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Abstract

Using techniques from higher-type computability theory and proof theory we extend
the well-known game-theoretic technique of backward induction to certain general classes
of unbounded games. The main application is a closed formula for calculating strategy
profiles in Nash equilibrium and subgame perfect equilibrium even in the case of games
where the length of play is not a-priori fixed.

1 Introduction

In his short 1912 article Zermelo [25] asked1 the following interesting question: What properties
does a chess position q has to have so that White, independently of how Black plays, can force a
win in at most r moves? Zermelo goes on to give a complete characterisation of these positions
based on the non-emptiness of the union of a certain family of sets Ur(q) determined by the
position q and the bound r. Early work such as this of Zermelo (amongst many others) led
von Neumann in 1928 [24] to ask an even more interesting questions: How should each player
actually choose their moves to achieve an optimal outcome in a game? So, rather than just trying
to identify what positions are “check-mate in r-moves”, one is actually interested in calculating
how to guarantee reaching such positions whenever this is possible. This was the start of a
mathematical theory of games which culminated with von Neumann and Morgenstern’s seminal
book [23] providing the foundations for a new branch of Mathematics and Economics today
known as Game Theory.

It was in this very first book [23] on Game Theory that the technique of backward induction
as a way of calculating a player’s “optimal strategy” first appears (cf. Schwalbe [20]). Informally,
backward induction is a way of calculating optimal strategies for each round of the game by
starting with the last round. In the last round of the game it is easy to check what move will
lead to the best outcome. The idea is then to fix this as the strategy for the last round. One
can then go one step back and calculate the optimal strategy for the last-but-one round: For
each possible move check what the last player will do according to his optimal strategy (which
we just fixed) and see what outcome that will lead to. The last-but-one player should pick a
move which leads to the best outcome amongst the possible outcomes. Proceeding like this one
can determine the best way each player can play at each round2. In modern terminology, one

∗Supported by the Royal Society grant 516002.K501/RH/kk
1For an English translation of Zermelo’s 1912 article see [20].
2For more information on backward induction see Section 2, or [2], [14] (section 4.2), [17] (section 7.7) and

[18] (chapter 3).
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actually says that such set of strategies is in subgame perfect equilibrium, a stronger notion that
than of Nash equilibrium (see Section 2).

The technique of backward induction, however, has so far only been considered for games
where the number of players is finite and fixed a priori, and more importantly, that the game
tree itself is finite. For instance, Aliprantis [1] stresses that

“The finiteness of the [game] tree as well as the complete information hypothesis are the two
essential ingredients for the [backward induction] method to work.”

As discussed in [12], chess itself is a potentially infinite game, so that the technique of
backward induction does not apply in the strict sense. In the case of chess, however, there
exists a strategically equivalent variant of chess which is finite (cf. [12]). Because the number
of move choices is finite at each point, the game tree has a fixed depth. But what about games
where the number of moves at each round might be infinite, so that the game tree itself will be
infinite (even if the length of plays is finite and fixed). A simple example of such a game is the
Sweet Tooth game [21] where the first player can cut the two given cakes into two pieces with
arbitrary precision (see Section 2.3).

Our main contribution in this paper is a generalisation of backward induction method for
well-founded games, i.e. games which always terminate after a finite number of rounds, but
whose length of plays can be arbitrarily long depending on how the game is played – so length
of plays are not a priori bounded. We also allow for infinite sets of moves, so that the game
tree can possibly be infinitely branching as well.

Our definition of the backward induction method is completely formal, and relies on some
extensions of the simply typed λ-calculus. This is in stark contrast with the current uses
of backward induction in the literature, which allow for confusion when comparing different
applications of the method to slightly different games. For instance, Boves [7] writes that
“there seems to be a similarity between the backward induction argument for the finite iterated
prisoner’s dillema and the surprise exam paradox and one cannot help but wonder whether the
former is indeed no more than an instance of the latter”. Iin here we give a precise mathematical
description of the backward induction method, together with a closed formula for the strategy
profile in sub-game perfect equilibrium. A formal proof that the backward induction method
leads to a strategy profile in subgame perfect equilibrium has recently also been given by
Aliprantis [1] for finite games in extensive form. In our approach we consider games in normal
form, but crucially, extend Aliprantis results in two ways:

• We consider games whose game tree have infinitely many nodes, but are nevertheless
well-founded so that each play in the game eventually leads to an outcome.

• We provide a closed formula describing the resulting optimal strategy profile.

The work presented makes fundamental use of techniques from proof theory, higher-order
computability theory, and our recent joint work [9, 10, 11] on selection functions and their
products (see Section 2.2).

1.1 Higher-type functions and assumptions

We work with functions defined on sets of functions, and we denote the set of all functions from
a set X to a set Y by (X → Y ). A trivial example is the evaluation functional E : (R→ R)→ R
defined by E(f) = f(0). Sometimes we use Church’s lambda notation to define such functions,
where e.g. E is written simply λf.f(0), which is equivalent to the notation f 7→ f(0).
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A typical example of a higher-type function in game theory is the functional

argsup : (X → R)→ X,

where X is any set and R ⊆ R is a set of real numbers. The functional argsup takes a function
f : X → R as an argument, and returns any point where f attains its maximum value. That is,

f(argsup(f)) ≥ f(x), for all x.

This functional is not well defined in general, but it is if X or R are finite, or if X is compact
and R = R and we restrict attention to the continuous functions X → R. In the body of the
paper we assume that such a condition is satisfied, as we make crucial uses of argsup in our
formalisation of backward induction.

As we shall see, argsup is one example of a selection function, among many others that also
are relevant for game theory (cf. Section 2.2). Our main construction involves a higher nesting
of function sets than argsup: it takes two or more selection functions as arguments and has
another selection function as its value. When the selection functions are argsup, this procedure
computes subgame perfect equilibria, as we shall see.

2 Sequential Games and Equilibrium

Before we proceed to explain our generalisation of backward induction to unbounded games,
let us first see how we can give a completely formal description of backward induction for finite
games. Let n denote the set {1, 2, . . . , n}, which we think of as identifying n players.

Definition 2.1 (Finite sequential game). An n-player sequential game is given by a tuple
({Xi}i∈n, q) where

• Xi is the set of moves for player i, and

• q : X1 × . . .×Xn → Rn is the outcome function.

A play in the game is a tuple ~x = x1, . . . , xn in X1 × . . .×Xn. For each play ~x the n-tuple
of real number q(~x) describes the payoffs obtained by each of the n players in that run of the
game.

We remark that considering n distinct players, one for each round, is more general than
the case of two-player games. The case of two players can be easily modelled via an outcome
function which always produces n-tuples of payoffs ~v : Rn where vi = vi+2, so that the set of
players at even rounds and the set of players at odd rounds can be viewed as single players.

Definition 2.2 (Strategies). A strategy for player i is a mapping

si : X1 × . . .×Xi−1 → Xi

describing what move player i should chose based on what has been played up to point i− 1. A
strategy profile is a tuple of strategies (si)i∈n for each player.

An strategy profile (si)i∈n determines a play ~x as

xi = si(x0, x1, . . . , xi−1)

and its corresponding outcome u = q(~x). We write qi : X1 × . . .×Xn → R for the composition
of q with the i-projection. Hence, given a play ~x, the payoff of player i is given by qi(~x).
Slightly abusing notation, we will also write qi(s1, s2, . . . , sn) for the i-coordinate of the outcome
determined by the strategy profile (si)i∈n.
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Definition 2.3 (Nash equilibrium). A strategy profile (si)i∈n is in Nash equilibrium if for each
player i and alternative strategy s∗i we have

qi(s1, . . . , si, . . . , sn) ≥ qi(s1, . . . , s∗i , . . . , sn).

Informally, a strategy profile is in equilibrium if no player has an incentive to unilaterally
change his strategy.

Definition 2.4 (Subgame). In any n-player sequential game ({Xi}i∈n, q) a partial play
x1, . . . , xi determines a (n− i)-player subgame ({Xk}i<k≤n, q̃) with payoff function

q̃j(xi+1, . . . , xn) = qj(x1, . . . , xi, xi+1, . . . , xn)

for i < j ≤ n.

Definition 2.5 (Subgame Perfect Equilibrium). A strategy profile (si)i∈n is in subgame perfect
equilibrium if it is in Nash equilibrium on any subgame.

A strategy profile is in subgame perfect equilibrium if at each point in the game x1, . . . , xi−1
the current player i will not get a better payoff by making a different move yi which deviates
from his current choice of move xi = si(x1, . . . , xi−1). Note that for a Nash equilibrium this
only needs to happen along the actual play determined by the strategy. A classical example of
a game which has more Nash equilibria than subgame perfect equilibria is the ultimatum game
[13].

2.1 Backward induction (informally)

Let argsup : (Xn → R)→ Xn denote the functional which returns any point x ∈ X on which its
argument function p : X → R has maximum value. Given a finite sequential game as described
in Definition 2.1, a strategy profile in subgame perfect equilibrium can be calculated as follows.
First define the strategy for the last player n, which should be as follows:

sn(x1, . . . , xn−1) = argsup(λxn.qn(x1, . . . , xn−1, xn)).

That is, the last player’s optimal strategy is simply to pick any move which gives himself
maximum payoff. Recall that by qn(x1, . . . , xn−1, xn) we denote the payoff of player n. We can
then proceed backwards to the last-but-one player n− 1. As we have already fixed the optimal
strategy of player n, the optimal strategy for player n− 1 can be described as

sn−1(x1, . . . , xn−2) = argsup(λxn−1.qn−1(x1, . . . , xn−2, xn−1, an(xn−1))),

where the function
an(xn−1) = sn(x1, . . . , xn−2, xn−1)

calculates what move player n will choose for each different choice xn−1 of player n− 1 move.
We have then fixed the optimal strategies sn−1 and sn of the last two players, and can then
backtrack to compute the optimal strategy of player n− 2 as

sn−2(x1, . . . , xn−3) = argsup(λxn−2.qn−2(x1, . . . , xn−2, an−1,n(xn−2))),

where the function

an−1,n(xn−2) = sn−1(x1, . . . , xn−2)︸ ︷︷ ︸
bn−1

, sn(x1, . . . , xn−2, bn−1, an(bn−1))

4



Computing Nash Equilibria of Unbounded Games M. Escardó and P. Oliva

calculates which moves player n − 1 and player n will chose for each different choice of move
by player n − 2. Continuing like this one finally arrives at an optimal strategy for player one,
completing the construction of a strategy profile in equilibrium.

This procedure for calculating optimal strategies is known as backward induction. Although
it is easy to describe the first two or three steps, the calculations become unmanageable already
for n bigger than 3. In the next section we show how backward induction can be easily formalised
with the help of a binary operator on functionals such as argsup known as the product of selection
functions.

2.2 Backward Induction Formalized

Following [9] we call a functional of type (X → R)→ X a selection function. Intuitively, X is
the set of choices, and R is the set of outcomes. The mapping X → R describes what outcome
results from each choice. Let us call such mapping X → R as local outcome functions. A
selection function associates a particular move x ∈ X for each local outcome function p : X → R.
Selection function on two sets of moves X and Y can be put together to build a selection function
over the combined set X × Y as follows.

Definition 2.6 (Product of Selection Functions). Given two selection functions ε : (X → R)→
X and δ : (Y → R)→ Y , define their product ε⊗ δ which has type ((X × Y )→ R)→ (X × Y )
using λ-notation as

(ε⊗ δ)(qX×Y→R) = (a, ya),

where a = ε(λx.q(x, yx)) and yx = δ(λy.q(x, y)).

Consider a two-player game where the first player chooses a move in a set X followed by the
second player choosing a move in the set Y . Hence, the product X ×Y consists of the set of all
possible plays of the game, R is to be viewed as the set of possible outcomes, and q : X×Y → R
the “outcome function” mapping plays to outcomes. Finally, the selection function ε and δ
describe the preferred moves of each player when given a local outcome function p : X → R and
Y → R, respectively. The mapping yx can be viewed as calculating for each move x ∈ X of the
first player, what move y ∈ Y the second player will prefer to choose (according to δ). That’s
a strategy for the second player! The move a is then the preferred move (or strategy!) of the
first player taking assuming the second (and last) player will follow strategy yx. Therefore, the
product of selection function completely captures the backward induction reasoning for simple
games with two rounds.

Definition 2.7 (Iterated Product of Selection Functions). Given a family of selection functions
εi : (Xi → R) → Xi, for 1 ≤ i ≤ n, define their product by simply iterating the binary product
as

n⊗
i=k

εi = εk ⊗

(
n⊗

i=k+1

εi

)

where (
⊗n

i=n εi) = εn.

The interesting fact is that when the binary product of selection functions is iterated n
times as above, it also calculates the backward induction reasoning for games with n rounds,
as described in the following theorem. We omit the proof here, but give the full proof in the
more general case of unbounded games in Section 3 (Theorem 4.6).

5



Computing Nash Equilibria of Unbounded Games M. Escardó and P. Oliva

Theorem 2.8 (Backward Induction). Given an n-player game ((Xi)i∈n, q) define a strategy
profile as

si(x1, . . . , xi−1) = π0

((
n⊗

k=i+1

argsupk

)
(qx0,...,xi−1)

)

where π0 denotes the first projection, i.e. π0(x ∗ α) = x. Such strategy profile is in subgame
perfect equilibrium.

2.3 Illustrative Example: Sweet Tooth Game

In the Sweet Tooth game [21] Jeremy and Marie have in front of them two identical rectangular
cakes. Jeremy will cut the first cake into two pieces, in any way he chooses. Marie will look
at the division of the first cake, and will decide whether she will chose first or allow Jeremy to
do so. If she goes first, she will take the larger piece. If she goes second, she can assume that
Jeremy will take the larger piece. Next, Jeremy will cut the second cake into two pieces. If
Marie had chosen first, for the first cake, then Jeremy gets to take the larger piece of the second
cake. If Marie had chosen second for the first cake, then she gets to take the larger piece of the
second cake. Our task is to calculate a subgame perfect equilibrium strategy profile for Jeremy
and Mary.

The game above has three rounds, with sets of moves

• X0 = [0, 1/2], the size of the smallest piece after Jeremy cut the first cake.

• X1 = B, the choice of Marie to either pick the largest piece or to leave it to Jeremy.
Assume true means that Marie will pick the largest piece.

• X2 = [0, 1/2], the size of the smallest piece of the second cake, after Jeremy’s cut.

The outcome function for the game is as follows

q(f, b, g) =

{
(f + 1− g, 1− f + g) if b = true

(1− f + g, f + 1− g) if b = false,

where f, g : [0, 1/2] and b : B, and the two components of q(f, b, g) are the amount of cake Jeremy
and Marie, respectively, get at the end of the game. In words, if Marie decides to choose on
the first cake, she gets the largest piece of the first cake 1 − f , and the smallest piece of the
second g, leaving Jeremy with the smallest piece of the first f plus the largest of the second
1− g. If, on the other hand, she lets Jeremy have the largest piece of the first cake, she will get
f of the first cake, and 1 − g of the second. The calculation of optimal strategies in this case
via Theorem 4.6 involves the product of three selection functions (properly composed with the
projections π0 : R2 → R and π1 : R2 → R, respectively): argsup[0,1/2] : ([0, 1/2]→ R2)→ [0, 1/2]
on the first and third rounds, and argsupB : (B→ R2)→ B on the second round. The strategic
play can be calculated as

(x, y, z) = (argsup[0,1/2] ⊗ argsupB ⊗ argsup[0,1/2])(q).
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According to Theorem 2.8, the optimal strategy for the last round is

s2(f, b) = π0
(
(argsup[0,1/2])(qf,b)

)
= argsup[0,1/2](λg.

{
f + 1− g if b = true

1− f + g if b = false,

}
)

=

{
0 if b = true

1/2 if b = false.

This means, in the last round Jeremy will cut a vanishingly small part so he keeps the whole
second cake, in case Marie chose to have the largest piece of the first cake. We then calculate
the optimal strategy for Marie on the second round as follows, making use of the fact that we
already know how Jeremy will play on round 2:

s1(f) = π0
(
(argsupB ⊗ argsup[0,1/2])(qf )

)
= argsupB(λb.

{
1− f + s2(f, b) if b = true

f + 1− s2(f, b) if b = false,

}
)

= argsupB(λb.

{
1− f if b = true

f + 1/2 if b = false,

}
)

=

{
true if f ≤ 1/4

false if f > 1/4.

So, Marie’s optimal strategy is to choose the largest piece of the first cake if Jeremy cuts a
small piece which is smaller than 1/4 of the cake. Finally, making use of the two strategies we
have just calculated for rounds 1 and 2 we can compute Jeremy’s optimal strategy (move!) for
the first round:

s0 = π0
(
(argsup[0,1/2] ⊗ argsupB ⊗ argsup[0,1/2])(q)

)
= argsup[0,1/2](λf.

{
f + 1− s2(f, s1(f)) if s1(f) = true

1− f + s2(f, s1(f)) if s1(f) = false,

}
)

= argsup[0,1/2](λf.

{
f + 1− s2(f, true)) if f ≤ 1/4

1− f + s2(f, false) if f > 1/4,

}
)

= argsup[0,1/2](λf.

{
f + 1 if f ≤ 1/4

1− f + 1/2 if f > 1/4,

}
)

= 1/4.

So, in an optimal play Jeremy will cut the first cake into the pieces 1/4 and 3/4, Marie will
collect the bigger piece (3/4), he will then cut a vanishingly small bit of the second cake and
take (essentially) the whole second cake, having an accumulated total cake amount of 1 and
1/4. In this case (s0, s1, s2) is not only a strategy profile in subgame optimal equilibrium, but
it is in fact the maximum amount of cake Jeremy can guarantee to have independently of how
Marie plays (cf. [21]).
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3 Unbounded Games

In this section we show how the binary product of selection function can be iterated an
unbounded number of times, leading to a calculation of optimal strategies in subgame per-
fect equilibrium for unbounded games. Note that from now on we replace the indexing set
n = {1, 2, . . . , n} by the full set of natural number N. Let [α](n) denote the first n elements
of the infinite sequence α : Πi∈NXi. Let X∗ denote the set of all finite sequence of the form
Πi<kXi. We use 1 for the singleton type, and X + Y for the disjoint union.

Definition 3.1 (Unbounded sequential game). An unbounded sequential game is given by a
tuple ({Xi}i∈N, q) where

• Xi is the set of moves for player i, and

• q : X∗ → (1 + RN) is the outcome function.

Note that we have potentially infinitely many players and hence potentially infinitely long
plays. However, the outcome function q : X∗ → (1 + RN) comes equipped with a flag which
tells us when the game needs to be continued (i.e. has not terminated). If q(s) ∈ 1 the game
must go on, whereas if q(s) ∈ RN the game has ended with payoffs q(s). In order to ensure that
our games are well-founded, we will require that any infinite play has a prefix which is a final
position. Formally,

∀α∃n
(
q([α](n)) ∈ RN) . (1)

Whenever this is assumed, we write ω(α) for the least n satisfying (1). Under this assumption,
the game tree is well-founded, although branches might be arbitrarily long as Xi are potentially
infinite sets. We show how one can extend the formal description of backward induction given
in the previous section to unbounded but well-founded games as described in Definition 3.1.

As in Section 2, we write qi : X∗ → (1 + R) for the composition of the outcome function q
with the i-th projection πi : RN → R, whenever q(s) ∈ RN. Hence, given a play α : Πi∈NXi, the
payoff of player i is given by qi(α). We also define:

• A strategy for player i is a mapping si : Πk<iXk → Xi.

• A strategy profile is an infinite sequence of strategies (si)i∈N for each player.

• An strategy profile (si)i∈N determines a play α as

si = si([α](i))

and an outcome u = q(s), where |s| is the first point where q(s) ∈ RN. We call this
the strategic play (for the given strategy profile) and denote it by ν. For the strategic
continuation of a partial play s we write ν(s).

Because the game can last for arbitrarily long, note that a strategy profile must include
an infinite sequence of strategies, as we must be ready to play for longer and longer games
depending on how the game unfolds.

Definition 3.2 (Unbounded Nash Equilibrium). Let us fix an unbounded game ({Xi}i∈N, q)
where q satisfies the well-foundedness condition (1). Given a strategy profile (si)i∈N let s de-
note the (finite!) play it determines. Such strategy profile is said to be in unbounded Nash
equilibrium if for each player i ≤ |s| and alternative move x ∈ Xi at point i

qi(ν) ≥ qi([ν](i) ∗ x ∗ ν([ν](i) ∗ x)).
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The formula [ν](i) ∗ x ∗ ν([ν](i) ∗ x) describes the play which starts by following the strategy
(si)i∈N, then at round i one plays an arbitrary move x, and then continues to follow the strategy
from the partial play [ν](i) ∗ x onwards.

Note that we only require the equilibrium to happen up to the point where the game finishes
on the play s determined by the strategy profile (si)i∈N. However, it is crucial to observe that
such point might be arbitrarily long depending on how the game unfolds. As in Definition 2.4,
we can similarly define a subgame of an unbounded game.

Definition 3.3 (Unbounded Subgame Perfect Equilibrium). A strategy profile (si)i∈N is in
unbounded subgame perfect equilibrium is it is in unbounded Nash equilibrium on any subgame.

4 Backward Induction for Unbounded Games

The binary product of selection function (Definition 2.6) can also be iterated an unbounded
number of times as follows:

Definition 4.1 (Unbounded Product). Given an outcome function q : X∗ → (1 + R) and an
infinite sequence of selection functions εi : (Xi → (1+R))→ Xi, define the unbounded product
of (εi)i∈N, denoted by BIi(ε), by simply iterating the binary product of selection functions as

BIi(ε)(q) =

{
〈 〉 if q(〈 〉) ∈ R

(εi ⊗ BIi+1(ε)) (q) if q(〈 〉) ∈ 1.

Note that BIi(ε) itself is a selection function of type (X∗ → (1 + R)) → X∗, and that is
why the binary product can be used in the definition of BIi(ε) above. It is easy to see, however,
that by expanding the definition of the binary product ⊗ (Definition 2.6) the functional BIi(ε)
can be equivalently defined as

BIi(ε)(q) =

{
〈 〉 if q(〈 〉) ∈ R

ai ∗ BIi+1(ε)(qai) if q(〈 〉) ∈ 1,
(2)

where ai = εi(λx.qx(BIi+1(ε)(qx))).

Lemma 4.2. Assuming the outcome function q : X∗ → (1 + R) satisfies (1) the functional
BIi(ε) is well-defined.

Proof. Fix q satisfying (1), and assume for some i and ε the value of BIi(ε)(q) is unde-
termined. That can only be because q(〈 〉) ∈ 1 and BIi+1(ε)(qai

) is also undetermined. Again,
BIi+1(ε)(qai

) can only be undetermined if qai
(〈 〉) = q(〈ai〉) ∈ 1 and BIi+2(ε)(qai,ai+1

) is also
undetermined. Continuing like this we find an infinite sequence of values α = ai, ai+1, . . . such
that for all k we have q([α](k))) ∈ 1, as [α](k) = ai, . . . , ai+k, which contradicts (1). 2

We now prove three important properties of the functional BIi(ε) which are going to lead us
to the main theorem below. The first of these characterises the k-th component of the sequence
BIi(ε)(q) : X∗.

Lemma 4.3. Let t = BIi(ε)(q). Then, for 0 ≤ k < |t|,

tk = εk(λx.q[t](k)∗x(BIi+k+1(ε)(q[t](k)∗x))).
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Proof. By a simple induction on k. 2

It is interesting to think of sequences s = x0, . . . , xi−1 as partial plays in the game. The next
lemma says that given a partial play s, the continuation of such play calculated by BI|s|(ε)(qs)
is in some sense “idempotent”, so that recalculating the continuation of the play after a few
steps results in the same play originally computed. This is made precise as follows:

Lemma 4.4. Fix s and let

t = BI|s|(ε)(qs).

We think of qs as the subgame determined by the partial play s, and t as the continuation of the
partial play s according to the product of selection functions. For all 0 ≤ i < |t| the following
holds:

t = [t](i) ∗ BI|s|+i(ε)(qs∗[t](i)).

Proof. By a simple induction on i. If i = 0 this follows by the definition of t. Assume this
holds for i we wish to show it for i+ 1. We have

t
(IH)
= [t](i) ∗ BI|s|+i(ε)(qs∗[t](i))

(2)
= [t](i) ∗ ai ∗ BI|s|+i+1(ε)(qs∗[t](i)∗ai

),

where ai = ε|s|+i

(
λx.qs∗[t](i)∗x(BI|s|+i+1(ε)(qs∗[t](i)∗x))

)
. Hence, ti = ai. Therefore, we have

that t = [t](i+ 1) ∗ BI|s|+i+1(ε)(qs∗[t](i+1)). 2

Let us denote by argsupi : (Xi → (1 + RN)) → Xi the composition of the i-th projection
πi : (1 + RN) → R with argsup : (Xi → R) → Xi. For definiteness we say that πi(1) = 0. For
the rest of this section we fix an unbounded sequential game ((Xi)i∈N, q), and the following
strategy profile

si(t) = π0
(
BI|t|(argsup)(qt)

)
. (3)

Our aim is to show that such strategy profile is in unbounded subgame perfect equilibrium.

Lemma 4.5. Given a partial play s its strategic extension can be calculated by BI|s|(argsup)(qs),
i.e.

ν(s) = BI|s|(argsup)(qs).

Proof. Let t = BI|s|(argsup)(qs). We have to show that

ti = si(s ∗ [t](i))
(3)
= π0

(
BI|s|+i(argsup)(qs∗[t](i))

)
.

This follows directly from Lemma 4.3, since

π0
(
BI|s|+i(argsup)(qs∗[t](i))

) (2)
= argsup|s|+i(λx.qs∗[t](i)∗x(BI|s|+i+1(argsup)(qs∗[t](i)∗x))),

L. 4.3
= BI|s|(argsup)(qs)(i) = ti,

which concludes the proof. 2

Finally, we arrive at our main result:

Theorem 4.6 (Backward Induction for Unbounded Games). The strategy profile defined in
(3) is in subgame perfect equilibrium.
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Proof. Let s be a arbitrary partial non-terminating play. Let t be its strategic extension.
By the definition of the strategic move at round k we have

ti = s|s|+i(s ∗ [t](i))

(3)
= π0

(
BI|s|+i(argsup)(qs∗[t](i))

)
.

(2)
= argsup|s|+i

(
λx.qs∗[t](i)∗x

(
BI|s|+i+1(argsup)(qs∗[t](i)∗x)

))
.

By the definition of argsup we have

qi(s ∗ [t](i) ∗ ti ∗
(
BI|s|+i+1(argsup)(qs∗[t](i)∗ti)

)
) ≥ qi(s ∗ [t](i) ∗x ∗

(
BI|s|+i+1(argsup)(qs∗[t](i)∗x)

)
)

for any x. By Lemma 4.5 we have that BI|s|+i+1(argsup)(qs∗[t](i)∗x) = ν(s ∗ [t](i) ∗ x), so that
the above simplifies to

q(s ∗ [t](i+ 1) ∗ ν(s ∗ [t](i+ 1))) ≥ q(s ∗ [t](i) ∗ x ∗ ν(s ∗ [t](i) ∗ x)).

Finally, by Lemma 4.4 we have s ∗ [t](i+ 1) ∗ ν(s ∗ [t](i+ 1)) = ν(s), and the result follows. 2

4.1 Generalizations

The functional BIi(ε) described in (2) and used to calculate optimal strategies in the previ-
ous section is a form of recursion on well-founded trees known as bar recursion. It was first
investigated in the context of proof theory by Spector [22] where he extends Gödel’s relative
consistency proof of Peano arithmetic [15] to full analysis. Several other variants of bar re-
cursion have been considered recently (see e.g. [5, 6, 16]) and their inter-definability has been
investigated by the authors in [8].

We note here that the more powerful forms of bar recursion considered by Spector [22]
and Berardi, Bezem and Coquand [5] (called EPS and IPS, respectively, in [8]) rather than
BIi(ε) above would allow us to compute subgame optimal equilibria for other variants of games
of unbounded length. In the case of EPS, for instance, we could deal with games where the
outcome function q : ΠiXi → R does not explicitly inform us about the termination of the
game, but an extra auxiliary function ω : ΠiXi → N tells us about what “relevant” part of any
infinite play actually is. That allows us to compute an equilibrium profile which is optimal in
the relevant part of the strategic play. This is discussed in detail in [11] for a general notion of
sequential games introduced in [9].

5 Conclusions

In [9, 10, 11] we worked with essentially the same formalization of sequential games, and showed
that the product of selection functions calculates optimal strategies. What is new in this paper
is that, for the particular case of sequential game where the set of outcomes is Rn and the
selection functions are argsupi, the product of selection functions turns out to compute subgame
perfect Nash equilibria. That is, for such games the notion of optimal strategy coincides with the
notion of subgame perfect equilibrium (a refinement of Nash equilibrium), and both are given by
the product of selection functions. This gives an explicit formula for their computation, which
can be directly interpreted as an algorithm in Gödel’s system T (extended with the unbounded
product), or in any practical functional programming language (without any extensions) [10].
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A large amount of literature on backward induction and subgame perfect equilibrium dis-
cusses cases where this notion of equilibrium leads to strategies which are, from a common
sense point of view, not optimal. For instance, the Centipede game of Rosenthal [19] is a stan-
dard example which illustrates some unexpected outcome of the backward indunction method,
whereby the subgame perfect equilibrium leads to a considerably smaller payoff than what could
have been obtained by either player collectively changing their strategies. It is in fact widely
known that strategy profiles which are in subgame perfect equilibrium are often not what one
in practice (experimentally) will think of as the best strategy. That is mainly because common
knowledge of rationality or common belief play an important role in sequential games. This
led people to investigate the relation between common knowledge and backward induction, for
instance Aumann [3] who shows that common knowledge rationality implies backward induc-
tion, or Ben-Porath [4] who investigates the characterization of the set of outcomes that are
consistent with common certainty of rationality at the beginning of a game.
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