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Abstract

Existing person search methods predominantly assume

the availability of at least one-shot imagery sample of the

queried person. This assumption is limited in circumstances

where only a brief textual (or verbal) description of the tar-

get person is available. In this work, we present a deep

learning method for text attribute description based per-

son search without any query imagery. Whilst conventional

cross-modality matching methods, such as global visual-

textual embedding based zero-shot learning and local in-

dividual attribute recognition, are functionally applicable,

they are limited by several assumptions invalid to person

search in deployment scale, data quality, and/or category

name semantics. We overcome these issues by formulating

an Attribute-Image Hierarchical Matching (AIHM) model.

It is able to more reliably match text attribute descrip-

tions with noisy surveillance person images by jointly learn-

ing global category-level and local attribute-level textual-

visual embedding as well as matching. Extensive evalua-

tions demonstrate the superiority of our AIHM model over

a wide variety of state-of-the-art methods on three pub-

licly available attribute labelled surveillance person search

benchmarks: Market-1501, DukeMTMC, and PA100K.

1. Introduction

Person search in large scale videos is a challenging prob-

lem with extensive applications in forensic video analysis

and live video surveillance [11]. From increasing numbers

of smart cities across the world equipped with tens to hun-

dreds of thousands of 24/7 surveillance cameras per city,

a massive quantity of raw video data is cumulatively pro-

duced daily. It is infeasible for human operators to manually

search people (e.g. criminal suspects or missing persons) in

such data. Automated person search becomes essential.

Most existing person search methods are based on im-

age queries (probes), also known as person re-identification

[11, 13, 21, 39, 40]. Given a query image, a system com-

putes pairwise visual similarity scores between the query

image and every gallery image in the test data. The top
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Figure 1: Person search by text attributes (keywords).

ranks with the highest similarity scores are considered as

possible matches. Such an operation assumes that at least

one image (one-shot) of the queried person is available for

initiating the search. This is limited when there is only ver-

bal or text description of the target persons.

There are a number of attempts on person search by text

queries, e.g. natural language descriptions [20, 19] or dis-

crete text attributes [37, 16, 32]. To learn such search sys-

tems, labelling a large training dataset across textual and

visual data modalities is necessary. Elaborative language

descriptions not only require more expensive training data

labelling, but also present significant computational chal-

lenges. This is due to ambiguities in interpretation between

language descriptions and image appearance such that: (1)

significant and/or subtle visual variations for the same lan-

guage description; (2) flexible sentence syntax in language

descriptions for the same image; and (3) modelling the se-

quential word dependence in a sentence is a difficult prob-

lem, particularly for long descriptions.

In contrast, text attribute descriptions are not only much

cheaper in collecting labelled training data, but also more

tractable in model optimisation. Importantly, they elimi-

nate the need for modelling complex sentence structures

and their correlations to the same visual appearance, and

vice versa. Whilst giving a compromise of weaker appear-

ance descriptive capacity, using text attributes favourably

enables a more robust and computationally tractable means
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Figure 2: Model architectures for attribute query person

search. (a) Individual attribute classification, i.e. local

attribute-level modelling. (b) Cross-modal matching, i.e.

global category-level modelling. (c) The proposed attribute-

image hierarchical matching (AIHM), integrating both local

and global modelling.

to text-query in person search without image probes.

Text attribute query person search is largely under-

studied in the literature. There exist very few attempts.

An intuitive approach is to estimate an attribute vector (text

description) of each person image, and then to match the

attribute vector of the query person with those of all the

gallery person images [16, 32] (Fig 2(a)). By treating the

attribute labels independently, this method scales flexibly to

handling the huge attribute combination space. However, it

suffers from lacking a supporting context that accounts for

a holistic interpretation of all the text attributes as a whole

which helps the text-image matching in person search. The

current state-of-the-art model, AAIPR [37] (Fig 2(b)), takes

the text-image matching strategy but loses the generalisa-

tion scalability of individual attribute modelling.

In this work, for the first time we formulate the problem

of text attribute query person search as a zero-shot learn-

ing (ZSL) problem [35, 10]. This is because the potential

test query categories (text attribute combinations) exist at

large scale in reality, but only a small proportion of them

can be available for model training due to the high cost

for exhaustively acquiring training data per category. This

raises the cross-category problem between model training

and test, i.e. zero-shot samples for unseen categories dur-

ing training. Such an understanding motivates us to design

a cross-modal matching method based on global category-

level visual-textual embedding, a common zero-shot learn-

ing approach (Fig 2(b)). AAIPR [37] also uses the global

embedding idea but totally ignores the zero-shot learning

challenge in model design.

As a type of solution for attribute query person search,

existing ZSL models are however suboptimal. First, un-

like the conventional ZSL settings that classify a test image

into a small number of categories, we match a text attribute

description against massive person images and much more

categories. This represents a larger scale more challeng-

ing zero-shot search problem. Existing state-of-the-art ZSL

methods are based on global category-level visual-textual

embedding but scale poorly to large tests [35]. A plausible

reason is due to insufficient local attribute-level discrimina-

tion for more fine-grained matching. Second, surveillance

images in person search present significantly more noise

and ambiguity, presenting a more difficult task. Third, lack-

ing semantically meaningful person category names pre-

vents exploiting inter-class relationships.

In this study, we formulate a novel Attribute-Image Hier-

archical Matching (AIHM) method (Fig 2(c)). It performs

attribute and image matching for person search at multi-

ple hierarchical levels, including both global category-level

visual-textual embedding and local attribute-level feature

embedding. This method aims to overcome the limitations

of conventional ZSL models and existing text-based per-

son search methods, by benefiting from the generalisation

scalability of conventional attribute classification methods.

Importantly, cross-modal matching can be end-to-end opti-

mised across all different levels jointly.

Our contributions are: (I) We formulate for the first time

an extended ZSL approach to solving a text attribute query

person search problem. Our model aims to solve the intrin-

sic challenge of limited training category data in surveil-

lance videos. (II) We propose a novel Attribute-Image Hi-

erarchical Matching (AIHM) method. AIHM is able to

match more reliably sparse attribute descriptions with noisy

surveillance person images at global category and local at-

tribute levels concurrently. This goes beyond the common

ZSL nearest neighbour search. (III) We further introduce

a quality-aware fusion scheme for resolving any visual am-

biguity problem. Extensive experiments show the superior-

ity of AIHM over the state-of-the-art methods for attribute

query person search on three benchmarks: Market-1501

[39], DukeMTMC [27, 23], and PA100K [24].

2. Related Work

Person Search. The most common person search approach

is based on taking bounding box images as probes (queries),

framed as an extension of the person re-identification prob-

lem [11, 21, 39, 17, 22, 7]. However, image queries are not

always available in practice. Recently, text query person

search has gained increasing attention with search queries

as natural language descriptions [20, 19, 4, 3] or short text

keywords (text attributes) [37, 16, 32]. These models enable

person search on images by verbal or written text descrip-

tions. Using natural language sentences for person search is

attractive due to its natural human user friendliness. How-

ever, this imposes extra challenges in computational mod-

elling because (1) accurate and rich training data is expen-

sive to obtain, and (2) modelling consistently and reliably

rich and complex sentence syntax and its interpretation to

arbitrary images is non-trivial, with added difficulties from

poor-quality surveillance images. In contrast, short text at-

tribute descriptions offer a more cost-effective and compu-
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Figure 3: An overview of the proposed Attribute-Image Hierarchical Matching (AIHM) model. AIHM is composited of hi-

erarchical visual-textual embedding and cross-modality hierarchical matching. To overcome the one-shot learning challenge

in textual embedding, we introduce a simple and effective negative category augmentation strategy in our matching context

that allows for enriching the training text data and reducing the model over-fitting risk.

tationally more tractable approach to solving this problem.

Visual Attributes. Computing visual attributes has been

extensively used for person search [15, 16, 17, 28, 26, 33,

6]. The idea is to exploit the visual representation of a

person by attributes as the mid-level descriptions, which

are semantically meaningful and more reliable than low-

level pixel feature representations. For example, Peng et

al. [26] mine unlabelled latent visual attributes in a limited

attribute label space for enriching the appearance represen-

tation. Considered as a more domain-invariant or domain

adaptive visual feature representation, Wang et al. [33]

exploit visual attribute learning for unsupervised identity

knowledge transfer across surveillance domains. All these

existing methods are focused on visual attribute representa-

tions to facilitate image query person search. On the con-

trary, the focus of this work is on text query person search.

Text Attributes. A few attempts for text attribute query

person search have been proposed [32, 16, 37]. In particu-

lar, Vaquero et al. [32] and Layne et al. [16] propose the

first studies that treat the problem as a multi-label classifi-

cation learning task. Whilst allowing to flexibly model ar-

bitrary attribute combinations, this strategy has no capacity

of modelling the holistic person category information and

is therefore suboptimal for processing ambiguous surveil-

lance data. More recently, Yin et al. [37] exploit the idea of

cross-modal data alignment. This captures the holistic ap-

pearance information of persons, but suffers from a cross-

category domain gap problem between the training and test

data. In contrast, we uniquely consider the problem from a

zero-shot learning perspective and formulate a novel AIHM

model. Critically, our model not only addresses the limita-

tion of existing solutions but also combines their modelling

merits for enabling extra complementary benefits.

Zero-Shot Learning. Attribute query person search can be

understood from zero-shot learning (ZSL) [14, 1, 35, 30,

38], due to the need for generalising to unseen categories

in test. But there are several significant differences. First of

all, most ZSL methods are designed for image classification

other than search/retrieval. The latter is often more chal-

and |
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Figure 4: Hierarchical visual-textual embedding and match-

ing. MTN: Multi-Task Network. MN: Matching Net, 3

layer FCs for similarity score prediction.

lenging due to larger search space. In contrast to conven-

tional ZSL setting, there is no meaningful category names

in person search. This disables the exploitation of semantic

relationships between seen and unseen categories. Besides,

the imagery data of person search often involve more noise

and corruption which imposes more difficulty. These fac-

tors render the state-of-the-art ZSL methods less effective

for person search, as we demonstrate in experiments.

3. Methodology

To train a textual attribute query person search model,

we need to label a set of N image-attribute training pairs

D = {Ii,ai}
N
i=1 describing Nid different person descrip-

tions. A multi-label attribute text description of a person

image, we call an attribute vector ai, defines the value of

each attribute label with respect to the corresponding per-

son appearance. Persons sharing the same attribute vector

description specifying a type of people are considered to be-

long to a person category. There are a total of Natt different

binary-class or multi-class attribute labels. We model this

problem by zero-shot learning (ZSL) considering that test

person categories may be unseen to model training.

3.1. Approach Overview

A schematic overview of the proposed AIHM model is

illustrated in Fig 3. The objective of AIHM is to learn a sim-

ilarity matching model between text attributes a and person
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images I in a hierarchical visual-textual embedding space.

Instead of nearest neighbour search as most ZSL meth-

ods adopt, we aim to learn a similarity matching model:

ŷ = fθ(a, I) ∈ [0, 1], with θ the model parameters. If a

specific text-image pair is a true match, the model should

ideally output 1; Otherwise 0. For model training, we adopt

the mean square error loss function [30]:

Lmse =
1

Nbatch

Nbatch
∑

i=1

(yi − ŷi)
2 (1)

where yi and ŷi denote the ground-truth and predicted sim-

ilarity of the i-th training pair, respectively. The mini-batch

size is specified by Nbatch. To enable such matching, we

need to form a hierarchical visual-textual embedding (Sec

3.2 & Sec 3.3) and cross-modality fusion (Sec 3.4) as the

matching input (Eq (7)). For presentation brevity, in the fol-

lowing we assume a two-level hierarchy: a global category

level, and a local per-attribute level. It is straightforward

to extend to more hierarchical levels without changing the

model designs as described below.

3.2. Hierarchical Visual Embedding

For hierarchical visual embedding of a person image,

we employ a multi-task joint learning strategy [5]. An

overview of hierarchical visual embedding is given in Fig

4(a). Specifically, we build local attribute-specific embed-

ding (xloc
i , i ∈ {1, · · · , Natt}) based on the global counter-

part (xglo) in a ResNet-50 architecture [12]. For each at-

tribute label, we use a separate lightweight branch with two

fully connected (FC) layers. The design is suitable since

only a small number of (∼10) attributes exist in typical per-

son search scenarios. In cases of many attribute labels, we

can assign each branch with a group of attributes for lim-

iting the branch number as well as the overall model com-

plexity (see Table 7 for evaluation).

For discriminative learning of local attribute-level visual

embedding, we utilise the softmax Cross Entropy (CE) loss.

We treat each individual attribute label as a separate classi-

fication task (Lcls). Formally, they are formulated as:

Lcls = −
1

Nbatch

Nbatch
∑

i=1

Nattr
∑

j=1

log(pij), (2)

where pij is the probability estimation of the i-th training

sample on the j-th ground-truth attribute. By multi-task

learning, we can obtain the global category-level visual em-

bedding as the shared feature representation of all local em-

beddings. See supplemental materials for the network ar-

chitecture details.

3.3. Hierarchical Textual Embedding

We also need to learn a hierarchical embedding of text

attributes. An overview of hierarchical textual embedding

is shown in Fig 4(b). Due to small training attribute la-

bel data (only one attribute vector per person category), it

is challenging to derive a rich textual embedding. In con-

trast to ZSL, we have no access to meaningful person cate-

gory names in person search. This prevents us from using a

wikipedia pre-trained word2vector model to represent per-

son category for benefiting from auxiliary knowledge [25].

For text attributes (also available in person search), the most

common representation in ZSL is multi-label binary vector,

which however is less effective and informative (Table 6).

To enable the benefit of rich wikipedia information, we

propose to represent the attribute labels by word2vector rep-

resentations. Specifically, we use the word2vector model to

map each attribute name into a semantic (300-D) space1,

then further into the local textual embedding space zloc by

one FC layer. We then similarly adopt multi-task learning

for embedding each attribute label zloc
i , i ∈ {1, · · · , Natt}.

To obtain the global textual embedding zglo, a simple ap-

proach is average pooling per-attribute embeddings. This is

likely suboptimal due to lacking of task-specific supervised

learning. To overcome this problem, we learn to combine

per-attribute embeddings by a fusion unit consisting of two

1×1 conv layers. This allows for both intra-attribute and

inter-attribute fusion:

z
glo = f({zloc

i }Natt
i=1

) = Tanh
(

Natt∑

i=1

(

w
i

2 ·Tanh(wi

1 ·z
loc
i )

))

, (3)

where w1 and w2 are learnable parameters and Tanh is the

non-linear activation function. We use the CE loss func-

tions (Eq (2)) to supervise the textual embedding. In train-

ing, the embedding loss and matching loss are jointly op-

timised end-to-end with identical weight. Note, unlike the

visual embedding process, we obtain the global category-

level textual embeddings by combining all local attribute-

level counterparts, an inverse process. This is due to addi-

tionally using auxiliary information (wikipedia).

Negative Category Augmentation. The one-shot per cat-

egory problem in textual modality raises model training

difficulty. To alleviate this problem, we exploit negative

category augmentation to AIHM model learning. This is

achieved by generating new random attribute vectors. We

use these synthesised attribute vectors as negative samples

in the matching loss (Eq (1)). This helps alleviate the model

over-fitting risk whilst enhancing the sparse training data,

particularly for global textual embedding. Interestingly, we

are not aware of any existing ZSL and person search meth-

ods that leverage this simple strategy. One possible rea-

son is that previous methods mostly do not exploit negative

1We transform binary attribute labels to binary flags for guaranteed

inclusion. Specifically, we transform a binary label “*” as a form of

“Yes”+“*” and “No”+“*” before extracting the word2vector label repre-

sentation. The unknown attribute is set to the vector 0.
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cross-modality pairs in objective learning loss function. We

will verify the efficacy of this scheme (see Fig 6).

3.4. CrossModality CrossLevel Embedding

Given hierarchical visual-textual embedding as derived

above, we next combine them across modalities and lev-

els to form the final embedding for attribute-image match-

ing. An illustration of this cross-modality cross-level em-

bedding is shown in Fig 4(c). To this end, a common fusion

method is concatenating two embedding vectors for each

training pair [19, 20, 36]. This however may be subopti-

mal, due to lacking the feature dimension correspondence

across modalities which makes the optimisation ineffective.

Instead, we deploy Hadamard Product that fuses two input

vectors by element-wise multiplication.

(I) Cross-Modality Global-Level Embedding. We form

the cross-modality global-level embedding sglo as:

sglo = xglo ◦ zglo, (4)

where ◦ specifies the Hadamard product.

(II) Cross-Modality Local-Level Embedding. Unlike the

single global-level embedding, we have multiple local per-

attribute embeddings in both modalities. Therefore, we first

need to form per-attribute cross-modality embedding as:

sloc
i = xloc

i ◦ zloc
i , i ∈ {1, · · · , Natt}. (5)

We then fuse over attributes. Instead of average pooling,

we design a quality aware fusion algorithm. This is based

on two considerations: (1) Both surveillance imagery (poor

quality with noisy and corrupted observations) and attribute

labelling (annotation errors due to poor imaging condition)

are not highly reliable. Trusting all attributes and treating

them equally in matching are error prone. (2) The signifi-

cance for person search may vary across attributes.

Specifically, to estimate the per-attribute quality ρloc
i , we

use the minimal prediction scores on image and text as

ρloc
i = min(pvis

i , ptex
i ), i ∈ {1, · · · , Natt}, where pvis

i and

ptex
i denote the ground-truth class posterior probability esti-

mated by the corresponding classifier. This discourages the

model fit towards corrupted and noisy observations. Based

on this quantity measure, we learn a fusion unit (Eq (3)) for

adaptively cross-attribute embedding as:

sloc = f
(

{ρloc
i · sloc

i }Natt

i=1

)

. (6)

(III) Cross-Modality Cross-Level Embedding. After con-

catenating the cross-level embeddings, we use a fusion unit

(Eq (3)) to form the final cross-modality embedding as:

s = f
(

{sloc, sglo}
)

. (7)

The final embedding s is used to estimate the attribute-

image matching result ŷ (Eq (1)) given an input attribute

query and person image.

Table 1: Statistics of person search datasets.

Datasets Market-1501 DukeMTMC PA100K

# Attribute category 10 8 15

# Train person category 508 300 2020

# Train image 12,936 16,522 80,000

# Test person category 529 387 849

# Unseen 367 229 168

# Test image 15,913 19,889 10,000

4. Experiments

Datasets. In evaluations, we used two publicly available

person search (Market-1501 [39], DukeMTMC [27, 23])

and one large pedestrian analysis (PA100K [24]) bench-

marks. These datasets present good challenges for person

search with varying camera viewing conditions. We fol-

lowed the standard evaluation setting. The dataset statistics

are summarised in Table 1.

Performance Metrics. We used the CMC and mAP as eval-

uation metrics. As [37], we treated the gallery images re-

specting a given attribute vector query as true matches.

Implementation Details. For fair comparison to [37], we

used ResNet-50 [12] as the backbone net for learning vi-

sual embedding. We employed Adam as the optimiser. We

set the batch size to 16 (attribute-image pairs), the learn-

ing rate to 1e-5, and the epoch number to 150. In each

mini-batch, we formed on-the-fly 16/255(16*16-1) posi-

tive/negative text-image training pairs. We used 50 training

person categories for parameter cross-validation. We used

a two-layer hierarchy in AIHM for the main experiments,

with different hierarchy structures evaluated independently.

4.1. Comparisons to the StateofTheArt Methods

Competitors. We compared our AIHM with a wide range

of plausible solutions to text attribute person search meth-

ods in two paradigms: (1) Global category-level visual-

textual embedding methods: Learning to align the distri-

butions of text attributes and images in a common space,

including CCA [2, 34, 8, 29] or MMD [31] based cross-

modal matching models, ZSL methods (DEM [38], RN[30],

GAZSL [41]), visual semantics embedding (VSE++ [9]),

and GAN based cross-modality alignment (AAIPR [37]).

(2) Local attribute-level visual-textual embedding methods:

Learning attribute-image region correspondence, including

region proposal based dense text-image cross-modal match-

ing (SCAN [18]), natural language query based person

search (GAN-RNN [20] and CMCE [19]). We used the

officially released codes with careful parameter tuning if

needed, e.g. those originally applied to different applica-

tions. In testing language models [9, 18, 20, 19], we used

random attribute sentences due to no ordering and reported

the average results of 10 trials. For all methods, we used

ResNet-50 for visual embedding.

Results. The person search performance comparisons on
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Table 2: Comparisons to the state-of-the-art methods. Red/Blue: Best/second best results.

Method
Market-1501 DukeMTMC PA100K

Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

DEM[38] 34.0 48.1 57.5 17.0 22.7 43.9 54.5 12.9 20.8 38.7 44.2 14.8

RN[30] 17.2 38.7 47.3 15.5 25.1 42.0 51.5 13.0 27.5 38.8 46.6 13.6

GAZSL [41] 23.3 36.9 45.9 14.1 18.2 30.0 37.8 11.9 2.2 3.8 5.3 0.9

DeepCCAE[34] 8.1 23.9 34.5 9.7 33.2 59.3 67.6 14.9 21.2 39.7 48.0 15.6

DeepCCA[2] 29.9 50.7 58.1 17.5 36.7 58.8 65.1 13.5 19.5 40.3 49.0 15.4

2WayNet[8] 11.2 24.3 31.4 7.7 25.2 39.8 45.9 10.1 19.5 26.6 34.5 10.6

MMD[31] 34.1 47.9 57.2 18.9 41.7 62.3 68.6 14.2 25.8 38.9 46.2 14.4

DeepCoral[29] 36.5 47.6 55.9 20.0 46.1 61.0 68.1 17.1 22.0 39.7 48.1 14.1

VSE++[9] 27.0 49.1 58.2 17.2 33.6 54.7 62.8 15.5 22.7 39.8 48.1 15.7

AAIPR[37] 40.2 49.2 58.6 20.6 46.6 59.6 69.0 15.6 27.3 40.5 49.8 15.2

SCAN[18] 4.0 10.1 15.3 2.1 3.5 9.3 14.3 1.6 2.9 8.2 12.5 1.9

GNA-RNN[20] 30.4 38.7 44.4 15.4 34.6 52.7 65.8 14.2 20.3 30.8 38.2 9.3

CMCE[19] 35.0 50.9 56.4 22.8 39.7 56.3 62.7 15.4 25.8 34.9 45.4 13.1

AIHM 43.3 56.7 64.5 24.3 50.5 65.2 75.3 17.4 31.3 45.1 51.0 17.0

(a) {Teenage, backpack, down black, up white, pants, 

short clothing, short sleeves, short hair, male}

(b) {Teenage, backpack, down black, up red, pants, 

short clothing, short sleeves, short hair, male}

(c) {Adult, handbag, down blue, up-black, pants,

long clothing,  short sleeves, long hair, female}

(d) {Young, bag, up black, dress, short clothing,

short sleeves,  long hair, female}

Rank-1 Rank-10       Rank-1       Rank-10       

Figure 5: Examples of person search by attribute query on Market-1501. Attribute query is on the top in each case. True/false

image matches are indicated by green/red boxes. We highlight the attributes in red corresponding to the false matches.

three benchmarks are shown in Table 2. It is evident that our

AIHM model outperforms all the existing methods, e.g. sur-

passing the second best and state-of-the-art person search

model AAIPR [37] by a margin of 3.1%/3.7% in Rank-

1/mAP on Market-1501. The performance margins over

other global visual-textual embedding methods and local

region correspondence learning model are even more sig-

nificant. In particular, state-of-the-art ZSL models also fail

to excel due to the larger scale search, more ambiguous vi-

sual observation, and meaningless category names. Overall,

these results show that despite their respective modelling

strength either global and local embedding alone is subop-

timal for the more challenging person search problem. It is

clearly beneficial to the overall model performance if their

complementary advantages are utilised as formulated in the

AIHM model.

4.2. Qualitative Analysis and Visual Examination

To provide more in-depth and visual examination on the

performance of AIHM, we conducted a qualitative analy-

sis, as shown in Fig 5. It is clear that the majority of the

search results in top-10 by AIHM match the attribute query

precisely, with a few false matches due to the very similar

visual appearance of different person categories. For exam-

ple, AIHM succeeds in detecting the tiny “handbag” in the

Rank1 image (c) and the “backpack” with the very limited

visible part in the Rank1 image (a), thanks to the capability

of local correspondence matching across modalities.

We found that false retrieval images are often due to am-

biguous visual appearances and/or text descriptions. For ex-

ample, the Rank7 image (b) is with “up-purple” whilst the

Rank9 with “up-red”. Such a colour difference is visually

very subtle even for humans. Another example with visual
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ambiguity is “blue” vs “black” (c). In terms of ambiguous

text attribute descriptions “Teenage” and “Young” are se-

mantically very close. This causes the failure search results

(d), where “Teenage” person images in top-7 are instead re-

trieved against the query attribute “Young”.

4.3. Further Analysis and Discussion

Hierarchical embedding and matching. We examined the

effect and complementary of joint local attribute-level and

global category-level visual-textual embedding in AIHM.

This is conducted by comparing individual performances

with their combinations. Table 3 shows that: (1) Either em-

bedding alone is already considerably strong and discrimi-

native for person search. Local AIHM embedding alone is

competitive to the state-of-the-art AAIPR [37]. (2) A clear

performance gain is obtained by combining both global and

local embedding as a whole in person search. This validates

the complementary benefits and performance advantages of

jointly learning local and global visual-textual embedding

interactively in AIHM.

Table 3: Hierarchical embedding and matching analysis.

Method
Market-1501 DukeMTMC PA100K

Rank1 mAP Rank1 mAP Rank1 mAP

Global Only 30.6 20.5 40.7 13.7 26.1 14.3

Local Only 39.5 21.9 46.9 15.3 29.4 15.6

Hierarchy 43.3 24.3 50.5 17.4 31.3 17.0

Quality-aware fusion. Recall that we included quality-

aware fusion (Eq (6)) in AIHM for alleviating the negative

effect of noisy and ambiguous observation in local visual-

textual embedding. We tested the efficacy of this compo-

nent in comparison to the common average pooling strategy.

Table 4 shows that our quality-aware fusion is more effec-

tive in suppressing noisy information, e.g. improving over

the average pooling in Rank1/mAP rates by 4.3%/0.5% on

Market-1501, 5.6%/1.3% on DukeMTMC, and 5.2%/1.9%

on PA100K, respectively. This shows the benefit of taking

into account the input data quality in person search.

Table 4: Quality-aware fusion vs. Average Pooling.

Method
Market-1501 DukeMTMC PA100K

Rank1 mAP Rank1 mAP Rank1 mAP

Avg Pool 39.0 23.8 44.9 16.1 26.1 15.1

AIHM 43.3 24.3 50.5 17.4 31.3 17.0

Negative category augmentation. To combat the one-

shot learning challenge in global textual embedding, we

exploited negative category augmentation in AIHM model

learning, so to enrich training text data for reducing over-

fitting risk. We tested three different augmentation sizes:

5k, 10k, and 20k. It is shown in Fig 6 that this text augmen-

tation is clearly beneficial to AIHM. For example, with 10k

negative categories, we obtained 4.4%, 5.5% and 3.8% gain

at Rank-1 on Market-1501, DukeMTMC, and PA100K, re-

spectively. The optimal augmentation size is around 10k.

Its benefit can be understood from a negative hard mining

viewpoint, which improves model discriminative learning

given limited training category data. However, too many

(e.g. 20k) negative pairs seem to have negatively over-

whelmed model learning due to limited positive pairs.
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Figure 6: Text negative category augmentation.

Table 5: Model design strategy examination: Attribute

Recognition (AR) vs Learning to Compare (as AIHM).

Dataset Methods Rank1 Rank5 Rank10 mAP

Market-1501
AR 35.7 47.8 57.8 19.8

AIHM 43.3 56.7 64.5 24.3

DukeMTMC
AR 42.0 52.9 63.2 15.8

AIHM 50.5 65.2 75.3 17.4

PA100K
AR 30.3 42.8 47.8 13.8

AIHM 31.3 45.1 51.0 17.0

Person search by individual attribute recognition. We

examined two high-level model design strategies for person

search: (1) Attribute Recognition (AR): Using the attribute

prediction scores by the AIHM’s visual component, and the

L2 distance metric in the attribute vector space for cross-

modal matching and ranking. (2) Learning to match strat-

egy, i.e. the AIHM, which considers both global category-

level and local attribute-level textual-visual embedding. It

is interesting to find from Table 5 that the AR baseline per-

forms reasonably well when compared to the competitors

in Table 2. For example, AR even approaches the perfor-

mance of the state-of-the-art person search model AAIPR

[37]. Note that, this strong AR is likely to benefit from our

hierarchical embedding learning design. Besides, the big

performance margins of our model over AR suggest that the

learning to match strategy in joint optimisation is superior.

Global textual embedding. We examined three design

considerations for learning the global textual embedding:

(1) Individual attribute representation: One-Hot (OH) vs

Word2Vec (WV), (2) Aggregation of multiple attribute em-

bedding: RNN (LSTM) vs CNN. (3) Binary-class label rep-

resentation: Zero vs Transformed Input. Table 6 shows that:
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