an L1 reconstruction loss and no latent regressor
loss.

Another attribute that was subject to disentanglement was voice identity. In
Chapter 7, VIE and SVIC were the subjects of investigation. Using the proposed
architecture and loss function of Wan et al. [2018] for voice verification, VIEs
were produced. After training on a singing dataset, the output of this VIE encoder
was used to condition another AutoVC-like architecture to achieve SVIC, referred
to as AutoSVIC.

When using a latent loss w.r.t. VIEs and an L1 reconstruction loss, the Au-
toSVIC model was evaluated to produce the most natural audio and convincing
conversion to target singers, as opposed to other versions where it used recon-
struction loss and latent loss w.r.t. bottleneck encodings. It also proved to be
robust against poor disentanglement, as significant speaker information was still
retained in its bottleneck encoding.

As both the VIE and STE attribute representations were in the form of descrip-
tive embeddings and not one-hot encodings, they facilitate any-to-any or zero-shot
conversions, which is far more convenient for most research and industrial tasks
than other conversion types, such as many-to-many.
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8.1.3 Datasets of Differing Voice Representations

A training strategy was outlined in Chapter 6 that allowed AutoSTC to learn se-
quentially from multiple datasets that presented the voice in different contexts.
The implementation included the following datasets: one featuring classically
trained dry-recorded singers (VocalSet), another featuring dry-recorded speech
(VCTK, [Veaux et al., 2017]), and the last featuring post-processed, a capella

stems of singer recordings originally intended to be used as part of a mixed track
(MedleyDB [Bittner et al., 2014]). By monitoring loss values with respect to the
evaluation subset of a chosen dataset, an optimal path could be calculated that
minimised catestrophic forgetting and the final loss value.

It was concluded from the results of AutoSTC’s listening study that VocalSet
is too small a dataset in size and in scope for a network to learn embeddings that
describe the singing techniques and would generalise to other datasets.

To determine the amount of transferable knowledge between the speech and
singing domains, VIE encoders were pretrained on either a speech or singing
dataset and subsequently evaluated on the remaining dataset domain. A larger
gap in the GE2E loss values was observed when using a speech-pretrained en-
coder on singing than a singing-pretrained encoder on speech (this was still the
case even when using an encoder pretrained on a large-scale speech dataset). This
suggests that more knowledge can be transferred from singing to speech data than
speech to singing data.

8.1.4 Data Representation

Numerous variations of WORLD-generated spectral envelopes were compared to
mel-spectrograms as input features to a VIE encoder for the task of VIE genera-
tion. For all comparisons in either speech or singing domains, mel-spectrograms
supported superior performances, indicating that the VIE encoder found more dis-
criminative features in these than WORLD-based features. This is an important
finding that future researchers may benefit from, as previous literature has shown
that many researchers still use WORLD features over mel-spectrograms for voice
conversion tasks.
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8.1.5 Conversion Evaluation

Several novel methods have been proposed to evaluate the audio outputs of the
conversion models detailed in this thesis. Standard methods such as computing
MOS data from perceptual ratings were also used.

In a listening study designed to evaluate AutoSTC’s converted audio outputs,
a forced-choice task was given to participants, where they could choose more than
one target class that best matched the reference audio file that was converted. A
novel formula generated a positive score if any of the choices were correct, which
was inversely proportional to the number of choices made. This determined a
similarity score between the singing techniques of the converted and the target
audio.

The results showed that nearly all conversion conditions scored above the
chance level for similarity and provided some insight into which conditions led
to the most similar and natural conversions. The AutoSTC model that used the
optimal permutations of datasets for VocalSet produced worse similarity and bet-
ter reconstruction scores than the model trained only on VocalSet. This shows that
singing technique similarity will not necessarily improve with naturalness.

When evaluating the converted output of AutoSVIC, standard methods for
evaluating similarity and naturalness were used. However, upon observing a cor-
relation between both measurements, a third objective metric was introduced to
produce a similarity metric between converted and target singer recordings that
was certain to be disentangled from naturalness: the cosine similarity between the
VIEs of both recordings. Participants rated the similarity of converted to target
audio significantly higher than the similarity as computed by the cosine score,
when the target singer was female. This shows how important it is to use both
subjective and objective metrics.

The results of the listening study concluded that the AutoSVIC with the en-
coder pretrained on a small singing dataset was outperformed by the version that
used a large speech dataset. It was hypothesised that because the singing dataset
consisted of low quality amateur recordings with varying environmental acous-
tics, the VIE encoder trained on this data may have relied on cues unrelated to
the voice, leading to potentially better GE2E loss results, but poorer VIE conver-
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sion. Its reliance on such confounding cues would be increased by the fact that
differentiating between singers is more difficult than between speakers.

8.2 Future Work

8.2.1 Listening Study

While conclusive results were drawn from the listening study in Chapter 5, there
was a considerable amount of noise present in the data. For more robust timbral
maps, several suggestions can be made that would improve future experiments of
a similar nature.

The amount of noise in the data may have been due to the unintutive task
listeners were given, where they had to quantify a perceptual distance between
two vocalisations, while disregarding differences in their vowel sounds, pitch,
and features that linked to their perceived identity. For similar listening studies in
the future, such noise in data can be avoided by ensuring all notes and phonetics
between compared stimuli are identical and not within a tolerance interval.

There was also a surprising lack of correlations between participants’ data for
the same listening sessions, as seen in the relevant correlation matrices. Silhouette
scores suggested that the clustering behaviour of participant data was not particu-
larly strong (although this may in fact just be the way humans naturally perceive
stimuli). However, with more participants, these uncertainties could be mitigated
and stronger statistical analysis could be achieved with the expected move towards
normally distributed PCDs.

8.2.2 Improving Models

The findings presented in this thesis have related to voice analysis, disentangle-
ment, conversion, and evaluation. There has been no claim to SOTA results re-
garding SVAC, as the research has been focused on model self-comparisons under
different conditions.

When the research of Chapter 6 was conducted in 2020, the AutoVC architec-
ture used was achieving SOTA results for zero-shot voice conversion. Although
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newer models claiming SOTA results existed by the time the research of Chapter
7 was conducted, AutoVC remained the model of choice as the author felt their
intimate familiarity with its structure and dependancies offered them efficiency in
being able to investigate the effects of cross-domain applications, alternative input
features, and alternative objective functions on the resulting converted audio. Ad-
vice in the form of a recent paper rejection suggested that the adoption of newer
models would produce better quality results that would lead toward more accurate
ratings among listening study participants. This advice seems to agree with the
results of the AutoSVIC listening study of Chapter 7, where the naturalness and
similarity ratings were strongly correlated.

STE Encoder

Therefore, improving reconstruction and minimising audio artefacts is vital when
looking to improve the models. One viable method of doing so would be to switch
from RNN-based architectures to Transformer-based ones. As described in Sec-
tion 4.4, these architectures have significantly outperformed their CNN-based ri-
vals in audio tagging, and so it seems reasonable to consider that the STE encoder
may also benefit from such an architectural upgrade.

VIE Encoder

Transformer architectures have also been proposed for speaker identification mod-
els [Wang et al., 2023a], making them a viable architecture to incorporate into the
VIE encoder. To further develop the VIE encoder, it also seems important to ac-
knowledge how different vocal registers or phonations originating from the same
voice could generate slightly different VIEs. Section 4.4.3 mentions two promis-
ing methods for further developing the non-static nature of VIEs, such as that of
Tan et al. [2021] where they continually adjust embeddings in a lookup table as the
model is exposed to more utterances, or Li et al. [2022b], who strive to capture the
fluid nature of VIEs by using a U-net to produce hierarchical speaker embeddings
at multiple granularities.
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Voice Conversion Network

AutoVC has been repurposed in this thesis to achieve SVIC and STC. It can, of
course, be used to convert any attribute of a signal, given the right condition-
ing factors. Adaptions to the AutoVC architecture could include the introduction
of attention mechanisms and Transformers, which have led to improved results
[Lin et al., 2021]. There are other new systems of different architectures, such as
GlowVC [Proszewska et al., 2022] and StarGANv2 [Li et al., 2021a], which both
use VIE conditioning and have reportedly outperformed AutoVC. As in RAVE
[Caillon and Esling, 2021] and other recently proposed systems, a discriminator
can also be appended to the output of the chosen voice conversion model, and
trained with its decoder to enhance its reconstructive capabilities. Incorporating
GMMs to simplify the distributions of data to be converted could also improve
performance. AutoVC’s dependency on pretrained VIE encoders could also be
removed by applying VQ techniques, which have also been reported to improve
AutoVC’s performance [Tang et al., 2022].

Audio Synthesis

The WaveNet architecture was used to convert spectrograms into waveform audio.
There are several areas of potential modification to this. Section 4.4.5 describes
several generations of improved audio synthesis networks, the latest of which are
HiFi-GAN Kong et al. [2020a] and HiFi-WaveGAN Wang et al. [2022]. In ad-
dition to this, it would, of course, be favourable to train such models specifically
on singing data, rather than the speech-trained WaveNet used in the previous two
chapters.

Input Data

One final amendment towards improving the models’ performances is to feed
them more data. As Nercessian [2020] identified, the AutoVC framework can be
pretrained as a universal background model, which means it can learn meaning-
ful representations from most types of voice recording data to reconstruct, with-
out the requirement of labels. Therefore, there is a good opportunity to train a
voice conversion model on the vast amounts of speech-domain data available. In
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recent years, as described in Section 4.1.3, scripts have been provided that al-
low researchers to retrieve data from media repositories such as YouTube for a
wide variety of music, specific to the particulars of a dataset. With source separa-
tion software approaching astonishing results in recent years, it may be a fruitful
endeavour to use these capabilities to produce a capella recordings from mixed
tracks.

The experiments here have frequently only made use of subsets of datasets and
a capped number of training steps. Increasing both of these could, of course, only
improve results. The number of auxiliary inputs for conditioning could also be
increased (as was originally planned when attempting to access the information of
the singing technique as residual disentangled information, mentioned in Section
7.1.1) to maximise the disentanglement, facilitating more individual control over
the attributes of the voice.

8.3 Final Remarks

While new voice conversion systems are continually being proposed, in many
cases architectures are re-implemented with minor modifications to better suit
their task, and only a small subset of these is applicable to the task of zero-shot
voice conversion where the output is the same representation as the input. How-
ever, even in this narrowly restricted definition of the task, there are many com-
ponents that contribute to the conversion process. Each of these can be improved,
replaced, or removed in future revisions of the system, allowing the literature to
become quite vast, exploring many potential areas of improvement.

SVS models are becoming so convincing that it is almost impossible to know
whether a recording is fake or not, especially when many of its acoustic qualities
are masked by the mixed recording it sits within. This was beginning to become
the case in 2017 when NPSS was first introduced [Blaauw and Bonada, 2018],
and SVS capabilities are even more impressive with newer networks such as Diff-
Singer [Liu et al., 2022]. It is an exciting time to see how computational advances
have enabled NNs to effectively synthesise entirely fictional yet realistic data.

However, I have yet to see a network that encapsulates a voice so convincingly
that I, the human discriminator, have been outdone by such a generator in that I
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cannot tell the difference between synthesised and real singers. Such a technology
would have to be able to model a voice so perfectly in its expressive entirety,
possessing the skill to deliver a dynamic, emotional performance that is moving
or exhilarating in nature.

To this end, I would be excited to extend my research towards the continu-
ous manipulation of latent spaces that is available through architectures such as
VAEs. However, as someone who has a (possibly) unhealthy obsession with ex-
haustively exploring all possibilities in my local space before moving towards
newer and exciting ones, I believe it is still essential for researchers to master at-
tribute disentanglement before venturing off into the fields of dynamic attribute
control.

Although this thesis does not address ethical or legal issues, it is still important
to consider such concerns that come with SVAC, such as the potential infringe-
ment of copyright and intellectual property rights. Superimposing voice attributes
of different singers onto source recordings could lead to threats of legal action and
breaches of copyright, especially when the EU’s General Data Protection Regula-
tion (GDPR) law protects the usage of personal data such as voice recordings. Un-
til official legal policies have been put in place, it is advisable to gain permission
and licensing from the original owners of the target voices one wishes to imitate,
before attempting to use SVAC models to produce converted voices in the public
domain. This can be misconstrued as an attempt to mislead listeners about the
voice’s owner. The research presented in this thesis has been conducted for aca-
demic purposes, and the datasets used to train models to produce converted audio
are all publically available. It should go without saying, that none of the models
or techniques described here should be used to contribute towards the generation
of synthesised voices for unethical purposes.
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Appendix A

Listening Study Details from
Chapter 5

A.1 GOLD-MSI Perceptual Ability Questions

The following questions were extracted from the GOLD-MSI ‘Perceptual Abili-
ties’ subset [Müllensiefen et al., 2014], and use a 7-point agreement scale:

• I am able to judge whether someone is a good singer or not.

• I usually know when I’m hearing a song for the first time.

• I find it difficult to spot mistakes in a performance of a song even if I know
the tune.

• I can compare and discuss differences between two performances or ver-
sions of the same piece of music.

• I have trouble recognising a familiar song when played in a different way
or by a different performer.

• I can tell when people sing or play out of time with the beat.

• I can tell when people sing or play out of tune.

• When I sing, I have no idea whether I’m in tune or not.
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(a) Age (b) Instrumental ability

(c) Hearing Impairments (d) MSI

Figure A.1: Bar graphs (subplots (b) and (c)) and distributions (subplots (a)
and (d)) illustrating the spread of participant features. Subplot (b) presents non-
musicians and musicians in their abbreviated form ‘Non-Mus’ and ‘Mus’ respec-
tively. Subplot (c) omits the third option ‘significant’, as these participants would
have been filtered out during the screening processes.

• When I hear music I can usually identify its genre.

A.2 Participant Feature Distributions

Figure A.1 displays a set of bar graphs and distributions generated from par-
ticipants’ answers to the pre-experiment questions. Figure A.2 displays similar
graphs w.r.t. participant scores generated from their submitted dissimilarity rat-
ings, as described in Section 5.2.7.
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(a) Task Comprehension (b) Listening Potential

(c) Inconsistency (d) Poor Identity Recognition

(e) Pairwise Distance Ratings

Figure A.2: Subplots (a) to (e) present bar graphs and distributions for partici-
pant scores generated from their dissimilarity ratings. Subplot (e) presents the
distribution of ratings across all participants.
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Appendix B

Listening Study Details from
Chapter 6

B.1 STC Listening Study Questions

The following list presents the questions given to participants for the listening
study of Chapter 6. Potential answers of a multiple choice format (or answers
required by participants) are shown in the square brackets beside each question.
Questions 1-6 were asked before the practice round. Question 7 was asked at the
end of the study:

1. Please confirm that you do not have any hearing impairments that you think
could affect your ability to listen to and evaluate audio clips. [Confirm -
required by participant]

2. Please confirm you are using a computer and not a phone/tablet for this
study, and that you are either using Safari or Chrome as your browser. If
you need to change your setup, please do so before continuing and refresh
this page. [Confirm - required by participant]

3. Please indicate what listening equipment you intend to use for this experi-
ment (Headphones are preferable). If you wish to change your setup, please
do so before continuing and refresh this page [Inbuilt speakers, external
speaker, ear/headphones]
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4. Please provide your age in the space below. [Integer - required by partici-
pant]

5. Please describe your gender as it applies to you in the space provided, or
leave it blank if you prefer not to disclose. [String - optionally provided by
participant]

6. Please select one option that best describes your relationship with music/audio:

• I don’t have a particular interest in it

• I enjoy listening to it

• I am an amateur musician/audio engineer

• I am studying it

• It is the basis of my profession

7. Thank you for your answers. Do you have any other comments regarding
your evaluations, or any other aspect of the study you think the researcher
should be aware of?
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György Kovács. An empirical comparison and evaluation of minority oversam-
pling techniques on a large number of imbalanced datasets. Applied Soft Com-

puting, 83(1):105662, October 2019. ISSN 1568-4946. doi: 10.1016/j.asoc.
2019.105662.

Jody Kreiman, Bruce Gerratt, Gail Kempster, Andrew Erman, and Gerald Berke.
Perceptual evaluation of voice quality. Journal of Speech Language and Hear-

ing Research, 36(1):21–40, February 1993. doi: 10.1044/jshr.3601.21.

J. Krimphoff, S. McAdams, and S. Winsberg. Caractérisation du timbre des sons
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Merritt, Abdelhamid Ezzerg, and Roberto Barra-Chicote. GlowVC: Mel-
spectrogram space disentangling model for language-independent text-free
voice conversion. arXiv preprint arXiv:2207.01454, July 2022.

Polina Proutskova. Investigating the Singing Voice: Quantitative and Qualitative

Approaches to Studying Cross-Cultural Vocal Production. PhD thesis, Gold-
smiths University of London, London, 2019.

Polina Proutskova, Christophe Rhodes, Tim Crawford, and Geraint Wiggins.
Breathy, resonant, pressed – automatic detection of phonation mode from audio
recordings of singing. Journal of New Music Research, 42(2):171–186, 2013.
ISSN 0929-8215, 1744-5027. doi: 10.1080/09298215.2013.821496.

234



Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang, and Mark Hasegawa-
Johnson. AutoVC: Zero-shot voice style transfer with only autoencoder loss.
In Proceedings of the International Conference on Machine Learning (ICML),
volume 97, pages 5210–5219. PMLR, 2019.

Kaizhi Qian, Zeyu Jin, Mark Hasegawa-Johnson, and Gautham J. Mysore. F0-
consistent many-to-many non-parallel voice conversion via conditional autoen-
coder. In Proceedings of the International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 6284–6288, Barcelona, Spain, May 2020a.
IEEE. doi: 10.1109/ICASSP40776.2020.9054734.

Kaizhi Qian, Yang Zhang, Shiyu Chang, David Cox, and Mark Hasegawa-
Johnson. Unsupervised speech decomposition via triple information bottleneck.
In Proceedings of the International Conference on Machine Learning (ICML),
page 11. PMLR, 2020b.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In Pro-

ceedings of the International Conference on Learning Representations (ICLR).
PMLR, January 2016.

Colin Raffel and Daniel P. W. Ellis. Feed-forward networks with attention can
solve some long-term memory problems. arXiv preprint arXiv:1512.08756,
September 2016.

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Mimilakis Stylianos Ioannis,
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