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Risk Management

The Use of Bayes and Causal Modelling in Decision Making,
Uncertainty and Risk

Norman Fenton and Martin Neil

The most sophisticated commonly used methods of risk assessment (used especially in the financial sector) involve build-
ing statistical models from historical data. Yet such approaches are inadequate when risks are rare or novel because there
is insufficient relevant data. Less sophisticated commonly used methods of risk assessment, such as risk registers, make
better use of expert judgement but fail to provide adequate quantification of risk. Neither the data-driven nor the risk
register approaches are able to model dependencies between different risk factors. Causal probabilistic models (called
Bayesian networks) that are based on Bayesian inference provide a potential solution to all of these problems. Such
models can capture the complex interdependencies between risk factors and can effectively combine data with expert
judgement. The resulting models provide rigorous risk quantification as well as genuine decision support for risk manage-

ment.

Keywords: Bayes, Bayesian Networks, Causal Mod-
els, Risk.

1 Introduction

The 2008-10 credit crisis brought misery to millions
around the world, but it at least raised awareness of the need
for improved methods of risk assessment. The armies of
analysts and statisticians employed by banks and govern-
ment agencies had failed to predict either the event or its
scale until far too late. Yet the methods that could have
worked — and which are the subject of this paper — were
largely ignored. Moreover, the same methods have the po-
tential to transform risk analysis and decision making in all
walks of life. For example:

Medical: Imagine you are responsible for diagnos-
ing a condition and for prescribing one of a number of pos-
sible treatments. You have some background information
about the patient (some of which is objective like age and
number of previous operations, but some is subjective, like
‘overweight” and “prone to stress’); you also have some prior
information about the prevalence of different possible con-
ditions (for example, bronchitis may be ten times more likely
than cancer). You run some diagnostic tests about which
you have some information of the accuracy (such as the
chances of false negative and false positive outcomes). You
also have various bits of information about the success rates
of the different possible treatments and their side effects.
On the basis of all this information how do you arrive at a
decision of which treatment pathway to take? And how
would you justify that decision if something went wrong?

m Legal: Anybody involved in a legal case (before or
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Figure 1: Causal View of Evidence.

during a trial) will see many pieces of evidence. Some of
the evidence favours the prosecution hypothesis of guilty
and some of the evidence favours the defence hypothesis of
innocence. Some of the evidence is statistical (such as the
match probability of a DNA sample) and some is purely
subjective, such as a character witness statement. It is your
duty to combine the value of all of this evidence either to
determine if the case should proceed to trial or to arrive at a
probability (‘beyond reasonable doubt’) of innocence. How
would you arrive at a decision?

m Safety: Atransport service (such as a rail network or
an air traffic control centre) is continually striving to im-
prove safety, but must nevertheless ensure that any proposed
improvements are cost effective and do not degrade effi-
ciency. There are a range of alternative competing propos-
als for safety improvement, which depend on many differ-
ent aspects of the current infrastructure (for example, in the
case of an air traffic control centre alternatives may include
new radar, new collision avoidance detection devices, or
improved air traffic management staff training). How do you
determine the ‘best’ alternative taking into account not just
cost but also impact on safety and efficiency of the overall
system? How would you justify any such decision to a team
of government auditors?

m Financial: Abank needs sufficient liquid capital read-
ily available in the event of exceptionally poor performance,
either from credit or market risk events, or from catastrophic
operational failures of the type that brought down Barings
in 1995 and almost brought down Société Générale in 2007.
It therefore has to calculate and justify a capital allocation
that properly reflects its “value at risk’. Ideally this calcula-
tion needs to take account of a multitude of current finan-
cial indicators, but given the scarcity of previous catastrophic
failures, it is also necessary to consider a range of subjec-
tive factors such as the quality of controls in place within
the bank. How can all of this information be combined to
determine the real value at risk in a way that is acceptable to
the regulatory authorities and shareholders?

m Reliability: The success or failure of major new
products and systems often depends on their reliability, as
experienced by end users. Whether it is a high end digital
TV, a software operating system, or a complex military ve-
hicle, like an armoured vehicle, too many faults in the de-
livered product can lead to financial disaster for the pro-
ducing company or even a failed military mission includ-
ing loss of life. Hence, pre-release testing of such systems
is critical. But no system is ever perfect and a perfect sys-
tem delivered after a competitor gets to the market first may
be worthless. So how do you determine when a system is
‘good enough’ for release, or how much more testing is
needed? You may have hard data in the form of a sequence
of test results, but this has to be considered along with sub-
jective data about the quality of testing and the realism of
the test environment.

What is common about all of the above problems is that
a ‘gut-feel’ decision based on doing all the reasoning ‘in
your head’ or on the back of an envelope is fundamentally
inadequate and increasingly unacceptable. Nor can we base
our decision on purely statistical data of ‘previous’ instances,
since in each case the ‘risk’ we are trying to calculate is
essentially unique in many aspects. To deal with these kinds
of problems consistently and effectively we need a rigor-
ous method of quantifying uncertainty that enables us to
combine data with expert judgement. Bayesian probabil-
ity, which we introduce in Section 2, is such an approach.
We also explain how Bayesian probability combined with
causal models (Bayesian networks) enables us to factor in
causal relationships and dependencies. In Section 3 we
review standard statistical and other approaches to risk as-
sessment, and argue that a proper causal approach based
on Bayesian networks is needed in critical cases.

2 Bayes Theorem and Bayesian Networks

At their heart, all of the problems identified in Section
1 incorporate the basic causal structure shown in Figure 1.

There is some unknown hypothesis H about which we
wish to assess the uncertainty and make some decision. Does
the patient have the particular disease? Is the defendant
guilty of the crime? Will the system fail within a given pe-
riod of time? Is a capital allocation of 5% going to be suf-
ficient to cover operational losses in the next financial year?

Consciously or unconsciously we start with some (un-
conditional) prior belief about H (for example, ‘thereisa 1
in a 1000 chance this person has the disease’). Then we
update our prior belief about H once we observe evidence

& 6 'Gut-feel’ decision based on doing all the reasoning
‘in your head’ or on the back of an envelope is fundamentally
inadequate and increasingly unacceptable 77
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& 4 Bayesian probability is a rigorous method
of quantifying uncertainty that enables us to combine data
with expert judgement 7?7

E (for example, depending on the outcome of a test our
belief about H being true might increase or decrease). This
updating takes account of the likelihood of the evidence,
which is the chance of seeing the evidence E if H is true.

When done formally this type of reasoning is called
Bayesian inference, named after Thomas Bayes who deter-
mined the necessary calculations for it in 1763. Formally,
we start with a prior probability P(H) for the hypothesis H.
The likelihood, for which we also have prior knowledge, is
formally the conditional probability of E given H, which
we write as P(E|H).

Bayes’s theorem provides the correct formula for up-
dating our prior belief about H in the light of observing E.
In other words Bayes calculates P(H|E) in terms of P(H)
and P(E[H). Specifically:

P(E|H)P(H) _
PE)

P(E[H)P(H)
P(E|H)P(H)+(E|notH)P(notH)

P(H|E)=

Example 1: Assume one in a thousand people has a par-
ticular disease H. Then:

P(H) = 0.001, so P(not H) =0.999

Also assume a test to detect the disease has 100% sensi-
tivity (i.e. no false negatives) and 95% specificity (mean-
ing 5% false positives). Then if E represents the Boolean
variable "Test positive for the disease", we have:

P(E | not H) =0.05

PE|H)=1

Now suppose a randomly selected person tests positive.
What is the probability that the person actually has the dis-
ease? By Bayes Theorem this is:

P(E|H)P(H) 1x0.001

P(H |E)= =
(HIE) P(E|H)P(H)+(E |notH)P(notH) ~ 1x0.001+0.05x 0.999

=0.01963

So there is a less than 2% chance that a person testing
positive actually has the disease.

Bayes theorem has been used for many years in numer-
ous applications ranging from insurance premium calcula-
tions [1], through to web-based personalisation (such as with
Google and Amazon). Many of the applications pre-date
modern computers (see, e.g. [2] for an account of the cru-
cial role of Bayes theorem in code breaking during World
War 2).

However, while Bayes theorem is the only rational way
of revising beliefs in the light of observing new evidence, it
is not easily understood by people without a statistical/math-
ematical background. Moreover, the results of Bayesian
calculations can appear, at first sight, as counter-intuitive.

12 CEPIS UPGRADE vaol. xi1, No. 5, December 2011

Indeed, in a classic study [3] when Harvard Medical School
staff and students were asked to calculate the probability of
the patient having the disease (using the exact assumptions
stated in Example 1) most gave the wildly incorrect answer
of 95% instead of the correct answer of less than 2%. The
potential implications of such incorrect ‘probabilistic risk
assessment’ are frightening. In many cases, lay people only
accept Bayes theorem as being ‘correct’ and are able to rea-
son correctly, when the information is presented in alterna-
tive graphical ways, such as using event trees and frequen-
cies (see [4] and [5] for a comprehensive investigation of
these issues). But these alternative presentation techniques
do not scale up to more complex problems.

If Bayes theorem is difficult for lay people to compute
and understand in the case of a single hypothesis and piece
of evidence (as in Figure 1), the difficulties are obviously
compounded when there are multiple related hypotheses
and evidence as in the example of Figure 2.

As in Figure 1 the nodes in Figure 2 represent variables
(which may be known or unknown) and the arcs represent
causal (or influential) relationships. Once we have relevant
prior and conditional probabilities associated with each vari-
able (such as the examples shown in Figure 3) the model is
called a Bayesian network (BN).

The BN in Figure 2 is intended to model the problem of
diagnosing diseases (TB, Cancer, Bronchitis) in patients
attending a chest clinic. Patients may have symptoms (like
dyspnoea — shortness of breath) and can be sent for diag-
nostic tests (X-ray); there may be also underlying causal

Has lung
cancer

Positive X-
ray?

Dyspnhoea?

Figure 2: Bayesian Network for Diagnosing Disease.
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Probability Table for “Visit to Asia?”

Smoker? | Yes No
Yes 0.6 0.3
No 04 0.7

Probability Table for “Bronchitis?”

Figure 3: Node Probability Table (NPT) Examples.

factors that influence certain diseases more than others (such
as smoking, visit to Asia).

To use Bayesian inference properly in this type of net-
work necessarily involves multiple applications of Bayes
Theorem in which evidence is ‘propagated’ throughout. This
process is complex and quickly becomes infeasible when
there are many nodes and/or nodes with multiple states. This
complexity is the reason why, despite its known benefits,
there was for many years little appetite to use Bayesian in-
ference to solve real-world decision and risk problems. For-

tunately, due to breakthroughs in the late 1980s that pro-
duced efficient calculations algorithms 13 [2][6], there are
now widely available tools such as [7] that enable anybody
to do the Bayesian calculations without ever having to un-
derstand, or even look at, a mathematical formula. These
developments were the catalyst for an explosion of interest
in BNs. Using such a tool we can do the kind of powerful
reasoning shown in Figure 4.

Specifically:

m  With the prior assumptions alone (Figure 4a) Bayes

Positive X-

ray? Dyspnoea?

b3l

Positive X-

ray? Dyspnoea?

a) Prior beliefs point to bronchitis as most likely

b) Patient is ‘non-smoker’ experiencing dyspnoea
(shortness of breath): strengthens belief in bronchitis

Positive X-
ray?

Dyspnoea?

|

Positive X-

ray? Dyspnoea?

c) Positive x-ray result increases probability of TB and
cancer but bronchitis still most likely

d) Visit to Asia makes TB most likely now

Figure 4: Reasoning within the Bayesian Network.
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theorem computes what are called the prior marginal prob-
abilities for the different disease nodes (note that we did not
‘specify’ these probabilities — they are computed automati-
cally; what we specified were the conditional probabilities
of these diseases given the various states of their parent
nodes). So, before any evidence is entered the most likely
disease is bronchitis (45%).

m  When we enter evidence about a particular patient
the probabilities for all of the unknown variables get up-
dated by the Bayesian inference. So, (in Figure 4b) once we
enter the evidence that the patient has dyspnoea and is a
non-smoker, our belief in bronchitis being the most likely
disease increases (75%).

m [fasubsequent X-ray test is positive (Figure 4b) our
belief in both TB (26%) and cancer (25%) are raised but
bronchitis is still the most likely (57%).

m  However, if we now discover that the patient visited
Asia (Figure 4d) we overturn our belief in bronchitis in fa-
vour of TB (63%).

Note that we can enter any number of observations any-
where in the BN and update the marginal probabilities of all
the unobserved variables. As the above example demon-
strates, this can yield some exceptionally powerful analyses
that are simply not possible using other types of reasoning
and classical statistical analysis methods.

In particular, BNs offer the following benefits:

m Explicitly model causal factors:

m Reason from effect to cause and vice versa

m  Overturn previous beliefs in the light of new evidence
(also called “‘explaining away”’)

m  Make predictions with incomplete data

m Combine diverse types of evidence including both
subjective beliefs and objective data.

m  Arrive at decisions based on visible auditable rea-
soning (Unlike black-box modelling techniques there are
no "hidden" variables and the inference mechanism is based
on a long-established theorem).

With the advent of the BN algorithms and associated
tools, it is therefore no surprise that BNs have been used in
a range of applications that were not previously possible
with Bayes Theorem alone. A comprehensive (and easily
accessible) overview of BN applications, with special em-
phasis on their use in risk assessment, can be found in [8].

Itis important to recognise that the core intellectual over-
head in using the BN approach is in defining the model
structure and the NPTs — the actual Bayesian calculations
can and must always be carried out using a tool. However,
while these tools enable large-scale BNs to be executed ef-
ficiently, most provide little or no support for users to actu-
ally build large-scale BNs, nor to interact with them easily.
Beyond a graphical interface for building the structure, BN-
builders are left to struggle with the following kinds of prac-
tical problems that combine to create a barrier to the more
widespread use of BNs:

m  Eliciting and completing the probabilities in very large
NPTs manually (e.g. for a node with 5 states having three par-
ents each with 5 states, the NPT requires 625 entries);

m Dealing with very large graphs that contain similar,
but slightly different "patterns" of structure ;

m Handling continuous, as well as discrete variables.

Fortunately, recent algorithm and tool developments (also
described in [8]) have gone a long way to addressing these
problems and may lead to a ‘second wave’ of widespread BN
applications. But before BNs are used more widely in critical
risk assessment and decision making, there needs to be a fun-
damental cultural shift away from the current standard ap-
proaches to risk assessment, which we address next.

3 From Statistical Models and Risk Registers to
Causal Models

3.1 Prediction based on Correlation is not Risk
Assessment

Standard statistical approaches to risk assessment seek

Month Total fatal crashes | Average monthly temperature (F)
January 297 17.0
February 280 18.0
March 267 29.0
April 350 43.0
May 328 55.0
June 386 65.0
July 419 70.0
August 410 68.0
September | 331 59.0
October 356 48.0
November | 326 37.0
December | 311 22.0

Table 1: Fatal Automobile Crashes per Month.

14 CEPIS UPGRADE vaol. xi1, No. 5, December 2011
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Figure 5: Scatterplot of Temperature against Road Fatalities (each Dot represents a Month).

to establish hypotheses from relationships discovered in
data. Suppose we are interested, for example, in the risk of
fatal automobile crashes. Table 1 gives the number of crashes
resulting in fatalities in the USA in 2008 broken down by
month (source: US National Highways Traffic Safety Ad-
ministration). It also gives the average monthly tempera-
ture.

-
. ~ o7
1)

/
| Drivitig conditions (D) |

M}

MNumbser af accidems

We plot the fatalities and temperature data in a scatterplot
graph as shown in Figure 5.

There seems to be a clear relationship between tempera-
ture and fatalities — fatalities increase as the temperature
increases. Indeed, using the standard statistical tools of cor-
relation and p-values, statisticians would accept the hypoth-
esis of arelationship as “highly significant’ (the correlation

Temperatura (T}

Humber of mies (M)

Risk of accidant {R)

Figure 6: Causal Model for Fatal Crashes.
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coefficient here is approximately 0.869 and it comfortably
passes the criteria for a p-value of 0.01).

However, in addition to serious concerns about the use
of p-values generally (as described comprehensively in [6]),
there is an inevitable temptation arising from such results
to infer causal links such as, in this case, higher tempera-
tures cause more fatalities. Even though any introductory sta-
tistics course teaches that correlation is not causation, the re-
gression equation is typically used for prediction (e.g. in this
case the equation relating N to T is used to predict that at 80F
we might expect to see 415 fatal crashes per month).

But there is a grave danger of confusing prediction with
risk assessment. For risk assessment and management the
regression model is useless, because it provides no explana-
tory power at all. In fact, from a risk perspective this model
would provide irrational, and potentially dangerous, infor-
mation: it would suggest that if you want to minimise your
chances of dying in an automobile crash you should do your
driving when the highways are at their most dangerous, in
winter.

One obvious improvement to the model, if the data is
available, is to factor in the number of miles travelled (i.e.
journeys made). But there are other underlying causal and
influential factors that might do much to explain the appar-
ently strange statistical observations and provide better
insights into risk. With some common sense and careful
reflection we can recognise the following:

m  Temperature influences the highway conditions
(which will be worse as temperature decreases).

m  Temperature also influences the number of journeys
made; people generally make more journeys in spring and
summer and will generally drive less when weather condi-
tions are bad.

m  When the highway conditions are bad people tend
to reduce their speed and drive more slowly. So highway
conditions influence speed.

m The actual number of crashes is influenced not just by
the number of journeys, but also the speed. If relatively few
people are driving, and taking more care, we might expect fewer
fatal crashes than we would otherwise experience.

The influence of these factors is shown in Figure 6:

The crucial message here is that the model no longer
involves a simple single causal explanation; instead it com-
bines the statistical information available in a database (the
‘objective’ factors) with other causal ‘subjective’ factors de-
rived from careful reflection. These factors now interact in
a non-linear way that helps us to arrive at an explanation
for the observed results. Behaviour, such as our natural cau-

Probability

tion to drive slower when faced with poor road conditions,
leads to lower accident rates (people are known to adapt to
the perception of risk by tuning the risk to tolerable levels.
- this is formally referred to as risk homeostasis). Con-
versely, if we insist on driving fast in poor road conditions
then, irrespective of the temperature, the risk of an acci-
dent increases and so the model is able to capture our intui-
tive beliefs that were contradicted by the counterintuitive
results from the simple regression model.

The role played in the causal model by driving speed
reflects human behaviour. The fact that the data on the av-
erage speed of automobile drivers was not available in a
database explains why this variable, despite its apparent
obviousness, did not appear in the statistical regression
model. The situation whereby a statistical model is based
only on available data, rather than on reality, is called "con-
ditioning on the data". This enhances convenience but at
the cost of accuracy.

By accepting the statistical model we are asked to defy
our senses and experience and actively ignore the role un-
observed factors play. In fact, we cannot even explain the
results without recourse to factors that do not appear in the
database. This is a key point: with causal models we seek
to dig deeper behind and underneath the data to explore
richer relationships missing from over-simplistic statistical
models. In doing so we gain insights into how best to con-
trol risk and uncertainty. The regression model, based on
the idea that we can predict automobile crash fatalities based
on temperature, fails to answer the substantial question: how
can we control or influence behaviour to reduce fatalities.
This at least is achievable; control of weather is not.

3.2 Risk Registers do not help quantify Risk

While statistical models based on historical data repre-
sent one end of a spectrum of sophistication for risk assess-
ment, at the other end is the commonly used idea of a ‘risk
register’. In this approach, there is no need for past data; in
considering the risks of a new project risk managers typi-
cally prepare a list of ‘risks’ that could be things like:

m Some key people you were depending on become
unavailable

m A piece of technology you were depending on fails.

m You run out of funds or time

The very act of listing and then prioritising risks, means
that mentally at least risk managers are making a decision
about which risks are the biggest. Most standard texts on
risk propose decomposing each risk into two components:

m  ‘Probability’ (or likelihood) of the risk

X

Impact

Figure 7: Standard Impact-based Risk Measure.
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An Example: Meteor Strike Alarm in the Film "Armageddon"

By destroying the meteor in the film "Armageddon” Bruce Willis saved the world. Both the chance of the meteor strike
and the consequences of such a strike were so high, that nothing much else mattered except to try to prevent the strike.
In popular terminology what the world was confronting was a truly massive ‘risk’. But if the NASA scientists in the film
had measured the size of the risk using the formula in Figure 7 they would have discovered such a measure was
irrational, and it certainly would not have explained to Bruce Willis and his crew why their mission made sense. Specifi-
cally:

m Cannot get the Probability number (for meteor strikes earth). According to the NASA scientists in the film the
meteor was on a direct collision course with earth. Does that make it a certainty (i.e. a 100% chance) of it striking Earth?
Clearly not, because if it was then there would have been no point in sending Bruce Willis and his crew up in the space
shuttle. The probability of the meteor striking Earth is conditional on a number of control events (like intervening to
destroy the meteor) and trigger events (like being on a collision course with Earth). It makes no sense to assign a direct
probability without considering the events it is conditional on. In general it makes no sense (and would in any case be
too difficult) for a risk manager to give the unconditional probability of every ‘risk’ irrespective of relevant
controls and triggers. This is especially significant when there are, for example, controls that have never been used
before (like destroying the meteor with a nuclear explosion).

m Cannot get the Impact number (for meteor striking earth). Just as it makes little sense to attempt to assign an
(unconditional) probability to the event "Meteor strikes Earth’, so it makes little sense to assign an (unconditional)
number to the impact of the meteor striking. Apart from the obvious question "impact on what?", we cannot say what the
impact is without considering the possible mitigating events such as getting people underground and as far away as
possible from the impact zone.

m Risk score is meaningless. Even if we could get round the two problems above what exactly does the resulting
number mean? Suppose the (conditional) probability of the strike is 0.95 and, on a scale of 1 to 10, the impact of the
strike is 10 (even accounting for mitigants). The meteor ‘risk’ is 9.5, which is a number close to the highest possible 10.
But it does not measure anything in a meaningful sense

m |t does not tell us what we really need to know. What we really need to know is the probability, given our current
state of knowledge, that there will be massive loss of life.

m  ‘Impact’ (or loss) the risk can cause
The most common way to measure each risk is to multi-
ply the probability of the risk (however you happen to meas-

Metecr on Control

Collision courss

ure that) with the impact of the risk (however you happen to
measure that) as in Figure 7.

The resulting number is the *size’ of the risk - it is based
on analogous ‘utility’ measures. This type of risk measure
is quite useful for prioritising risks (the bigger the number
the “greater’ the risk) but it is normally impractical and can
be irrational when applied blindly. We are not claiming that
this formulation is wrong. Rather, we argue that it is nor-
mally not sufficient for decision-making.

One immediate problem with the risk measure of Figure
7 is that, normally, you cannot directly get the numbers you
need to calculate the risk without recourse to a much more
detailed analysis of the variables involved in the situation at
hand.

In addition to the problem of measuring the size of each
individual risk in isolation, risk registers suffer from the
following problems:

& 4 By destroying
the meteor in the film
'‘Armageddon’ Bruce Willis
saved the world??
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Explode metaor

Evernt

Meteor strikes .
Earth Mitigant
Move people
underground

Conseguence

Loss of life

Figure 8: Meteor Strike Risk.

m  However the individual risk size is calculated, the
cumulative risk score measures the total project risk. Hence,
there is a paradox involved in such an approach: the more
carefully you think about risk (and hence the more indi-
vidual risks you record in the risk register) the higher the
overall risk score becomes. Since higher risk scores are as-
sumed to indicate greater risk of failure it seems to follow
that your best chance of a new project succeeding is to sim-
ply ignore, or under-report, any risks.
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Meteor on collision course False True False 0.0010
0.599
Explode meteor Falss True False True ==
Falze 1.0 1.0 0.0 0.8 _ -
True 0.0 0.0 L0 0.2 Figure 10: Probability Table for

"Meteor on Collision Course with
Earth".

Figure 9: Conditional Probability Table for "Meteor strikes Earth".

m Different projects or business divisions will assess
risk differently and tend to take a localised view of their
own risks and ignore that of others. This "externalisation”
of risk to others is especially easy to ignore if their interests
are not represented when constructing the register. For ex-
ample the IT department may be forced to accept the dead-
lines imposed by the marketing department.

m  Arisk register does not record "opportunities" or "ser-
endipity" and so does not deal with upside uncertainty, only
downside.

m Risks are not independent. For example, in most cir-
cumstances cost, time and quality will be inextricably linked:;
you might be able to deliver faster but only by sacrificing
quality. Yet "poor quality” and "missed delivery" will ap-
pear as separate risks on the register giving the illusion that
we can control or mitigate one independently of the other.
In the subprime loan crisis of 2008 there were three risks:

1) extensive defaults on subprime loans, 2) growth in nov-
elty and complexity of financial products and 3) failure of
AIG (American International Group Inc.) to provide insur-
ance to banks when customers default. Individually these
risks were assessed as ‘small’. However, when they occurred
together the total risk was much larger than the individual
risks. In fact, it never made sense to consider the risks indi-
vidually at all.

Hence, risk analysis needs to be coupled with an as-
sessment of the impact of the underlying events, one on
another, and in terms of their effect on the ultimate out-
comes being considered. The accuracy of the risk assessment
is crucially dependent on the fidelity of the underlying model;
the simple formulation of Figure 7 is insufficient. Instead of
going through the motions to assign numbers without actually
doing much thinking, we need to consider what lies under the
bonnet.

Trigger Control
Meteor on collision Explode meteor
False 4 0.1% False 99%
Trua 99.9% True 1%
Event \1 /
Meteor strikes Earth
False {0.899%
True 99.101% mitgant
Move people
False 0%
True 0%
c onsegquence
Loss of life -ﬁ‘/
False 4 5.359%
True 94 641%

Figure 11: Initial Risk of Meteor Strike.
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Trigger Control
Meteor on collision Explode meteor
Falge False-:“uu%
099, 9%
True 60 6% True 1|]|]%
Expluded True
ot Explode alse
Event
Meteor strikes Earth
Falsa
True Mitigant
Mowve people
False
True
Consequence
Loss of life ﬁ‘f/
80.9159%
False

Trug

19.081%

Figure 12: The Potential Difference made by Bruce Willis and Crew.

Risk is a function of how closely connected events, sys-
tems and actors in those systems might be. Proper risk as-
sessment requires a holistic outlook that embraces a causal
view of interconnected events. Specifically to get rational
measures of risk you need a causal model, as we describe
next. Once you do this measuring risk starts to make sense,
but it requires an investment in time and thought.

3.2.1 Thinking about Risk using Causal Analysis

It is possible to avoid all the above problems and ambigui-
ties surrounding the term risk by considering the causal con-
text in which risks happen (in fact everything we present here
applies equally to opportunities but we will try to keep it as
simple as possible). The key thing is that a risk is an event that
can be characterised by a causal chain involving (at least):

m the event itself

m at least one consequence event that characterises the
impact

m one or more trigger (i.e. initiating) events

m one or more control events which may stop the trig-
ger event from causing the risk event

m One or more mitigating events which help avoid the
consequence event

This is shown in the example of Figure 8.

With this causal perspective, a risk is therefore actually
characterised not by a single event, but by a set of events.
These events each have a number of possible outcomes (to
keep things as simple as possible in the example here we
will assume each has just two outcomes true and false so
we can assume "Loss of life" here means something like
‘loss of at least 80% of the world population”).

The ‘uncertainty’ associated with a risk is not a sepa-
rate notion (as assumed in the classic approach). Every event
(and hence every object associated with risk) has uncer-
tainty that is characterised by the event’s probability distri-
bution. Triggers, controls, and mitigants are all inherently
uncertain. The sensible risk measures that we are propos-
ing are simply the probabilities you get from running the
BN model. Of course, before you can run it you still have
to provide the prior probability values. But, in contrast to
the classic approach, the probability values you need to sup-
ply are relatively simple and they make sense. And you
never have to define vague numbers for ‘impact’.

Example. To give you a feel of what you would need to
do, in the Armageddon BN example of Figure 8 for the
uncertain event "Meteor strikes Earth™ we still have to as-

& & Proper risk assessment requires a holistic outlook
that embraces a causal view of interconnected events??
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Flood “risk” from
householder perspective

Dam bursts
upstream

Flood ‘risk’ from local
authority perspective

Flood barrier

Sandbags
protection

Adequate
insurance

Loss of life

Rapid
emergency
response

Law s uit

Flood ‘risk” from
local authonity solicitor
perspective

Figure 13: Incorporating Different Risk Perspectives.

sign some probabilities. But instead of second guessing what
this event actually means in terms of other conditional
events, the model now makes it explicit and it becomes much
easier to define the necessary conditional probability. What
we need to do is define the probability of the meteor strike
given each combination of parent states as shown in Figure
9.

For example, if the meteor is on a collision course then
the probability of it striking the earth is 1, if it is not de-
stroyed, and 0.2, if it is. In completing such a table we no
longer have to try to “factor in” any implicit conditioning
events like the meteor trajectory.

There are some events in the BN for which we do need
to assign unconditional probability values. These are repre-
sented by the nodes in the BN that have no parents; it makes
sense to get unconditional probabilities for these because,
by definition, they are not conditioned on anything (this is
obviously a choice we make during our analysis). Such
nodes can generally be only triggers, controls or mitigants.
An example, based on dialogue from the film, is shown in
Figure 10.

Once we have supplied the priors probability values a
BN tool will run the model and generate all the measures of
risk that you need. For example, when you run the model
using only the initial probabilities the model (as shown in
Figure 11) computes the probability of the meteor striking
Earth as 99.1% and the probability of loss of life (meaning
at least 80% of the world population) is about 94%.

In terms of the difference that Bruce Willis and his crew
could make we run two scenarios: One where the meteor is
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exploded and one where it is not. The results of both sce-
narios are shown together in Figure 12.

Reading off the values for the probability of "loss of
life" being false we find that we jump from just over 4%
(when the meteor is not exploded) to 81% (when the me-
teor is exploded). This massive increase in the chance of
saving the world clearly explains why it merited an attempt.

Clearly risks in this sense depend on stakeholders and
perspectives, but these perspectives can be easily combined
as shown in Figure 13 for ‘flood risk” in some town.

The types of events are all completely interchangeable
depending on the perspective. From the perspective of the
local authority the risk event is ‘Flood’ whose trigger is ‘dam
bursts upstream” and which has “flood barrier’ as a control.
Its consequences include ‘loss of life’ and also ‘house
floods’. But the latter is a trigger for flood risk from a House-
holder perspective. From the perspective of the Local Au-
thority Solicitor the main risk event is ‘Loss of life” for
which ‘Flood’ is the trigger and ‘Rapid emergency response’
becomes a control rather than a mitigant.

This ability to decompose a risk problem into chains of
interrelated events and variables should make risk analysis
more meaningful, practical and coherent. The BN tells a
story that makes sense. This is in stark contrast with the
"risk equals probability times impact" approach where not
one of the concepts has a clear unambiguous interpretation.
Uncertainty is quantified and at any stage we can simply
read off the current probability values associated with any
event.

The causal approach can accommodate decision-mak-
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ing as well as measures of utility. It provides a visual and
formal mechanism for recording and testing subjective prob-
abilities. This is especially important for a risky event for
which you do not have much or any relevant data.

4 Conclusions

We have addressed some of the core limitations of both
a) the data-driven statistical approaches and b) risk regis-
ters, for effective risk management and assessment. \We have
demonstrated how these limitations are addressed by using
BNs. The BN approach helps to identify, understand and
quantify the complex interrelationships (underlying even
seemingly simple situations) and can help us make sense of
how risks emerge, are connected and how we might repre-
sent our control and mitigation of them. By thinking about
the hypothetical causal relations between events we can in-
vestigate alternative explanations, weigh up the conse-
quences of our actions and identify unintended or
(un)desirable side effects.

Of course it takes effort to produce a sensible BN model:

m  Special care has to be taken to identify cause and
effect: in general, a significant correlation between two fac-
tors Aand B (where, for example A is “yellow teeth’ and B
is ‘cancer’) could be due to pure coincidence or a causal
mechanism, such that:

- Acauses B

- B causes A

- Both Aand B are caused by C (where in our example
C might be ‘smoking”) or some other set of factors

The difference between these possible mechanisms is
crucial in interpreting the data, assessing the risks to the
individual and society, and setting policy based on the analy-
sis of these risks. In practice causal interpretation may col-
lide with our personal view of the world and the prevailing
ideology of the organisation and social group, of which we
will be a part. Explanations consistent with the ideological
viewpoint of the group may be deemed more worthy and
valid than others irrespective of the evidence. Hence sim-
plistic causal explanations (e.g. ‘poverty’ causes ‘violence’)
are sometimes favoured by the media and reported unchal-
lenged. This is especially so when the explanation fits the
established ideology helping to reinforce ingrained beliefs.
Picking apart over-simplistic causal claims and reconstruct-
ing them into a richer, more realistic causal model helps
separate ideology from reality and determine whether the
model explains reality. The richer model may then also help
identify more realistic possible policy interventions.

m The states of variables need to be carefully defined
and probabilities need to be assigned that reflect our best
knowledge.

m |t requires an analytical mindset to decompose the
problem into "classes" of event and relationships that are
granular enough to be meaningful, but not too detailed that
they are overwhelming.

If we were omniscient we would have no need of prob-
abilities; the fact that we are not gives rise to our need to
model uncertainty at a level of detail that we can grasp, that
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is useful and which is accurate enough for the purpose re-
quired. This is why causal modelling is as much an art (but
an art based on insight and analysis) as a science.

The time spent analysing risks must be balanced by the
short term need to take action and the magnitude of the
risks involved. Therefore, we must make judgements about
how deeply we model some risks and how quickly we use
this analysis to inform our actions.

References

[1] S.L.Lauritzen, D.J. Spiegelhalter. Local computations
with probabilities on graphical structures and their
application to expert systems (with discussion). Jour-
nal of the Royal Statistical Society Series 50(2), 157-
224 (1988).

[2] 1.B. Hossack, J. H. Pollard, B. Zehnwirth. Introduc-
tory statistics with applications in general insurance,
Cambridge University Press, 1999.

[3] W. Casscells, A. Schoenberger, T.B. Graboys. "Inter-
pretation by physicians of clinical laboratory results."
New England Journal of Medicine 299 999-1001,
1978.

[4] L. Cosmides, J. Tooby. "Are humans good intuitive
statisticians after all? Rethinking some conclusions
from the literature on judgment under uncertainty."
Cognition 58 1-73, 1996.

[5] N.Fenton, M. Neil (2010). "Comparing risks of alter-
native medical diagnosis using Bayesian arguments."
Journal of Biomedical Informatics 43: 485-495.

[6] J. Pearl. "Fusion, propagation, and structuring in be-
lief networks." Artificial Intelligence 29(3): 241-288,
1986.

[71 Agena 2010, <http://www.agenarisk.com>.

[8] N.E. Fenton, M. Neil. Managing Risk in the Modern
World: Bayesian Networks and the Applications. Lon-
don Mathematical Society, Knowledge Transfer Re-
port. 1, 2007. <http://www.Ims.ac.uk/activities/
comp_sci_com/KTR/apps_bayesian_networks.pdf>.

CEPIS UPGRADE val. xi1, No. 5, December 2011 21





