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Abstract

The human face exhibits complex and rich changes that are
both unpredictable and varying in time. In this paper we
present a novel method for synthesising and recognition of
facial expression changes at extreme 3D views, based on
images at near frontal views. Given a sequence of images
of facial expressions at near frontal views, we automati-
cally generate virtual expressions at extreme 3D views with
corresponding semantic labelling of the expressions. This
is accomplished by two components: (1) A shape compo-
nent where modelling of the shape changes is accomplished
through the use of a Mixture of Probabilistic PCA (MPPCA)
(2) A texture component where modelling of the semantic
changes is performed through auto-clustering of facial ex-
pression subspaces in the MPPCA feature space.

1. Introduction
A human face can exhibit complex and intricate expres-
sions. Facial expression changes are dependent on many
factors such as muscle contractions, current emotional state
and its implied context. Also facial expressions are individ-
ually independent: no two people exhibit the same expres-
sion in the same way. These factors make modelling and
recognising facial expressions a challenging task.

Related to this work Bettinger et al.[1] used AAM as
the underlying basis of their model, sample mean shift and
a variable length Markov model, to learn the relationships
between trajectories of facial expressions. Devin and Hogg
[6] used AAM combined with sound as their framework to
produce sequences of a talking head. Cohen et al.[3] used
a model based on the motion vectors of Bezier volumes.
These vectors were then used in conjunction with a multi-
level HMM to classify expressions from image sequences.

Chuang et al.[2] used statistical appearance representa-
tion (similar to [5]) to represent facial expression configura-
tions, then a factorised bilinear model to synthesise existing
sequences with different expressions during the speaking
process. Gong et al.[8] used Kernel PCA to model non-
linearities introduced by large pose variation. Heap and
Hogg [9] introduced a hierarchical combination of linear
components in order to model a non-linear manifold.

In this work we wish to model and synthesise the appear-
ance and semantics of a set of low-level facial behaviours,
including neutral, smile and surprise, across large variations
in 3D views. We aim to model the intrinsic inner-expression
relationships by placing semantic constraints to bootstrap
the process to help in extraction of facial expressions. Fa-
cial appearance over varying expressions is based on a sta-
tistical appearance model originally introduced by Cootes
and Taylor [5].

We extend the basic definition of the model to implic-
itly incorporate parameters for rotation, scale and large pose
variations into the statistical distribution. In order to cope
with non-linearities in appearance distribution caused by
large pose variation [8], we exploit mixture of PPCA [12].
This approach does not require solving computationally ex-
pensive optimisation in reconstruction (as in [8]) and de-
fines a fully probabilistic framework, as opposed to [8, 11].
Another extension of the basic definition of the statistical
model is decoupling of the texture model from the shape
model (i.e. the model does not control shape and texture
variations simultaneously) implying full independence be-
tween the two. Facial expressions are grouped into sub-
spaces in texture feature space using MPPCA, and seman-
tic labels of the expressions are then extracted through a
Bayesian framework.

2. Our Model
We adopt the Active Appearance Model [5] as the base rep-
resentation, but extend our model to incorporate expression
changes under large pose and scale variations. As Gong
et al.[8] point out, large pose variations cause the shape
space to become highly non-linear. Hence the linear map-
ping used to model the manifold is no longer sufficient, as
illustrated in Figure 1. On the other hand, shape distri-
bution forms distinctive bands of points in the PCA space
with respect to the pose. Figure 2 shows projections of
the data onto the first three principal axes. The group-
ing was performed with respect to Y-axis rotation. Trian-
gles represent [−40o,−20o], crosses [−10o, 10o] and cir-
cles [20o, 40o] ranges respectively.

Based on this observation we employ a mixture model
capable of capturing non-linear distributions in a unified



(a) (b)

Figure 1: Non-valid shape reconstructions of profile views
(b) These were generated using modes of variations of a
linear shape model trained at near frontal views (a).

framework. We model the shape space using a mixture of
PPCA [12]. Cootes and Taylor [4] used Gaussian Mixture
Model to define plausible shape space, but our main aim
is to segment the feature space according to pre-defined
semantics (the definition of plausible shape space is a by-
product of such segmentation). The dimensionality of each
of the shape mixture components account for 98% of the
variation within the training set, whilst the number of mix-
ture components is determined by the number of rotational
bands shown in Figure 2 (triangles, crosses, circles).

We make an assumption that texture is independent of
shape. This is because we believe that all the necessary in-
formation concerning expressions caused by muscle motion
can be more effectively modelled by texture values alone,
provided that shape variations are normalised. Our moti-
vation for such a decomposition is as follows: First of all
the dimensionality of our shape data can be significantly
reduced by taking the smallest number of points needed
to describe the pose variation and allow efficient warping.
Therefore the number of principal components needed to
approximate all necessary shape variations is reduced. Sec-
ondly, decoupling shape and texture allows us to warp any
texture to any possible shape, and decreases the number of
shape-texture pairs needed to represent a facial expression
across the whole pose sphere. Thirdly, the separation cre-
ates two independent sets of expressions: the ones that are
derived solely from texture variations, and the ones that are
implied solely by pose changes.

In the texture model, each of the shape-free texture vec-
tors is segmented into three regions, which correspond to
upper, mid and lower part of the face. The texture feature
space corresponding to each of the face segments is clus-
tered according to the expression groups to be modelled,
such that each of the clusters represents data distribution
for a particular expression. Figure 3 shows shape-free tex-
ture vectors of the lower segment of the face projected onto
the first three principal components. Crosses correspond
to the surprised state, circles to the smile and triangles to
the neutral state. Figure 4 shows the modes of variation
(±2.5 standard deviation) for the lower face segment for
neutral, smile and surprised expressions (top to bottom). A
sequence of facial expression changes can be represented
as a path or trajectory in texture feature space, travelling
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Figure 2: The shape variation of facial expression images
from [−40o, 40o] 3D views (in yaw) projected onto the 1st
three principal components. The manifold forms continu-
ous and separable clusters: [−40o,−20o] (shown by trian-
gles), [−10o, 10o] (shown by crosses) and [20o, 40o] (shown
by circles)

through different expression subspaces. In contrast to [1]
we use texture parameter space to obtain the necessary ex-
pression labelling.

The data distribution for both shape and texture is mod-
elled using Mixture of Probabilistic PCA (PPCA is de-
scribed in Section 2.1). Experiments are presented in sec-
tion 3 before conclusions are drawn in Section 4.
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Figure 3: The projection of shape-free texture vectors of the
lower face segment form separable subspaces correspond-
ing to different expressions. Three separable expression
subspaces (surprised, neutral, smile) are shown by clusters
of crosses, circles and triangles respectively.

Figure 4: Modes of variation of the bottom face segment
(±2.5 standard deviation) for the neutral, smile and sur-
prised clusters (top to bottom).

2.1. Probabilistic PCA

Due to its linear nature, PCA performs poorly in modelling
of the non-linear manifolds, its lack of probability distribu-
tion makes it ill-suited for a Bayesian framework. Tipping
and Bishop [12] reformulated PCA as the maximum like-
lihood solution using a latent variable model such that the
observed variable t is given by:

t = Wx + µ + ε (1)

where x is the latent variable such that P (x) = N (x|0, Iq)
and N denotes a Gaussian distribution, W is the parame-
ter matrix whose columns define principal subspace of the
data, µ is the d-dimensional vector, and ε ∼ N (0, σ2

Id)
where σ2 is the noise variance, I is the identity matrix and
N represents Gaussian distribution. Then

P (t|x) = N (t|Wx + µ, σ2
Id) (2)

Marginal distribution of the observed variable t is

P (t) =

∫

P (t|x)P (x)dx = N (µ,C) (3)

where covariance matrix C = WW
T + σ2

Id. The above
model represents a constrained Gaussian distribution con-
trolled by µ,W and σ2. A maximum likelihood solution

for the parameters is given by:

µML =
1

N

N
∑

i=1

ti (4)

WML = Uq(Λq − σ2
Iq)

1

2 R (5)

σ2
ML =

1

d − q

d
∑

i=q+1

λi (6)

where ti is the i-th d-dimensional feature vector from the
data set, Λq is a diagonal matrix containing the q largest
eigenvalues λi, Uq is the matrix containing the q largest
eigenvectors and R is an arbitrary orthogonal rotation ma-
trix. Thus the mixture model p(x) can be defined as fol-
lows:

p(x) =

K
∑

i=1

πip(tn|i) (7)

where p(tn|i) is the single PPCA model and πi is the cor-
responding mixing proportion, πi ≥ 0,

∑

πi = 1.

2.2. Labelling Facial Expressions
Given a shape-free texture vector t

(i) belonging to the i-th
face segment, the expression within segment i can be classi-
fied by determining its association with a particular cluster
by calculating the posterior probability as follows:

P (j|t(i)) =
P (t(i)|j)P (j)

P (t(i))
(8)

Then the posterior probability values for all the clusters cor-
responding to each of the face segments for a given image
form a probability matrix Z such that

Z =
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(9)

For classification we define a probability weight matrix, in
which values are deterministically set based on the amount
of contribution of each of the face segments toward the spe-
cific expression:

Wp =





1/3 1/3 1/3
0.3 0.0 0.7
0.0 0.2 0.8



 (10)

The final classification is performed according to:

argmax
1 ≤ i ≤ 3

Lt(i, i) , where Lt = WpZ (11)



3. Experimental Results
Our shape training set consists of 576 shape samples at near
frontal views which cover the range ±40o yaw and ±20o

pitch. We employed a PPCA mixture model to capture their
manifold distributions in feature space. The resulting di-
mensionality of the components were set to 10 (98% varia-
tion of the training set). It yielded a single model covering
a large view sphere in a unified probabilistic manner.

Figure 5 shows examples of synthesising three different
types of facial expressions, from near frontal views to pro-
file views (±2.5 standard deviation). The top row shows
examples of different expressions from the training set cov-
ering ±10o views. The middle row corresponds to mor-
phing performed with the MPPCA model, whilst the bot-
tom row shows the morphing with the PCA based model
with visible kinks due to inability of the model to cope with
nonlinear shape space. Figure 6 shows examples of morph-
ing to extreme virtual 3D views (±3.0 standard deviation)
using different texture vectors. In each column of (a) and
(b), images on the left were generated using the PCA model
(distortions present), and the images on the right using a
MPPCA model.

The expression set consist of 490 images (training set)
and 300 images (testing set) from the Cohn-Kanade Facial
Expression Database [10]. Our shape-free texture vectors
are obtained by morphing all the texture vectors onto the
mean shape (details about morphing methods can be found
in [5]). Once morphed, we divide each of the patches into
three segments corresponding to the upper, mid and lower
part of the face. Since the facial motion of the lower part
of the face has little influence over the motion of the upper
part [7], we impose three-part decomposition which aims to
introduce semantic correlations between upper-middle and
lower-middle parts of the face, and at the same time to re-
duce misclassification caused by visual ambiguities. Addi-
tionally, such segmentation reduces overall dimensionality
of the space and the number of sample combinations needed
to describe a particular expression.

During our experiments we noticed that for particular fa-
cial expressions, only a few out of all the segments convey
relevant information, and the remaining ones can be dis-
carded. For example when we smile, only lower and mid
segments can be used for classification purposes (mouth
shape and possible skin creases around the nose area), and
when we are surprised, relevant information is mostly con-
veyed through mouth shape and widening of the eyes. Fig-
ure 7 shows different motion areas for different types of
expressions. We can see that for the smile expression (a)
the motion is mostly concentrated around the mouth and
nose areas, and for the surprised expression (b) concentra-
tion falls into the mouth and eyes region.

Each of the face segments was modelled using MPPCA
with a number of components corresponding to the number

(a) Expression 1

(b) Expression 2

(c) Expression 3

Figure 5: Examples of morphing (synthesising) facial ex-
pressions into extreme virtual views. The top rows in (a),
(b), (c) are some of the training examples of three differ-
ent expressions at near frontal views. The middle rows
were computed using MPPCA model. The bottom rows
were computed using the PCA model with visible kinks
at extreme 3D views (profile views) due to non-linearities
present.

of facial expression states we wish to model (neutral, smile,
surprise). Figure 8 shows two probability plots generated by
the texture model (Equation (11)) from two novel testing se-
quences exhibiting continuous changes of expression from
neutral to smiling (bottom plot) and from neutral to being
surprised (top plot). In each of the plots the solid line rep-
resents the probability of the expression being classified as
neutral, dashed line as surprised and dash-dot line as smil-
ing. Each of the images within each of the plots shows the
expression synthesised at a virtual 3D view (image on the
left), the original image (middle) and three part decompo-
sition of the texture vector with posterior probability values
(Equation (8)) for the classified expression.

Figure 9 shows the results from those two test sequences
projected into the feature space of the lower face part,
with the left plot corresponding to the individual being sur-



Figure 8: Expression recognition probability values estimated for two example test sequences: surprised (top plot) and smile
(bottom plot). The solid line shows the probability of the expression being classified as neutral, dashed line as surprise and
dash-dot line as smile. Each of the images within the plots shows the synthesised expression at a virtual 3D view (on the left),
original image (middle) and three part decomposition (right) of the texture vector, with posterior probability for the currently
classified expression shown for each of the segments.

prised, and the right one to smiling. It can be seen that
the sequences form visible trajectories (solid line) travelling
through different expression subspaces.

4. Conclusions and Future Work
In this paper, we have shown a general probabilistic frame-
work for synthesising the shape and texture variations of

facial expressions from near frontal views (±10o) to ex-
treme virtual views. We demonstrated the advantages of
using MPPCA over PCA for this task. We have shown that
the shape and texture can be treated as independent entities,
and modelled as such, and that facial expression synthesis
can be accomplished by using shape as a basis to morph the
texture onto, which in turn can be obtained by traversing
texture parameter space. We also showed that classification
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Figure 9: The two test sequences showing surprised (left) and smile (right) expressions in Figure 8 projected onto feature
space of the lower face part, and showing the trajectories of expressions travelling through different expression subspaces.

(a) (b)

Figure 6: Examples of synthesising the texture vectors of
different expressions to extreme virtual 3D views (±3.0
standard deviation from the trained model). Column (a)
represents −3.0 standard deviation, column (b) represents
+3.0 standard deviation. In each column images on the left
were generated using a PCA model, images on the right us-
ing a MPPCA model.

of the expressions can be performed in a probabilistic man-
ner using a unified probability distribution function. Our fu-
ture work includes use of a larger set of facial expressions,
and utilisation of temporal information as an extension of
the current model to define the dynamics of the expressions.
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