
Bayesian Nets for Mapping Contextual Knowledge to ComputationalConstraints in Motion Segmentation and TrackingShaogang Gong � Hilary Buxton �Department of Computer Science School of Cognitive and Computing SciencesQMW, University of London University of SussexMile End Road, London E1 4NS, England Falmer, Brighton BN1 9QH, Englandemail: sgg@dcs.qmw.ac.uk email: hilaryb@cogs.susx.ac.ukAbstractIn this work we address the issue of focused computation in computer vision for e�ec-tiveness and e�ciency. In particular, we propose a scheme for motion segmentation andtracking that links scene-oriented contextual knowledge with the computational con-straints involved. Such an approach enhances sensitivity to visual evidence and givesthe selectivity we require. The approach uses Bayesian belief revision techniques tomap explicit scene knowledge onto implicit causal dependent constraints in controllingcomputational parameters used in motion segmentation and tracking. We show exper-imental results from applying this method in improving existing techniques in tra�csurveillance applications.1 IntroductionIn the past, research in computer vision was greatly inuenced by the theory of DavidMarr [17]. Visual processing modules in the Marr framework operate at di�erent levels ofabstraction, such as edge detection, surface reconstruction and model matching. Typically,then, a high level visual task, such as recognising and tracking a vehicle, is performed byan assembly of such self-contained modules. However, these modules impose very littleprocessing constraint on their predecessors and successors, and their performance is usuallyjudged in isolation using a set of \optimal" criteria. Although this approach to computervision has developed sophisticated algorithmic procedures for individual visual competances,it is a clumsy approach to build integrated vision systems. The computational complexityrequired by individual competances leads to ine�ective and ine�cient performance for thehigh level tasks of the system.In recent years, Ullman [25] has argued for the importance of integration amongst visualmodules. More speci�cally, Ballard [4] has suggested an animate vision approach for twomain reasons: �rst, vision is better understood in the context of the visual behaviours inwhich the vision system is engaged and these behaviours often do not require elaborated rep-resentations of the three dimensional world; second, it is important for \vision as behaviour"to have a system framework that integrates visual processing within the task context. Thesearguments are supported by early work in Bajcsy and Allen's concept of active vision [2].Psychophysical evidence supports the view that the interaction and inter-communicationbetween the visual neurons may play an important role in enabling useful visual behaviour�The work is funded by the ESPRIT EP2152 (VIEWS) project.1



to emerge e�ectively and e�ciently from simple neurons [20, 26, 3, 14, 13]. Braitenberg[5] has suggested a similar principle for assembling arti�cial behaviours whilst, more re-cently, Brooks [6, 7] has demonstrated the importance of building integrated architecturesfor robots with task-oriented behaviours. Many researchers have shown the potential forbuilding vision systems with integrated purposive frameworks [23, 24, 1, 8, 21, 11].Our approach claims that perception is really an opinion on the state of a�airs in theworld rather than a passive response to sensory stimuli. In this work, in order to \putvision into context", we emphasise the importance of focused vision and address the issue ofcontrolling the focus by mapping explicit contextual knowledge to implicit computationalconstraints in an architectual framework which dynamically determines the way that thevisual modules function.Buxton and Walker [9] proposed an early scheme for incorporating explicit semanticknowledge into a Query-Based Vision System (QBVS) for interpretation of biological im-ages. The QBVS uses simple planning based on static dependencies in a task schedulerto selectively invoke processing to answer user queries or commands. However, QBVS didnot address how knowledge can be mapped onto computation. The notion of vision asbehaviour indicates that accumulated knowledge about the past and reasoned predictionabout the future in the context should dictate the very basis of any process in order toe�ectively overcome ill-conditioned computation 1. Visual knowledge may appear in con-ceptual and symbolic descriptions, but often it is computationally attractive and feasible toassociate explicit knowledge with appropriate implicit numerical measures that give rise tothe emergent behaviour [5].Our initial studies have indicated that contextual knowledge in visual behaviour can bereassembled by an appropriately linked network of chosen parameter sets [12]. The func-tionality of such a network is a continuous process of initiating visual modules with chosenparameter values and updating such values with new evidence. If visual behaviour is re-garded as a process of providing a coherent, most probable explanation of all the evidence athand, all modules involved can then be regarded individually as units for, on the one hand,providing its predecessors with updated evidence based on the input from its successors and,on the other hand, invoking chosen parameter values locally. The issue of mapping knowl-edge to computational constraints resides in: (1) how explicit contextual knowledge can berepresented as distributed implicit parameter sets, and (2) what computational mechanismsare required for e�ective distribution and invocation of the parameters. Early studies byLevitt et al [16] suggested the use of Bayesian networks for knowledge representation. Re-cent work by Murino et al [18] further exploited such techniques for using knowledge in thecontrol of camera operations. For most constrained environments, we believe that Bayesiannets and associated belief revision techniques provide not only a coherent mapping frame-work between conceptual knowledge and parametric measures, but also the mechanismsrequired for e�ective and e�cient computation.In section 2, we briey review some basics of the Bayesian nets and associated beliefrevision mechanisms before presenting, in section 3, a speci�c scheme in which scene--oriented contextual knowledge is mapped onto Bayesian nets for the control of a selectiveand focused segmentation and tracking of moving objects. In section 4, we discuss ourexperimental results and evaluate our approach against an existing technique. We conclude1By saying \overcome ill-conditioned" here we mean, that in a broad sense, employing high-level symbolicknowledge is equivalent to the use of global geometric or algebraic constraints in order to regularise thecomputation. 2



this work in section 5.2 Bayesian Belief Revision and Most-Probable-ExplanationBayesian belief networks are Directed Acyclic Graphs (DAG) in which each node representsan uncertain quantity using variables with multi-possible values. The arcs connecting thenodes signify the direct causal inuences between the linked variables with the strengths ofsuch inuences quanti�ed by associated conditional probabilities. The iterative updatingin a network of such kind is simple compared with the iterative equation solving processinvolved in the more traditional explicit optimization approaches.If we assume a variable in the network is Xi, and a selection of variables �Xi are thedirect causes of Xi, the strengths of these direct inuences are quanti�ed by assigning thevariable Xi a link matrix P (xij�Xi), given any combination of instantiations of the parentset �Xi . The conjunction of all the local link matrices of variables Xi in the network (for1 � i � n where n is the total number of the variables) speci�es a complete and consistentglobal model which provides answers to all the probabilistic queries. Such a conjunction isgiven by the overall joint distribution function over the variables X1; :::Xn:P (x1; x2; :::; xn) = nYi=1P (xij�Xi)where lower case symbols stand for a particular instantiation of the corresponding vari-ables 2.In general, the behaviour of a visual process is partially given by its processing param-eters. The values of these parameters are consistent with a visual task at hand if the taskis accomplished by associating the processing parameters with hypothetical values in itsbelief constraints. In a belief network, if we quantify the degree of coherence between theexpectations (X) and the evidence (e) by a measure of local belief 3 BEL(x) = P (xje),and de�ne belief commitments as the tentative acceptance of a subset of hypotheses thattogether constitute a most satisfactory explanation of the evidence at hand, then, Bayesianbelief revision amounts to the updating of belief commitments by distributed local messagepassing operations. Instead of associating a belief measure with each individual hypoth-esis locally, belief revision identi�es a composite set of hypotheses that best explains theevidence, we call such set the Most-Probable-Explanation (MPE). In computational terms,this means �nding the most probable instantiations of all hypothetical variables given theobservation. Let W stands for all the variables concerned, inclusive of those in e. Anyparticular instantiation of variables in W that is also consistent with e will be regarded asan extension or explanation of e. The problem is to �nd an extension w� that maximisesthe conditional probability P (wje). In other words,W = w� is the MPE of the evidence ifP (w�je) = maxw P (wje):w� is obtained by �rst, locally computing the belief function for each variable X mentioned2In the rest of this article, variables will always be denoted by upper cases and speci�c instantiations ofthe variables will be denoted by lower cases.3In this article, all the incoming evidence will be denoted by e and be regarded as a set of instantiatedvariables E. Symbol � will be used to denote a normalising constant and � will be used for an arbitraryconstant. 3



above, i.e. 4 BEL�(x) = maxw0X P (x;w0X je)where W0X =W �X and second, propagating local messages, which are de�ned as:If X has n parents U1; U2; :::; Un and m children Y1; Y2; :::; Ym, then node Xreceives the messages ��X(ui); i = 1; :::; n from its parents and ��Yj(x); j = 1; :::; mfrom its children, where:��X(ui) is the probability of the most probable tail-extension of the hypotheticalvalue Ui = ui relative to the link Ui ! X , and is known as an explanation;��Yj(x) is the conditional probability of the most probable head-extension of thehypothetical value X = x relative to the link X ! Yj and, on the otherhand, is known as a forecast.Given the �xed local probability P (xju1; :::; un) and the best value of X as x�, the propa-gation concerns with:Updating BEL�: computeF (x; u1; :::; un) = mYj=1��Yj(x)P (xju1; :::; un) nYi=1 ��X(ui);then x� is x� = argmaxxBEL�(x), where BEL�(x) = �maxuk F (x; u1; :::; un), for1 � k � n.Parent-bound message passing: n messages to U1; :::; Un are computed by��X(ui) = maxx;uk:k 6=i F (x; u1; :::; un)��X(ui) i = 1; :::; nChild-bound message passing: m messages to Y1; :::; Ym are computed by��Yj (x) = �BEL�(x)��Yj(x) j = 1; :::; mBoundary conditions: three types of nodes set up the boundary conditions:1. Anticipatory nodes: uninstantiated variables with no children. For such a nodeX , ��Yj(x) = [1; : : : ; 1].2. Evidence nodes: instantiated variables. For variable X = x0, it is regarded as Xbeing connected with a dummy child Z such that��Z(x) = ( 1 if X = x00 otherwise.and other real children of X , Y1; Y2; :::; Ym, receives the same message ��Yj =��Z(x) from X .3. Root nodes: variables with no parents. Similarly, for each root variable, a dummyparent U with permanent 1 instantiation is introduced and, P (xju) = P (x) =��(x).4This BEL�(x) represents the probability of the most probable extension of e that is also consistent withthe hypothetical assignment X = x. 4



It is important to understand the conceptual essence of such a propagation mechanism.For each hypothetical value of a single variable X , there exists a best extension of thecomplementary variables W0X . The problem of �nding the best extension of X = x canbe decomposed into �nding the best complementary extension to each of the neighbour-ing variables according to the conditional independencies between X and the rest. Then,this information can be used to decide the best instantiation of X . This very process ofdecomposition resembles the principle of optimality in dynamic programming in that it isapplied recursively until it reaches the network's boundary where evidence variables havepredetermined values.3 Bayesian Nets for Motion Segmentation and TrackingIn VIEWS, a vision system for surveillance applications, one of the key objectives is tosegment detected optic ow �eld into dynamic regions corresponding to possible movingobjects and to track these regions e�ectively and consistently over time. Wenz [27] proposeda scheme based on estimated frame displacements of the extremal loci of a bandpass �lter.\Similar" displacement vectors are grouped into di�erent moving regions (bounding boxes)in each frame and the similarity is de�ned by four parameters (1) neighbourhood range, (2)neighbourhood displacement magnitude ratio, (3) neighbourhood orientation di�erence and(4) neighbourhood vector numbers. In Wenz's approach, these similarity parameters areset as independent constants across the entire image. This direct approach is computation-ally less complex, however, it is unable to deliver e�ective and consistent interpretations,especially in images of crowded scenes such as at a tra�c roundabout shown in �gures 8,9 and 10. The top pictures in these �gures are the results of segmentation and tracking bythe direct approach and present some typical defects in the sensitivity and consistency ofsuch an approach. A more detailed analysis will be given in section 4. We propose that inorder to obtain both e�ectiveness and e�ciency, scene-oriented contextual knowledge hasto be incorporated into the control of parameter values for focused computation.VIEWS uses a �xed camera for collecting visual input in each scenario. Under such staticcamera con�gurations, three dimensional scene layout imposes indirect, but neverthelessinvariant, constraints on both possible loci of appearances, sizes, speeds of bounding boxesand the overall tra�c ow (see �gure 1). Therefore, scene layout de�nes visual expectationsand constrains the setting of processing parameter values. In other words, the followingcorrelated measures are constrained probabilistically with respect to image coordinates: (1)between object orientation and optic ow vector orientation; (2) between object size andow vector neighbouring speed ratio, (3) between neighbouring orientation di�erence, objectdx, object dy and object bounding box width or height. Such probabilistic constraintson a bounding box set a compound network of coherent hypothetic variables (�gure 2)that increases resistance to incompleteness and inconsistency in the ow �elds. Such anetwork can best be modelled by a Bayesian belief network with dynamic setting of thehypotheses using belief revision propagation. With this approach, we regard segmentingsimilar ow vectors into possible moving regions in the image and tracking them downin time as providing a coherent, Most-Probable-Explanation of the detected ow �elds byactively revising the distributed beliefs according to the dependent causal constraints.The belief network in �gure 2 is purposively constructed with a tree structure, a specialtype of singly connected network, in order to guarantee the propagation of message passingin belief revision to be tractable [19]. With the image (512�512) being divided into 25 grids,the root node IGP in this tree represents the probabilistic expectation in the occurrence rate5



of objects in image grid positions. Nodes OSS and OOR represent respectively the prob-abilistic expectations in the square size and orientation of bounding boxes in image grids.The six leaf nodes at the bottom level of the tree represent, respectively, the expectationsin ow vector orientation (FVO), neighbouring vector speed ratio (NSR), orientation dif-ference (NOD), x component in object bounding box's displacement (ODX), y componentin bounding box displacement, and the width of a bounding box (OWD) (�gure 2).It is important to point out that �rst, leaf nodes are the evidence nodes and it isdesirable to relate them to qualitative measures by representing relative quantities of owvectors. This is designed to overcome the instability of individual vectors in optic ow�elds. Second, great e�ort was made to reduce the number of causal connections and thenumber of hypothetical variables to the minimum at the expense of approximations in therepresentation of certain variable nodes. This is because the computational load increasesby an order of 2n � 1 where n is the number of variable nodes in a network [10]. NodeOSS is also taken as the approximation for the neighbouring vector searching range. Theactual size of a bounding box is determined by the grouped number of neighbouring owvectors and the loci of these vectors. The location of a bounding box is given by the centreof gravity of the member vectors and its initial velocity is estimated by the mean velocityof the vectors grouped in the initial frame. Third, in order to have e�cient computation,it is crucial to balance the compromise in the approximation of hypothetical values andthe accuracy of their representations. It is computationally attractive to approximate anycontinuous variable with a set of few discrete values. Fourth, the conditional probabilitydistribution matrices between any two nodes are usually subject to probabilistic estimationbased on extensive test examples. Statistical studies in the past [10] suggest that if wellcontrolled number of variables are built into a Bayesian network, the estimated distributionmatrices are not just merely appropriate numbers that can explain away a set of exampleswithout capturing the general characteristics of the phenomena. Still, accurate estimationof these parameters remains one of the important factors for computational success of abelief network. Recent studies by Spiegelhalter [22] have shown techniques for updatingand learning of the distribution matrices dynamically in order to provide more accuracy intheir estimation. Finally, the algorithmic steps of our approach for the segmentation andtracking of object bounding box from optic ow �elds are:1. Set the maximum expected number of object in a scene and initialise such a numberof belief nets.2. Set ��Yj (xi) = [1; : : : ; 1] where Xi = [FV O;NSR;NOD;ODX;ODY;OWD] andP (xju) = P (x) = ��(x) where X = [IGP ], then initial equilibrium of a belief treeis obtained by (a) propagating all the lambda messages upwards, (b) propagate allthe � messages downwards, (c) estimate the local beliefs throughout the tree, and (d)obtain a composite set of local instantiations of each variable that together is the bestinterpretation of the initial, \no evidence", condition.3. For the �rst image frame, vectors are grouped according to the best value assignmentsassociated with beliefs corresponding to their image grid position. For successiveframes in the sequence, vectors are grouped according best values, either to beliefsassociated with previous tracked bounding boxes, or to beliefs associated with imagegrid positions.4. For each calculated measure in the similarity test procedure, the value instantiates theassociated node and revises local belief as well as other nodes' beliefs by propagationuntil the tree reaches equilibrium. 6



5. Revise locally every node's best value assignment so that the bounding box will setthe most probable similarity threshold values for grouping vectors that are near to itsexpected location in the next image frame. Repeat steps 3 to 5.4 Experiments and EvaluationThe current design of the belief network has been tested extensively on image sequencesfrom the tra�c roundabout scenario. In the following, we measure the performance andcomputational cost of both the belief revision and the direct approach and discuss theire�ectiveness against their e�ciency.In assessing performance, we �rst show the sensitivity of the techniques by measuringthe number of correctly identi�ed objects against the false identi�cations. Then we showtheir false alarm rate before we measure the consistency of both techniques in trackingindividual objects over time. All these measures are taken over an image sequence of 400frames.Figure 5 shows the accumulated number of true and false identi�cations over time. Itgives a good indication that the belief revision approach increases the true identi�cationssigni�cantly without introduce excessive false alarms. Our measurement of the false alarmrate on both techniques proves precisely that (see �gure 6). Throughout the whole sequence,the maximum false alarm rate from the belief revision approach is about 16 % but still belowthe minimum rate from the direct approach. The maximum false alarm rate of the directapproach, on the other hand, reaches 60 % and its average rate is near 50 %!For measuring consistency, we compile the histories of tracked objects from both tech-niques and compare them with the \ground truth" of a 170 frames image sequence wecollected independently. In �gure 7, the at and long lasting \observed" line shows theground truth of the number of objects against their durations in the scene such as: 1 objectthat has stayed for the entire 170 frames, 13 objects which have lasted for 14 frames, etc.The sharp pulse line shows that the direct approach has taken fragments of objects withlong durations and tracked them as a large number of objects with very short histories.There is no object being tracked for more than 50 frames which shows poor consistency.In contrast, the dotted line shows that the belief revision approach provides with muchaccurate measure of both the number of objects and their durations.For estimating the computational cost, we �rst measure the absolute time consumption(in seconds) of both schemes over the 400 frames sequence, see the two near linear increasinglines in �gure 3. The divergence between the two lines is rather deceptive since it appearsto show a continuous increase of processing time in the belief revision scheme. However, itactually shows the accumulated cost of bootstrapping belief networks over time. The frameby frame computational cost is more realistically given by the �rst order derivative of timeover those two lines, which are shown by the two step lines in �gure 3. This can be seenmore clearly by measuring the percentage of the increased time consumption in the beliefrevision approach from the direct approach (see �gure 4). The former's frame by framecomputational overhead against the later throughout the whole sequence is below 13 %,and it is worth pointing out that providing more accurate segmentation and tracking ofobjects instead of missing identi�cations requires \extra" computational cost.Although our current system is incomplete since our initial estimation of the conditionalprobability is only based on limited test samples without active revision at run time, the ini-tial experimental results are positive. Our quantitative measures presented above illustrate7



that: with very limited cost in computational e�ciency, signi�cant gains are obtained ine�ectiveness by using the belief revision technique. A more illustrative comparison betweenthe two approaches can be seen in �gures 8, 9 and 10. Three successive frames from ourtest sequence are shown where the top pictures are the results of the direct approach andthe bottom ones come from the belief revision approach. It is worth noticing that: �rst, thebelief revision approach is very robust against incomplete evidence (see the tracked cyclistbehind a sign post to the left hand side of the frame in �gures 9 and 10). Second, it iscapable of segmenting very closed moving objects (see the cyclist and the two cars close toits right). Third, one of the reasons for unnecessary time being taken in the current beliefrevision process is caused by the simulation of distributed message passing procedures inthe belief propagation on sequential machines.5 ConclusionsOur main argument in this paper concerns the need to build in knowledge even at the earlieststages of visual processing in order to deliver both e�ective and e�cient performance onvisual tasks. The speci�c example elaborated here uses scene-oriented contextual knowledgeto improve the sensitivity and consistency of the segmentation and tracking of movingobjects, whilst task-oriented knowledge was applied by Howarth and Buxton [15] to monitordi�erent types of vehicle behaviour in the higher level interpretation. We have proposed theBayesian belief revision network as an appropriate model for representing such conceptualknowledge and the associated belief propagation as the suitable mechanism for e�ective ande�cient constraint propagation within such a framework. In particular, we pinpointed thedefects of the existing direct approach for the segmentation and tracking of motion based onoptic ow �elds. We introduced the concept of using scene-oriented contextual knowledge formore consistent segmentation and tracking process. We examined relationships between ourconceptual knowledge of the tra�c scenes and of the image sequences for the roundaboutscenario. We then identi�ed the required implicit computational constraints in terms ofbeliefs that specify the dependencies between processing parameters involved. We presentedthe way in which a speci�c belief network can be designed for grouping optic ow �elds ata tra�c roundabout scenario. Finally, we presented and discussed our results in applyingthe belief revision based approach to the problem.In conclusion, the results obtained so far show that the computational overhead intro-duced by mapping explicit knowledge to implicit constraints for controlling selective process-ing is small considering the correct number of moving objects identi�ed and the improvedconsistency in both segmentation and tracking. The belief revision increases the sensitivityto incomplete evidence so that �nds moving objects missed by the direct approach. The re-vised implementation reported here could be further improved and implemented in parallelto provide the necessary real time performance and consistent focus of attention. It couldalso be extended to both a model-based object recognition and tracking system and furtherto the behavioral evaluation of moving objects in dynamic vision systems.6 AcknowledgementsWe would like to thank Gunther Wenz for many useful discussions, Fraunhofer-Institut furInformations- und Datenverarbeitung IITB for their helpful collaborations.8
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Figure 1: A tra�c roundabout scenario and its tra�c ow. Correlated spatio-temporal constraintson the movements of individual objects are imposed implicitly by this scene layout.
Position
Grid
Image

Object
Square
Size

Orientation
Object

Neighbour
Speed
Ratio

Neighbour
Orientation
Difference

Object
Dx Dy

Object
Width
Object

Flow
Vector
OrientationFigure 2: A belief network that captures the dependent relationships between the scene layout andrelevant measures in motion segmentation and tracking.

Figure 3: The time consumption in seconds for the belief revision and the direct approaches respec-tively, and these consumptions' �rst order derivatives over time.11



Figure 4: Percentage increase in belief revision approach's time consumption.
Figure 5: The number of true and false identi�cations.

Figure 6: False alarm rate.12



Figure 7: The \ground truth", the belief revision and direct tracked number of objects and theirdurations in the scene over a sequence of 170 image frames.
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Figure 8: Comparison of results on frame 140.14



Figure 9: Comparison of results on frame 145.15



Figure 10: Comparison of results on frame 150.16


