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ABSTRACT 

Risk aggregation is a popular method used to estimate the sum of a collection of finan-

cial assets or events, where each asset or event is modelled as a random variable. Appli-

cations include insurance, operational risk, stress testing, and sensitivity analysis. In 

practice the sum of a set of random variables involves the use of two well-known math-

ematical operations: n-fold convolution (for a fixed number n) and N-fold convolution, 

defined as the compound sum of a frequency distribution N and a severity distribution, 

where the number of constant n-fold convolutions is determined by N. Where the severi-

ty and frequency variables are independent, and continuous, currently numerical solu-

tions such as, Panjer’s recursion, Fast Fourier transforms and Monte Carlo simulation 

produce acceptable results. However, they have not been designed to cope with new 

modelling challenges that require hybrid models containing discrete explanatory (regime 

switching) variables or where discrete and continuous variables are inter-dependent and 

may influence the severity and frequency in complex, non-linear, ways. This paper de-

scribes a Bayesian Factorization and Elimination (BFE) algorithm that performs convo-

lution on the hybrid models required to aggregate risk in the presence of causal depend-

encies. This algorithm exploits a number of advances from the field of Bayesian Net-

works, covering methods to approximate statistical and conditionally deterministic func-

tions to factorize multivariate distributions for efficient computation. Experiments show 

that BFE is as accurate on conventional problems as competing methods. For more diffi-

cult hybrid problems BFE can provide a more general solution that the others cannot of-

fer. Additionally, the BFE approach can be easily extended to perform deconvolution for 

                                                 
† Peng Lin, PhD candidate, Department of Computer Science, Queen Mary, University of London, UK, 

p.lin@eecs.qmul.ac.uk  
† Martin Neil, Professor of Computer Science and Statistics, Department of Computer Science, Queen Mary, Universi-

ty of London, UK, martin@eecs.qmul.ac.uk  
† Norman Fenton, Professor of Computer Science, Department of Computer Science, Queen Mary, University of Lon-

don, UK, norman@eecs.qmul.ac.uk  

mailto:p.lin@eecs.qmul.ac.uk
mailto:martin@eecs.qmul.ac.uk
mailto:norman@eecs.qmul.ac.uk


 2 

the purposes of stress testing and sensitivity analysis in a way that competing methods do 

not. 

 

 

Keywords: Risk aggregation; Bayesian Factorization and Elimination; Convolution; De-

convolution; Causal dependency modelling; Bayesian networks; Dynamic Discretization. 

 

 

1. MOTIVATION AND INTRODUCTION 

 

Risk aggregation is a popular method used to estimate the sum of a collection of fi-

nancial assets or events, where each asset or event is modelled as a random variable. Ex-

isting techniques make a number of assumptions about these random variables. Firstly, 

they are almost always continuous. Secondly, if they are independent then they are iden-

tically distributed. Thirdly, should they be dependent, these dependencies are best repre-

sented by correlation functions, such as copulas (Embrechts, 2009) (Nelsen, 2007), 

where marginal distribution functions are linked by some dependence structure. These 

statistical methods have tended to model associations between variables as a purely phe-

nomenological artefact extant in historical statistical data. Recent experience, at least 

since the beginning of the financial crisis in 2007, has amply demonstrated the inability 

of these assumptions to handle non-linear effects or “shocks” on financial assets and 

events, resulting in models that are inadequate for prediction, stress testing and model 

comprehension  (IMF, 2009), (Laeven & Valencia, 2008). 

It has been extensively argued that modelling dependence as correlation is insuffi-

cient, since it ignores any views that the analyst may, quite properly, hold about those 

causal influences that help generate and explain the statistical data observed (Meucci, 

2008),  (Rebonato, 2010). Such causal influences are commonplace and permeate all lev-

els of economic and financial discourse. For example, does a dramatic fall in equity pric-

es cause an increase in equity implied volatilities or is it an increase in implied volatility 

that causes a fall in equity prices? The answer is trivial in this case, since a fall in equity 

prices is well known to affect implied volatility, but correlation alone contains no infor-

mation about the direction of causation. To incorporate causation we need to involve the 

analyst or expert and “fold into” the model views of how discrete events interact and the 
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effects of this interaction on the aggregation of risk. This approach extends the methodo-

logical boundaries last pushed back by the celebrated Black–Litterman model (Black & 

Litterman, 1991). In that approach a risk manager’s role is as an active participant in the 

risk modelling, and the role of the model is to accommodate their subjective “views”, 

expressed as Bayesian priors of expectations and variances of asset returns. In this paper 

we aim to represent these Bayesian “views” in an explicit causal structure, whilst provid-

ing the computational framework for solutions. Such causal models would involve dis-

crete explanatory (regime switching) variables and hybrid mixtures of inter-dependent 

discrete and continuous variables. A causal risk aggregation model might incorporate 

expert derived views about macro-economic, behavioural, operational or strategic factors 

that might influence the assets or events under “normal” or “abnormal” conditions. Ap-

plications of the approach include insurance, stress testing, operational risk and sensitivi-

ty analysis. 

At its heart risk aggregation requires the sum of n  random variables. In practice this in-

volves the use of two well-known mathematical operations: n-fold convolution (for a 

fixed value of n ) and N-fold convolution (Heckman & Meyers, 1983), defined as the 

compound sum of a frequency distribution, N , and a severity distribution, S , where the 

number of constant n-fold convolutions is determined by N , stochastically. Currently 

popular methods such as Panjer’s recursion  (Panjer 1981), Fast Fourier transforms  

(Heckman and Meyers 1983) and Monte Carlo simulation  (Meyers 1980) perform risk 

aggregation numerically using parameters derived from historical data to estimate the 

distributions for both S  and N . Where S  and N  are independent, and continuous, 

these approaches produce acceptable results. However, they have not been designed to 

cope with the new modelling challenges outlined above. In the context of modelling gen-

eral dependencies among severity variables, a popular approach is to use copulas, , both 

to model the dependent variables and to perform risk aggregation.  

Our aim then is to show how we can carry out a stochastic risk aggregation (N-fold 

convolution) in a causal Bayesian framework, in such a way that subjective views about 

inter-dependencies can be explicitly modelled and numerically evaluated i.e. where dis-

crete and continuous variables are inter-dependent and may influence N  and S  in com-
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plex, non-linear ways. We see this as the first of many financial modelling problems that 

are amenable to this new approach.  

This paper describes a Bayesian Factorization and Elimination (BFE) algorithm that 

performs convolution on the hybrid models required to aggregate risk in the presence of 

causal dependencies. This algorithm exploits a number of advances from the field of 

Bayesian Networks (BNs), covering methods to approximate statistical and conditionally 

deterministic functions and to factorize multivariate distributions for efficient computa-

tion. 

Section 2 provides an overview of popular methods for risk aggregation. Section 3 

describes BN technology with a view to explaining some of the core foundational algo-

rithms used in this paper. The BFE convolution algorithm is described in Section 4, 

showing how it builds and extends on the standard BN algorithms presented in Section 3. 

Section 5 presents a version of BFE that performs deconvolution and Section 6 presents 

experimental results showing the performance of BFE. Section 7 concludes the paper. 

 

 

2. RISK AGGREGATION 
 

An encyclopaedic overview of the current state of the art in risk aggregation is pre-

sented in , (McNeil, Frey, & Embrechts, 2010). The general aggregation formula for 

fixed, n , assets, is: 

0 1 ... nT S S S                                                     (2.1) 

where T  is the  sum of n  asset valuations and each iS  is from the same common contin-

uous distribution xf , which can be thought of as a return (severity) distribution S . This 

is called an n-fold convolution. If ~ xS f  and if we have a variable number of assets, N , 

then  (2.1) can be rewritten as an N-fold convolution: 

*

0

( ) ( ) ( )j

T

j

f x f x P N j




                                         (2.2) 
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where  * *( 1)

0

( ) ( ) ( )j jf x f x y f dy



   is a recursive n-fold convolution on S . We 

can therefore rewrite (2.2) in a discrete form: ( ) jP N j a  , for  0,1,...,j L , where L  

is the length of discretized frequency N . The following expressions hold: 

 

0 0 1 1( ) ( ) ( ) ... ( )L LP T a P T a P T a P T                                    (2.3) 

0 0 1 0 1 0 1, ,..., ...L LT S T S S T S S S                                   (2.4) 

where each 
jT  is a constant n-fold convolution. The formula (2.3) represents a mix-

ture distribution where the mixture components consist of mutually exclusive variables, 

themselves composed using the conditionally deterministic functions stated in (2.4).  

For the sake of clarity in insurance, and similar, applications N  is interpreted as a 

frequency distribution, and S  is defined as a severity (loss) distribution. 

General numerical solutions to computing the aggregate distribution include Pan-

jer’s recursion (Panjer, 1981), Fast Fourier transform (Heckman & Meyers, 1983). and 

Monte Carlo (MC) simulation (Meyers, 1980). 

In this paper severity variables can depend on discrete explanatory variables with 

dependencies expressed via conditioning in Bayesian networks. This contrasts with the 

classic approach for dependency modelling among severity variables using copulas. Ra-

ther than use dependency and conditioning the copula approach models the dependency 

structure independently with marginal functions, which supports the construction of high 

dimensional models.  

In the context of copula based risk aggregation Bruneton (Bruneton, 2011) proposes 

the use of hierarchical aggregation using copulas. Also, Arbenz (Arbenz & Canestraro, 

2012) proposes hierarchical risk aggregation based on tree dependence modelling using 

step-wise low dimensional copulas, and also gives a sample reordering algorithm for 

numerical approximation. Brechmann (Brechmann, 2014) suggests hierarchical Kendall 

copulas to achieve flexible building blocks, where risk aggregation is supported by the 

Kendall function. These approaches capture the joint dependencies from a hierarchical 

structure and exploit use of small building blocks. In contrast to correlation modelling, 
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our work assumes causality and dependency, where joint dependency is decomposed by 

conditional dependencies using the Bayesian network framework.  

 

3. BAYESIAN NETWORKS  

 

3.1. Background 

 

A Bayesian Network (BN(Jensen & Nielsen, 2009), (Pearl, 1993), (Lauritzen 1996) 

consists of two main elements: 

 

1. Qualitative: This is given by a directed acyclic graph (DAG), with nodes repre-

senting random variables, which can be discrete or continuous, and may or may 

not be observable, and directed arcs (from parent to child) representing causal or 

influential relationships between variables.  

2. Quantitative: A probability distribution associated with each node X . For a node 

with parents this is a Conditional Probability Distribution (CPD), 

  |P X pa X that defines the probabilistic relationship of node given its respec-

tive parents ( )pa X . For each node X without parents, called root nodes, this is 

their marginal probability distribution ( )P X . If X  is discrete, the CPD can be 

represented as a Node Probability Table (NPT),   |P X pa X , which lists the 

probability that X  takes, on each of its different values, for each combination of 

values of its parents ( )pa X . For continuous variables, the CPDs represent condi-

tional probability density functions. 

 

Together, the qualitative and quantitative parts of the BN encode all relevant infor-

mation contained in a full joint probability model. The conditional independence asser-

tions about the variables, represented by the absence of arcs, allow decomposition of the 

underlying joint probability distribution as a product of CPDs. Specifically: 

 

1( ,..., ) ( | ( )n i iP X X P X pa X  
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This significantly reduces the complexity of inference tasks on the BN 

(Spiegelhalter and Lauritzen 1990) (Fenton and Neil 2012)(Fenton & Neil, 2012).  

BNs have already been employed to address financial problems. For example, in  

(Cowell, Verrall, & Yoon, 2007) BNs were used for overall loss distribution and making 

predictions for insurance; in  (Martin Neil & Fenton, 2008)  BNs were used for model-

ling operational risk in financial institutes, while the work in   (Politou & Giudici, 2009) 

combines Monte Carlo simulation, graphic models and copula functions to build opera-

tional risk models for a bank. Likewise, (Rebonato, 2010) discusses a coherent stress 

testing approach using BNs. 

We have chosen to use BNs because the latest algorithms can model causal depend-

encies between hybrid variables during inference, to produce approximate posterior mar-

ginal distributions for the variables of interest. Also, by virtue of Bayes’ Theorem they 

are agnostic about causal direction and can perform inference from cause to effect and 

vice versa (or convolution to de-convolution, as is the case here). Until very recently BN 

tools were unable to properly handle non-Gaussian continuous variables, and so such 

variables had to be discretized manually, with inevitable loss of accuracy. A solution to 

this problem was described in (Neil, Tailor and Marquez 2007) based on an extension of 

the Junction Tree (JT) inference algorithm and is described below in Section 3.2. The 

result of inference is a set of queries on the BN in the form of univariate or multivariate 

posterior marginal distributions. This allows the approximate solution of classical Bayes-

ian statistical problems, involving continuous variables, as well as hybrid problems in-

volving both discrete and continuous variables, without any restriction on distribution 

family or any requirement for conjugacy. This scheme iteratively converges on the poste-

rior solution and has provided highly efficient solutions in a number of domains (Neil, 

Marquez and Fenton  2010) (Fenton & Neil, 2012). 

Both exact and approximate inference in BNs is NP-hard (Cooper & Herskovits, 

1992) and the efficiency of the JT architecture depends on the size of the clusters in the 

associated tree.  To help reduce conditional probability table (CPT) size we employ a 

factorization scheme called binary factorization (described below in Section 3.3) to re-
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duce the size, and associated computation time required, for continuous variables in the 

model (Neil, Chen, & Fenton, 2012).  

We have used AgenaRisk (AgenaRisk 2014), a commercial BN package and ex-

tended it to incorporate the new BFE algorithm to  carry out the experiments described in 

Section 4. 

 

3.2. Dynamic Discretization (DD) on hybrid BNs 

 

Static discretization has historically been used to approximate the domain of the con-

tinuous variables in a BN using predefined, fixed piecewise constant partitions. This ap-

proximation will be accurate so long as the posterior high density region remains in the 

specified domain during inference. However the analyst will not know, in advance, 

which areas of the domain require the greater number of intervals, ultimately resulting in 

an inaccurate posterior estimate. Dynamic Discretization (DD)  is an alternative discreti-

zation approach that searches for the high density region during inference and adds more 

intervals where they are needed whilst removing intervals where they are not (by merg-

ing or deletion). The algorithm iteratively discretizes the target variables by the conver-

gence of relative entropy error threshold . 

Formally, let X  be a continuous node in the BN. The range of X  is denoted by 

X , and the probability density function of X , is denoted by Xf . The idea of discretiza-

tion is to approximate Xf   as follows: 

 

1. Partition X  into a set of interval { }X jw  , 

2. Define a locally constant function xf  on the partitioning intervals. 

 

As in  , we estimate the relative entropy error induced by the discretized function 

using an upper bound of the Kullback-Leibler (KL) metric between two density func-

tions f  and g : 

( )
( || ) ( ) log

( )

f x
D f g f x dx

g x
                                            (3.1) 
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Under the KL metric the optimal value for the discretized function xf  is given by the 

mean of the function in each of the intervals of the discretized domain. The discretization 

task reduces then to finding an optimal partition set ˆ
x . 

DD searches X  for the most accurate specification of the high-density regions given 

the model and the evidence, calculating a sequence of discretization intervals in X  iter-

atively. At each stage in the iterative process, a candidate discretization,  x jw  , is 

tested to determine whether the relative entropy error of the resulting discretized prob-

ability density Xf  is below a given threshold, defined according to some stopping rule. 

After each variable in the model is discretized the inference algorithm, such as Junction 

Tree, calculates the joint posterior distributions for all variables in the model. This gives 

a new posterior probability density for all variables and these are then re-discretized. 

This process continues until the stopping rule is triggered. 

 

3.3. Binary Factorization (BF) 

  

The cost of using off-the-shelf BN algorithms to calculate N-fold convolution can be 

computationally expensive. The conditional probability density expression of node T  is 

defined by all of its parent nodes by Equation (2.1): 

 

0 1 ...n nT S S S     

 

If each node has a node state of size m  and the total number of parents is n , then 

the CPT for T  has a total size of 1nm   given the intervals computed under DD. To help 

reduce the CPT size we employ binary factorization  to factorize the BN graph according 

to the statistical and deterministic functions declared in it. 

To illustrate the BF process, we consider constant n-fold convolution models for 

both the independent and common cause case, as represented by BNs 1G  and 2G  re-

spectively in Figure 2. This is just Equation 2.1. 

After employing binary factorization, the BNs 1G  and 2G  are transformed into 

1'G  and 2'G  respectively as shown in Figure 3. In Figure 2 1G  shows the N-fold convo-
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lution when severities are independent and identically distributed. 2G  denotes the N-fold 

convolution when severities are dependent on a discrete common cause random vector, 

C . 

S0 S2S1

T

... Sn S0 S2S1

T1

... Sn

T2

Tn

...

G1 G1'

S0 S2S1

T

... Sn S0 S2S1

T1

... Sn

T2 Tn...

G2
G2'

C C

 

Figure 3 BN models of N-fold convolution of i.i.d. severity variables ( 1G ) and of 

common cause version ( 2G ) with accompanying binary factorized versions ( 1'G  

and 2'G ) 

 

BF ensures that, in the transformed BN, each variable’s NPT expression involves a 

maximum of two continuous parent variables in the transformed BN. This produces a 

maximal discretized NPT of size 
3m .  

Theoretical equivalence of  1G  and  1'G   with the resulting BN models 2G  and 

2'G  is demonstrated in (Neil et al., 2012). 

 

4. BAYESIAN FACTORIZATION AND ELIMINATION (BFE) 

 

To solve the N-fold convolution problem using off-the-shelf BN technology is not 

possible because we cannot compute 1G  and 2G  effectively from the conditional de-

pendency structures defined in Figure 3. This is because, even with binary factorization, 

either the model size is prohibitively large (in the case of 1G ) or the junction tree cluster 

sizes would be exponential in size (as with 2G ). Therefore, the original contribution of 

this paper is to produce an iterative factorized approach to the computation that scales up 

to arbitrary sized models. This approach is called Bayesian Factorization and Elimina-

tion (BFE). This algorithm performs convolution on the hybrid models required to ag-
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gregate risk in the presence (or absence) of causal dependencies. This algorithm exploits 

a number of advances from the field of BNs already described in Section 3. We refer to 

these advances as the BN engine and they are shown in the overall algorithm architecture 

in Figure 4. 

Bayesian Factorization and Elimination (BFE)

BN Engine

Log Based 

Aggregation 

(LBA)

Binary 

Factorization 

(BF)

Compond 

Density 

Factorization 

(CDF)

Variable 

Elimination 

(VE)

Dynamic 

Discretization 

(DD)

Junction Tree 

(JT)

 

Figure 4 Architecture of BN algorithms 

The BFE algorithm contains three separate steps, each performing specific optimi-

sations: 

 

1. Log Based Aggregation (LBA): this algorithm computes equation (2.4), the n-

fold convolution, in a log based pattern that can be more efficient than aggrega-

tion by straight summation.  

2. Variable Elimination (VE): variables are iteratively eliminated during LBA pro-

cess, by which we can achieve greater computation efficiency for calculating ar-

bitrary constant n-fold convolutions. 

3. Compound Density Factorization (CDF): the compound sum equation (2.3) can 

be factorized by this algorithm in order to reduce large node probability tables in-

to smaller ones. CDF is similar to binary factorization except that in CDF we in-

troduce one more intermediate variable (a Boolean node) for weighting the com-

pound density combination at each step in the aggregation process. 

 

4.1. Log Based Aggregation (LBA) 

 

In equation (2.3) each , 1,...,iT i n  is the sum of its parent variables 1iT   and iS , and 

the aggregation process simply involves repeated summations of the same variable iS . 
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As binary factorization proceeds intermediate variables 
jF  are created to aggregate every 

two parents, creating a hierarchy until the total aggregate, T , is computed. An example, 

in the presence and absence of common cause vector is shown in Figure 5.  

G1 G2

T

AiA0

S2 S3

F1

S0 S1

F0

...

...

... Sn

Fj

Sn-1

S0

T

AiA0

S2 S3

F1

S1

F0

...

...

... Sn

Fj

Sn-1

C

 

Figure 5 1G  and 2G  BNs binary factorized for aggregation 

 

 This approach to aggregation is computationally expensive since all the variables are 

entered and computed in the BN explicitly. Log based aggregation simply computes and 

subsequently reuses prior computed results recursively, so that in each subsequent step 

we can reuse results from previous steps, without having to create the whole BN. The 

resulting process is 2(log )O n . 

 

4.2. Variable Elimination (VE) 

 

The aim of Variable Elimination (VE) is to remove nodes from a BN, G , that do not 

belong to a query set, Q , containing only the variables of interest, by a process of mar-

ginalization. Here we use variable elimination to reduce the number of variables we han-

dle but add additional steps to exploit repeated structure in the binary factorized model. 

We do not need, therefore, to explicitly manipulate the whole BN, because we are not 

interested in setting arbitrary query variables or conditioning evidence. Instead we iterate 

through the binary factored model, progressively creating subsets of the aggregation hi-

erarchy that can be reused recursively, eliminating nodes and reusing parts as we go. 

 

We first consider a full binary factorized BN and use this to identify variables that 

can be eliminated and query sets necessary during VE. In the simple case for an n-fold 

convolution for independent i.i.d. severity variables,  the graph 1'G  in Figure 3 denotes 
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the binary factorized form of the computation of 
0

n

n j

j

T S


  after introducing the inter-

mediate binary factored variables 1 2 1{ , ,..., }nT T T  . The marginal distribution for nT  has the 

form: 

 

0 1 1

0 1 1

0 1 1 2 1

( ..., , ,..., )

1 1 2 1 1 0 1 0 1

( ..., , ,..., )

( ) ( , ,..., , , ,..., , )

( | , ) ( | , )... ( | , ) ( ) ( )... ( )

n n

n n

n n n n

S S T T

n n n n n n n

S S T T

P T P S S S T T T T

P T T S P T T S P T S S P S P S P S







   








 

(4.1) 

(Exploiting the conditional independence relations in Figure 3) 

 

Notice that every pair of parent variables iT  and 1iS   is independent in this model 

and we can marginalize out each pair of iT  and 1iS   from the model separately. Equation 

(4.1) can be alternatively expressed as predefined ‘query blocks’: 

 

1 1 2 0 1

1 2 1 2 1 0 1 0 1 2

, , ,

( ) ( | , ) ... ( | , ) ( | , ) ( ) ( ) ( ) ... ( )
n n

n n n n n

T S T S S S

P T P T T S P T T S P T S S P S P S P S P S




        
      

      
  

(4.2) 

 

So, using (4.2) we can recursively marginalize out, i.e. eliminate or prune, each pair 

of parents iT  and 1iS   from the model. For example, the elimination order in (4.2) could 

be: 0 1 1 2 1{ , },{ , }...{ , }n nS S T S T S . The marginal distribution of nT , i.e. the final query set, is 

then yielded at the last elimination step. 

 

In order to illustrate the recursive BN graph operations, required during VE, consid-

er Figure 3 and BN 1G .  The first few steps involved are shown in Figure 6.  At each 

stage we reuse the same graph structures and expressions for graphs 1 2 3{ , , }K K K  and 

1 2 3{ , , }L L L . We can proceed through the binary factorized BN, computing the marginal 

distributions for the query set, removing elimination sets and repeating the process until 

we exhaust the variable list. 
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S0 S1

F0

F0

Eliminate

{S0, S1}

F0 F1

A0

Eliminate

{F0, F1}

A0K1

L1

K3

L3

Copy

Query set

{F0}

S2 S3

F1

F1

Eliminate

{S2, S3}

K2

L2

Copy

Query set

{F1}

 

Figure 6 VE process applied to part of BN 1G  

 

However, in the case where common cause dependencies are present in the BN, as 

illustrated by 2G  in Figure 3, additional care is needed during VE.  Here the elimination 

set does not simply consist of leaf nodes that can be eliminated directly since we have a 

common parent node, C , that we want to preserve in the query set at each step.  To help 

highlight how the VE process operates in the presence of common cause variables con-

sider BN 2'G  in Figure 3 and compute the posterior marginal distribution for 2T . The 

marginal distribution for 2T  has the form (4.3): 

 

0 1 2 1

2 1 0 1

2 2 1 2 1 0 1 0 1 2

, , , ,

2 1 2 2 1 0 1 0 1

, , ,

( ) ( | , ) ( | , ) ( | ) ( | ) ( | ) ( )

( | , ) ( | ) ( ) ( | , ) ( | ) ( | )

C S S S T

C S T S S

P T P T T S P T S S P S C P S C P S C P C

P T T S P S C P C P T S S P S C P S C



  
  

  



 
     (4.3) 

    

We first want to eliminate  0S  and 1S  by marginalizing them: 

 

0 1

1 1 0 1 0 1

,

( | ) ( | , ) ( | ) ( | )
S S

P T C P T S S P S C P S C                              (4.4) 

The marginal of 2T  can now be expressed along with C , 1T  and 3S  alone: 

 

2 1

2 2 1 2 2 1

, ,

( ) ( | , ) ( | ) ( | ) ( )
C S T

P T P T T S P S C P T C P C   
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Next we eliminate 2S  and 1T :  

 

1 2

2 2 1 2 2 1

,

( | ) ( | , ) ( | ) ( | )
T S

P T C P T T S P S C P T C                             (4.5) 

In general, by variable elimination, we obtain the conditional distribution for each 

variable 1nT   (the sum of n  severity variables) with the form: 

 

2 1

1 1 2 1 2 1

,

( | ) ( | , ) ( | ) ( | )
n n

n n n n n n

T S

P T C P T T S P T C P S C
 

                          (4.6) 

Since (4.6) specifies the conditional distribution for variable 1 |nT C , and therefore 

the posterior marginal distribution for the target n-fold convolution 1nT  , the aggregate 

total, is obtained by marginalizing out C . 

In order to explain the VE algorithm, in terms of graph manipulation, in the com-

mon cause case we step through a 3-fold convolution. Figure 7 (a) depicts a 3-fold con-

volution model, binary factorized (from G  to 'G ) and then subject to VE, resulting in 

reduced the BN V . The VE steps are shown in Figure 7 (b), which, although operating 

on subsets of G , result in the same graph i.e. 2L V . 

S1 S2

C

T1

S3

T2

S1 S3S2

C

T

G G’ V

C

T2

 

Figure 7 (a) Simple common cause model binary factorization and VE process  
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S1 S2

C

T1

C

T1

Eliminate

{S1, S2}
T1 S3

C

T2

Eliminate

{T1, S3}

C

T2

K1 L1 K2 L2

Copy

Query set

{C, T1}

 

Figure 7 (b) VE process applied to part of BN G  

 

To calculate the arbitrary n-fold convolution in the multiple common cause case it is 

essential to maintain the structure connecting the common causes in 'G  in every elimi-

nation step so that when variables are eliminated any dependencies on common cause 

variables are correctly maintained. Consequently, the elimination task involves generat-

ing the marginal for variable 
jT  conditional on the set 0 1, ,..., mC C CC . This more gen-

eral case is shown in Figure 8, with multiple common cause variables 0 1, ,..., mC C C , and 

dependent severity variables, iS . The scheme can be generalised to any configuration of 

common causes. 

 

S1

C1

S2

T2

C0

S3

T1

... Cm

...

...

Sn

Tn-1

C1C0 ... Cm

Sn

Tn-1

Tn-2
S1

C1

S2 Sn

C0

. . .

T

. . . Cm

G V
G’

. . .

 

Figure 8 Multiple common cause model binary factorization and VE process (trans-

formed graph name shown below each graph) 

 

4.3. Compound Density Factorization (CDF) 

 

Recall the compound density expression for an N-fold convolution, as given in equation 

(2.3), where 
0

, 0... ( )
j

j i

i

T S j L length of N


   is an i-fold convolution with S  itself and 

( )ja P N j   is the weighting assigned to the corresponding jT . Unfortunately, the 
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compound density expression for ( )P T  is very space inefficient and to address this we 

need to factorize it. Given each component in the mixture is mutually exclusive, i.e. for a 

given value of N  the aggregate total is equal to one, and only one iT , variable, this fac-

torization is straightforward. However, we cannot use a binary factorization for (2.3), 

therefore we factorize the compound density expression into pairs of “block nodes” and 

combine each pair incrementally as shown below. 

 

F0

E0 E1

F1

...

...

... Fj-1

Ej-1

T0

T1 T2 Tj

 

Figure 9 Compound density factorization 

 

Equation (2.3) is factorized as shown in Figure 9, where additional Boolean varia-

bles,  
jE  (with only two states True  and False )†, are introduced to assign weightings 

proportional to 
ja , to each pair of block nodes, i.e. 

0 1 0 2 2{ , },{ , },...,{ , }j jT T F T F T
. Factor 

variables, 
jF , are created to calculate the weighted aggregate for each step, up to the 

length of the N-fold convolution, L . 

The node probability table for 
1jE 
 is defined by the following: 

0 1 1

1

0 1

...
( )

...

j

j

j

a a a
P E True

a a a





  
 

  
                                        (4.7) 

The conditionally deterministic expression for variable 
1jF 
 (called a partitioned 

node in BN parlance) is defined by: 

2 1

1

1

if 

 if 

j j

j

j j

F E True
F

T E False

 






 


                                                  (4.8) 

Since 0T  and 1T  are mutually exclusive, the marginal distribution for variable 0F  is: 

 

                                                 
†  “True” and “False” are used for convenience; any binary labelling would do equally well. 
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0 0 0 0 1 0 0 1 1( ) ( ) ( ) ( ) ( ) ( )F P E True P T P E False P T a P T a P T       

which is identical to the first two terms in the original compound density expres-

sion, (2.3).  Similarly, the marginal for variable 
jF  becomes: 

 

1 1 2 1( ) ( ) ( ) ( )j j j j jF P E True P F P E False P T                               (4.9) 

After applying the CDF method to (2.3) we have the marginal for 
1jF 
 as shown by 

(4.9), which yields the compound density, ( )P T , for the N-fold convolution. Therefore 

by using the CDF method we can compute the compound density (2.3) more efficiently.  

 

The CDF method is a general way of factorizing a compound density. It takes as in-

put any n-fold convolution, regardless of the causal structure governing the severity vari-

ables. Note that the CDF method can be made more efficient by applying variable elimi-

nation (VE) to remove leaf nodes. Likewise we can execute the algorithm recursively 

reuse the same BN fragment ( | , , )P F F T E . 

 

4.4. The BFE Convolution Algorithm 

 

The BFE convolution algorithm is formalised, as pseudo code, in Table 1 

 

Table 1 BFE convolution algorithm 

Input: S : Severity variable, N : Frequency variable, C : vector of common causes (op-

tional) 

Output: Compound density T  

Main: 

1. Compute the probability density function of N , with sample space Z  by: 

( ) ( ) ({ : ( ) }) , 0 1N j jf x P N x P z Z N z x a j , ,...,length(Z)        

2.    for 0j   to (length of Z ) do  

3.          for 0i   to jz  do  

4.                  Compute jz -fold convolution 
0

j

j

z

z i

i

T S


  by BF and LBA algorithms 



 19 

5.                  Eliminate nodes (out of query set) by VE algorithm  

6.          end for  

7.          While 2j   do  

8.                  Apply CDF algorithm to factorize (2.3) by probability density of N  

           Compute 1 1 2 1( ) ( ) ( ) ( )
jj j j j zF P E True P F P E False P T        

9.                  Eliminate nodes iS , 
2jF 
 and 

jzT by VE algorithm 

10.         end while  

11.   end for  

12. return 
1( )jP F 

 {marginal distribution of T } 

 

 

5. DECONVOLUTION USING THE BFE ALGORITHM 

 

5.1. Deconvolution 

 

Where we are interested in the posterior marginal distribution of the causal variables 

conditional on the convolution aggregated results we can perform deconvolution, in ef-

fect reversing the direction of inference involved in convolution. This is of interest in 

sensitivity analysis, where we might be interested in identifying which causal variables 

have the largest, differential, impact on some summary statistic of the aggregated total, 

such as the mean loss or the conditional Value At Risk (cVAR), derived from 

0( | )P C T t . 

One established solution for deconvolution involves inverse filtering using Fourier 

Transforms, whereby the severity, S , is obtained by inverse transformation from its 

characteristic function. Alternative analytical estimation methods, i.e. maximum likeli-

hood, and numerical evaluation involving Fourier transforms or simulation based sam-

pling methods, can be attempted but none of them is known to have been applied to N-

fold deconvolution in hybrid models containing discrete causal variables. 

 

BN based inference offers an alternative, natural, way of solving deconvolution be-

cause it offers both predictive (cause to consequence) reasoning and diagnostic (conse-

quence to cause) reasoning. This process of backwards inference is called “back propa-

gation”, whereby evidence is entered into the BN on a consequence node and then the 
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model is updated to determine the posterior probabilities of all parent and antecedent var-

iables in the model. A “backwards” version of the BFE algorithm offers a solution for 

answering deconvolution problems, in a general way without making any assumptions 

about the form of the density function of S . The approach again uses a discretized form 

for all continuous variables in the hybrid BN, thus ensuring that the frequency distribu-

tion, N , is identifiable. 

 

EXAMPLE 1 

Consider a simple BN with parent variable distributions 

2~ ( 5, 5)X Normal    , 2~ ( 10, 10)Y Normal     and likelihood function for a 

child variable ( | , ) ( )P Z X Y P Z X Y   . Figure 12(a) show the prior convolution ef-

fects of the back propagation calculation, as marginal distributions superimposed on the 

BN graph.  The exact posterior marginal for Z  is 2~ ( 15, 15)Z Normal    . Our ap-

proximation produces a mean of 14.99 and variance 16.28. 

  

(a)                                                          (b) 

Figure 12 (a) Convolution and (b) Deconvolution 

 

If we set an observation 0Z z  and perform inference we obtain the posterior mar-

ginal of X  by Bayes’ rule: 

0

0
0

0 0

,

( | , ) ( ) ( )
( , )

( | )
( ) ( | , ) ( ) ( )

Y

X Y

P Z z X Y P X P Y
P X Z z

P X Z z
P Z z P Z z X Y P X P Y




  
 




               (5.1) 
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Where our likelihood ( | , )P Z X Y  is a convolution function, equation (5.1) defines 

the deconvolution and yields the posterior marginal distribution of X  given observation 

0Z z . In Figure 12(b), the observation is 30Z   (which is approximated as a discrete 

bin of given width), and the posterior for X  has updated to a marginal distribution with 

mean 9.97 and variance 3.477.  

In the example shown in Figure 12 the parent variables X  and Y  are conditionally 

dependent given the observation 0Z z . For n-fold convolution with or without common 

causes an observation on the iT  variables would also make each of the severity variables 

dependent and we can perform n-fold deconvolution using the DD and JT alone for small 

models containing non i.i.d severity variables with query block sizes of maximum cardi-

nality four. For large models, containing i.i.d severity variables BFE provides a correct 

solution with minimal computational overhead. 

T0 TT1

N

C

T

T2

C

N

A

S0 S2S1

C

T

G’

T0 T1 T2

G
 

Figure 13 Binary factored common cause N-fold BN, A , reduced by applying the 

VE algorithm to G  and then 'G  

 

We have already noted that during N-fold convolution the iT  variables are mutually 

exclusive, such that for a given N i , if the variable iT  exists, then the other variables 

do not. This fact can be exploited during factorization during the deconvolution process-

es. 

Consider the common cause BN model shown in Figure 13. The fully specified 

model is shown in BN graph A . The posterior distributions for all nodes can be comput-

ed by way of the BFE convolution algorithm and we can cache any distributions and pa-

rameters we might need during this process, for subsequent use during deconvolution. 

The BFE deconvolution algorithm then proceeds by eliminating all intermediate, fre-
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quency and severity variables until we get the reduced BN graph containing the final 

query set of interest.  

Let us assume the model structure in BN A  of Figure 13. Here frequency, N , is 

discretized into three finite states {1, 2, 3}, so there are three n-fold convolution variables 

0

, 0,1,2
i

i j

j

T S i


   each corresponding to the sum of one, two and three severity varia-

bles. T  is the compound distribution defined by: 

 

0 0 1 1 2 2( ) ( ) ( ), ( ), 0,1,2iT a P T a P T a P T a P N i i       

Given evidence 
0T t  the deconvolution of C  is achieved by: 

 

0
0

0

0

, ,

( , )
( | )

( )

( | ( )) ( ) ( | ( )) ( | ) ( )
i i

i i i

S T N

P C T t
P C T t

P T t

P T t pa T P N P T pa T P S C P C


 



 
               (5.2) 

     where ( )pa T  denotes the parents of T . So, once the convolution model has 

eliminated all irrelevant variables, in this case , , ,
ji z j jS T E F  we would be left with the 

query set, which here is { , }Q C T .  

 

5.2. Reconstructing the frequency variables during deconvolution 

 

If we are also interested in including the frequency variable, N , in our query set we 

must be careful to cache variables 
jE , 

2jF 
 and 

jzT  during convolution. Recall that the 

prior distribution for N  was decomposed into the jE  during compound density factori-

zation, therefore we need some way of updating this prior using the new posterior proba-

bilities generated on the Boolean variables, jE , during deconvolution. To perform de-

convolution on N  it is first necessarily to reconstruct N  from the 
jE  variables that to-

gether composed the original N .  
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Reconstruction involves composing all Boolean variables, 
jE , into the frequency 

variable N , in a way that the updating of  
jE  can directly result in generating a new pos-

terior distribution of N . The model is established by connecting all 
jE  nodes to N , 

where the new NPT for N  has the form of combining all its parents. However, it turns 

out this NPT is exponential ( 12 j ) in size. To avoid the drawback we use an alternative, 

factorized, approach that can reconstruct the NPT incrementally.  

 

As before, we reconstruct N  using binary factorization where the conditioning is 

conducted efficiently using incremental steps. Here the intermediate variables produced 

during binary factorization, , ( 0,..., 1)kN k j  , are created efficiently by ensuring their 

NPTs are of minimal size. 

The routine for constructing the NPTs for , ( 0,..., 1)kN k j   from the 
jE ’s is: 

 

1. Order parents 
jE  and 

1jE 
 from higher index to lower index for kN ’s NPT 

(since 
jE  is Boolean variable with only two states, one concatenating all 

1jE 
’s 

states and another state is single state that 
1jE 
 does not contain. In this example 

1E  should be placed on top of 0E  in the NPT table, as it is easier for comparing 

the common sets) 

2. As we have already generated the NPT map of 
jE , 

1jE 
 and kN . Next we spec-

ify the NPT entry with unit value (“1”) at kN  , when 
jE  and 

1jE 
 has com-

mon sets   (In this example, E.g. 1E  and 0E  have common sets "0"   and 

"1"  ) 

3. Specify NPT entry with value (“1”) at kN  , when jE  and 1jE   has no com-

mon sets and 
jE   (

jE  has one state   that 
1jE 
 does not contain, so under 

this case kN  only needs to be consistent with 
jE  as the changes on 

1jE 
 won’t 

affect the probability ( )kP N  , E.g. in this example it is when 1 "2"E   ) 

4. Specify NPT entry with value (“0”) at all other entries. 
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We repeat this routine for all , ( 0,..., 1)kN k j   until we have exhausted all 
jE ’s, 

producing a fully reconstructed N . Once we have built the reconstructed structure ( kN ) 

for N , in fact the updates of 
jE ’s probabilities are directly mapped to kN , and so de-

convolution of N  is retrieved. 

 

5.3. The BFE Deconvolution Algorithm with examples 

 

The BFE deconvolution algorithm, for N-fold deconvolution, is formalised, as pseudo 

code, in Table 2: 

Table 2 BFE deconvolution algorithm 

Input: S : Severity variable, N : Frequency variable, C : vector of common causes and 

0T t  

Output: posterior marginal of query set members i.e. 0( | )P T tC , 0( | )P N T t   

Main: 

1. do convolution BFE algorithm to produce final query set 

2. if N  is in query set  

3.      reconstruct N from 
jE  

4. end if 

5. set evidence 0t  on T  and perform inference 

6. return posterior marginal distributions for query set 

 

EXAMPLE 2 

Consider a simplified example for deconvoluting N , suppose frequency distribu-

tion N  is discretized as {0.1, 0.2, 0.3, 0.4}  with discrete states {0,1, 2, 3}  and 

~ (1)S Exponential . Figure 14 (a) shows these incremental steps for example 4. In this 

example there are three parents ( 0 1 2, ,E E E ) to N . The incremental composition steps of 

jE  have introduced two intermediate variables 0N  and 1N , and we expect the frequency 
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N  to be reconstructed at the end of the incremental step, which is variable 1N . Key to 

this process is how to build the NPT for each kN .  

 

   

(a)                                                            (b) 

Figure 14 (a) Reconstruct N (b) Deconvoluting N  

 

Table 3 The NPT of 0N  

1E  “01” “2” 

0E  “0” “1” “0” “1” 

0 0N   1.0 0.0 0.0 0.0 

0 1N   0.0 1.0 0.0 0.0 

0 2N   0.0 0.0 1.0 1.0 

 

Table 3 illustrates the NPT of 0N , where it composes 0E  and 1E  successively, in 

such a way that each kN  contains all and only its parents’ discrete states. So 0N  has the 

discrete distribution on “0”, “1” and “2”.  

Figure 14 (b) shows the deconvolution of N  by our reconstruction process. The re-

constructed prior distribution of 1N  is identical to node “original N” (shown in Figure 14 

(a)) as we expected. After setting an observation value “0” at the compound sum variable 

2F  we have queried that the posterior of N  is 99.7% probability at state “0”, since at 

state zero it has all possibility of generating a zero compound sum at 2F .   

The reconstruction theme is applicable to cases that N  has discrete parent cause 

variables as well, where jE ’s NPTs are generated directly from N ’s parents, and the 
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deconvolution is performed by BFE deconvolution algorithm. Experiment 3 in section 6 

considers  deconvoluting common cause variables where the model has this form. 

 

6. EXPERIMENTS  
 

We report on a number of experiments using the BFE algorithm in order to determine 

whether it can be applied to a spectrum of risk aggregation problem archetypes. Where 

possible the results are compared to analytical results, FFT, Panjer’s approach and Monte 

Carlo simulation. The following experiments, with accompanying rationale, were carried 

out:  

1. Experiment 1: Convolution with multi-modal (mixtures of) severity distribution. 

We believe this to be a particularly difficult case for those methods that are more 

reliant on particular analytical assumptions. Practically, multi-modal distributions 

are of interest in cases where we might have extreme outcomes, such as sharp re-

gime shifts in asset valuations. 

2. Experiment 2: Convolution with discrete common causes variables. This is the 

key experiment in the paper since these causes will be co-dependent and the se-

verity distribution will depend on their values (and hence will be a conditional 

mixture). 

3. Experiment 3: Deconvolution with discrete common causes. This is the inverse of 

experiment 2 where we seek to estimate the posterior marginal for the common 

causes conditioned on some observed total aggregated value. 

 

The computing environment settings for the experiments are as follows. Operation 

system: Windows XP Professional, Intel i5 @ 3.30GHz, 4.0GB RAM. AgenaRisk was 

used to implement the BFE algorithm, which was written in java, where typically the DD 

settings were for 65 iterations for severity variables and 25 iterations for the frequency 

variable. A sample size of 2.0E+5 was used as the settings in R(R, 2013) for the Monte 

Carlo simulation. 

 

 

6.1. Experiment 1: Convolution with multi-modal severity distribution 
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Here we set the event frequency as ~ (50)N Poisson  but the severity distribution is a 

mixture distribution, ~ SS f :  

(0.2) (5,1.5) (0.3) (25, 2) (0.4) (50, 3) (0.1) (100, 2)Sf Gamma Normal Normal Gamma   

 

In a hybrid BN a mixture distribution is modelled by conditioning the severity varia-

ble on one or more partitioning discrete variables, C . Assuming that that severity varia-

bles, 
jS , are i.i.d. we can calculate the compound density using BFE. 

The characteristic function of a mixture distribution is inconvenient to define (with 

continuous and discrete components). The analytical and programming effort needed to 

solve each multi-modal severity distribution for Panjer is high, so here we compare with 

MC only.  

 

Table 6 Results of convolution with multi-modal severity distribution 

Algorithm Mean Standard 

Deviation 

95th 

Percentile 

99th 

Percentile 

Analysis 

Effort 

MC 2444.8 516.7 3340.0 3787.7 Low 

BFE 2441.1 523.3 3341.5 3783.1 Low 

 

The corresponding marginal distribution for the query node set { , , }T N S  is shown 

in Figure 18. 
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Figure 19 Marginal distributions for overlaid on BN graph containing query nodes 

for Experiment 1 

 

6.2. Experiment 2: Convolution with discrete common causes variables  

 

Loss distributions from operational risk can vary in different circumstances, e.g. ex-

hibiting co-dependences among causes. Suppose in some cases that losses are caused by 

daily operations and these losses are drawn from a mixture of truncated Normal distribu-

tions, whereas extreme or some unexpected losses are distributed in a more severe distri-

bution. We model this behaviour by a hierarchical common cause combination 0 4,...,C C .  

The severity variable S  is conditioning on common cause variable, 0 1 2, ,C C C . And 

these common cause variables are conditioned on higher common causes 3C  and 4C . 

Severity NPT is shown in Table 7. The frequency distribution of losses is modelled as 

~ (50)N Poisson . 

Table 7 Severity NPT 

0C  High Low 

1C  High Low High Low 

2C  High Low High Low High Low High Low 

Expression Normal 

(1,2) 

Normal 

(2,3) 

Normal 

(3,4) 

Normal 

(4,5) 

Normal 

(100,110) 

Normal 

(110,120) 

Normal 

(120,130) 

Normal 

(130,140) 

 

   

(a)                                                    (b) 

Figure 20 (a) Common cause dependent severity; (b) 16-fold convolution of depend-

ent severity 



 29 

 

In Figure 20 (a) the model severities with dependencies by common cause variables 

0 4,...,C C  is introduced. Figure 20 (b) depicts a 16-fold convolution of dependent severi-

ties using the variable elimination method. For any given frequency distribution, N , we 

can apply the BFE convolution algorithm to calculate the common cause N-fold convolu-

tion. 

 

   

 

(a)                                                  (b) 

Figure 21 Compound densities (a) MC; (b) BFE 

 

Table 8 Common cause N-fold convolution density 

Algorithm Mean Median Standard 

Deviation 

95th 

Percentile 

99th 

Percentile 

MC 3831 5017 2784 7215 8023 

BFE 3871 5052 3255 7267 8115 

 

Figure 21 illustrates the output compound densities for the compared algorithms. 

Table 8 shows the results for the two approaches are almost identical on summary statis-

tics except the small difference on standard deviation. BFE has offered a unified ap-

proach to construct and compute such a model conveniently. 

 

6.3. Experiment 3: deconvolution with discrete common causes variables 
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We reuse the convolution model from Experiment 2 as the input model for deconvolu-

tion (Figure 22). 

   

(a)                                                       (b) 

Figure 22 (a) Common Cause N-fold convolution using BFE algorithm; (b) N-

fold model deconvolution using BFE algorithm (The intermediate variables in 

this ex-ample are shown for reference despite them being eliminated during the 

convolution process) 

 

Figure 22 (b) sets an observation on total aggregation node _AggS N . After per-

forming deconvolution we queried the posterior marginal of common causes and diag-

nose that the most likely common cause is 0C , which is in its “Low” state with certainty. 

This is easily explained by the fact that from the severity NPT, shown in Table 7, it is 

only when state of 0C  is “Low” that a value of 6000 can be at all probable. This decon-

volution is currently only supported by BEF since the information cannot be back re-

trieved by other approaches. 

Deconvolution is obviously useful in carrying out a sensitivity of the model results, 

allowing the analyst to quickly check model assumptions and identify which causal fac-

tors have the largest consequential effect on the result. This is difficult to do manually or 

informally in the presence of non-linear interactions. Also, without “backwards” decon-

volution we can only compute such sensitivities “forwards” one casual variable at a time 

and this is computationally much more expensive. For example, the forwards calculation 
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of T  from ten Boolean common cause variables would require 102 calculations versus 40 

in the backwards case (assuming  T  was discretized into 40 states). 

 

7. CONCLUSION AND FUTURE WORK 

 

This paper has reviewed historical, popular, methods for performing risk aggregation 

and compared them with a new method called Bayesian Factorization and Elimination 

(BFE). The method exploits a number of advances from the field of Bayesian Networks, 

covering methods to approximate statistical and conditionally deterministic functions and 

to factorize multivariate distributions for efficient computation. Our objective for BFE 

was for it to perform aggregation for classes of problems that the existing methods can-

not solve (namely hybrid situations involving common causes) while performing at least 

as well on conventional aggregation problems. Our experiments show that our objectives 

were achieved. For more difficult hybrid problems the experimental results show that 

BFE provides a more general solution that is not possible with the previous methods. 

 

Additionally, the BFE approach can be easily extended to perform deconvolution 

for the purposes of stress testing and sensitivity analysis in a way that competing meth-

ods cannot currently offer. The BFE deconvolution method reported here provides a low 

resolution result, which is likely good enough for the purposes of model checking and 

sensitivity analysis. However, we are investigating an alternative high resolution ap-

proach whereby variables are discretized efficiently during the deconvolution process, 

thus providing more accurate posterior results. 

 

On-going and future research is also focused on more complex situations involving 

both copulas and common cause variables. The challenge here is to decompose these 

models into lower dimensional joint distributions, where complexity can be further re-

duced by factorization. One final area of interest includes optimization of the results such 

that we might choose a set of actions in the model that maximize returns for minimum 

risk: we see deconvolution playing a strong role here. 
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