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Abstract—Multimodal emotion recognition is a challenging
problem in the research fields of human-computer interaction
and pattern recognition. How to efficiently find a common sub-
space among the heterogeneous multimodal data is still an open
problem for audio-video emotion recognition. In this work, we
propose an attentive audio-video fusion network in an emotional
dialogue system to learn attentive contextual dependency, speaker
information, and the interaction of audio-video modalities. We
employ pre-trained models, wav2vec, and Distract your Attention
Network, to extract high-level audio and video representations,
respectively. By using weighted fusion based on a cross-attention
module, the cross-modality encoder focuses on the inter-modality
relations and selectively captures effective information among the
audio-video modality. Specifically, bidirectional gated recurrent
unit models capture long-term contextual information, explore
speaker influence, and learn intra- and inter-modal interactions
of the audio and video modalities in a dynamic manner. We eval-
uate the approach on the MELD dataset, and the experimental
results show that the proposed approach achieves state-of-the-art
performance on the dataset.

Index Terms—affective computing, modality fusion, attention
mechanism, deep learning

I. RELATED WORK

Multimodal emotion recognition in conversations is a cru-
cial research topic in human-computer interactions [11-13].
To capture more effective emotion-relevant characteristics,
multimodal fusion enables learning the internal correlation
among heterogenenous multiple modalities for better emo-
tion recognition. There are two main aspects to consider in
any multimodal fusion model: identifying the best modality-
specific features and effectively integrating the multimodal
information [17-19].

Video data is a form of temporal data that encompasses
multiple modalities. Prior research has concentrated on ex-
tracting features from acoustic, textual, and visual modalities
to enhance multimodal emotion recognition in conversational
settings [17-19]. Generally, feature engineering methods can
be categorized into two classes: low-level handcrafted features
and high-level abstract deep-learning representations [14,23].

Low-level features for audio, such as prosodic and spectral
features, as well as their combination, are utilized to represent
emotional features for discrimination purposes [23]. On the
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video end, appearance-based and geometry-based representa-
tions are employed to capture face motion parameters, includ-
ing eye movements, eyebrow positions, and mouth movements
[14]. However, these features do not take into account the high-
level associations between them, which limits improvements
in model performance. To address this issue, recent studies
have utilized deep learning techniques to extract high-level
representations from low-level features, leading to enhanced
performance in this task [14,24].

To date, multimodal emotion recognition is roughly divided
into four categories: early-level fusion [18], late-level fusion
[25], score-level fusion [26], and model-level fusion [27],
respectively. Specifically, model-level fusion is a compromise
between the former two, where the fusion happens between
the intermediate representations of the multimodal features
[28]. With the popularity of model-level fusion, it has recently
attracted attention in the field for its ability to fuse multimodal
information. For example, Pini et al. proposed a multimodal
fusion network to jointly merge static and dynamic features
from different modalities into one representation [28].

While shallow fusion methods have demonstrated good
performance in multimodal emotion recognition, they may not
fully exploit the intricate non-linear relationships and joint
distributions of multiple modalities. For instance, a simple
feature concatenation may not suffice. Therefore, it is crucial
to develop deep fusion models that can utilize multiple fusion
operations to capture complex joint audio-visual features. To
address this gap, we propose a dynamic fusion network that
incorporates weighted fusion and attention mechanisms to
integrate heterogeneous visual expressions with audio infor-
mation.

II. METHODOLOGY

A. Problem Definition and Notation

Our goal is to accurately identify the emotion of constituent
utterances presented in interactive conversations. Let us define
a dialogue U = [u1

m, u2m, . . . , uNm] in conversations, where ujm
is the jth utterance in the conversation, N is the total number
of utterances. Specifically, m ∈ {a, v}, where a represents
the audio modality and v represents the visual modality. The
task is to predict the emotion e for each utterance u within a
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finite set of emotions E (anger, disgust, sadness, joy, neutral,
surprise and fear).

B. Acoustic Features

We employed the pre-trained wav2vec large model (Un-
cased: layer-24) acted as a suitable choice of a pre-trained
model and feature extractor for emotion classification task
[29]. This model comprises of a feature encoder and a context
network. The feature encoder takes a raw waveform as input to
encoder local speech’s information, and then these are inputted
to the Transformer-based context network to produce a contex-
tualized representation. To convert frame-level representations
produced by wav2vec into utterance-level representation, we
used an average operation across the time dimension on the
wav2vec embedding. In total, 1024 utterance-level acoustic
features were extracted (awav2vec).

C. Visual Features

On the video end, we utilized the pre-trained DAN model
as the video feature extractor for emotion recognition (vDAN )
[16]. DAN consists of three key components: Feature Clus-
tering Network (FCN), Multi-head cross Attention Network
(MAN), and Attention Fusion Network (AFN) [16]. The FCN
captures robust features by employing a large-margin learning
objective to maximize class separability. Additionally, the
MAN employs multiple attention heads to simultaneously
focus on multiple facial areas and generate attention maps
for these regions. Furthermore, the AFN penalizes overlapping
attentions and fuses the learned features. These frame-level
features are then averaged across the time dimension to obtain
utterance-level video features. In total, we extracted 1024
utterance-level video features (vDAN ).

D. Multimodal Attentive Fusion Network

By leveraging the potential of deep learning, we introduce
a framework called AVAFN that incorporates an audio-visual
fusion model (see Figure 2). Our proposed model is mainly
comprised of two stages: 1) a pre-trained model is employed to
extract high-level audio and video representations, 2) a fusion
module is trained to jointly learn audio-visual learning features
in a new common subspace, and model the interactions in the
dialogue to make the emotional state prediction.

We assume that the emotion of an utterance in a conversa-
tion is strongly dependent on four major factors: 1) the context
given by the preceding utterances, 2) the speaker, 3) the
listener, and 4) the emotion behind the preceding utterances.
In our fusion module, we employ bidirectional GRU cells to
capture long-distance contextual information within conversa-
tions. These GRU cells take the input yt and encode the hidden
state from ht−1 to ht as follows: ht = GRU(ht− 1, yt).
The updated hidden state ht also serves as the output for the
current step. Additionally, we utilize the other three branches
of bidirectional GRU cells to model the speaker state, listener
state, and emotion state. These states are essential for capturing
contextual dependencies, speaker influence, and the emotional
state of the participants.

1) Contextual State: Apparently, emotions are mainly de-
pendent on the surrounding utterances in conversational emo-
tion recognition. The preceding utterances are contextually
related to the interaction of audio and video modalities.
We design the cross-attention module (CAM) to maintain
modality-specific patterns and capture interactions of different
modalities, resulting in the interaction of audio-video modality
utterance (uCA) (see Figure 2).

The CAM takes audio (a) and video (v) as input to
produce joint dynamic features in one contextual utterance.
These play a crucial role in learning intra- and inter-modal
perspectives according to the scaled dot-product attention
mechanism. Technically, we estimate the associations between
audio (awav2vec) and video (vDAN ) in a crossed way via the
scaled dot-product attention function, whose query (Qm), key
(Km), and value (Vm) are the representations of modality m,
Hm, under different projection spaces, where m ∈ a, v. Hm is
projected to query matrix (Qm), key matrix (Km), and value
matrix (Vm) by linear projections without bias. The specific
formula are as follows:

ζHv−a = softmax(QaK
T
v /

√
d)Vv, (1)

ζHa−v = softmax(QvK
T
a /

√
d)Va, (2)

Where ζHa−v , ζHv−a denote the propagated information
from audio to video and video to audio, respectively. Finally,
we update the features of one modality with the propagate
information from the other modality.

HLN
a = LayerNorm(Ha⊕ζHv−a), (3)

HLN
v = LayerNorm(Hv⊕ζHa−v). (4)

To further enhance the representation capacity, a feed-forward
layer and layer normalization are employed behind the cross-
attention layer:

Hc
a = LayerNorm(HLN

a ⊕FeedForward(HLN
a )), (5)

Hc
v = LayerNorm(HLN

v ⊕FeedForward(HLN
v )). (6)

To adjust the weight of the interaction between the audio
and video modalities, we perform a weighted sum of the audio
attention matrix (α) and the video attention matrix (β). The
resulting weighted fusion attention (HWCA) is computed as
follows:

HWCA = α× Hc
a⊕β× Hc

v (7)

We use a residual layer on audio and video representations
to preserve modality-specific information (Hr

a , H
r
v ), and then

pass them through a linear layer and a normalization layer.
Finally, we combine them (Hr

a , H
r
v ) with HWCA to obtain

the jointly contextual utterance representation (uCA
t ).

The contextual state captures the complex joint features
from audio and video modalities in a single representation
and propagates the overall attentive utterance-level information
throughout the conversation. We model the attentive contextual
state of the participants using the GRUC cell. The state is
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Fig. 1. (a) Update scheme for attentive contextual state for t utterance in a
dialogue. (b) the interaction of audio-video modality utterance

updated at each time step t using the contextual state Ct−1,
the speaker state qi,t−1 from the previous utterance, and the
bi-modal utterance representation (uCA

t ) at timestamp t.

Ct = GRUC(Ct−1, (u
CA
t ⊕ qi,t−1)) (8)

2) Speaker State: Speaker usually frames their response
based on the context, which includes the preceding utterances
in the conversation. Therefore, we employ soft-attention on
the history of interactive context to capture attentive long-
context speaker interaction influences, learn conversational
dependencies, and model the contribution of the attentive
context-rich information. We pool the attention vector from
the surrounding context history [C1, C2, . . . , Ct−1] using soft-
attention (see Figure 3). This contextual attention vector act
can be computed as follows:

uCA
i = tanh(WCi + b), 1 ≤ i ≤ t− 1,

αi =
exp(uC

i
A)∑t−1

i=1 exp(u
C
i
A)

,

act =
∑t−1

i=1
αiCi. (9)

In Eq. (9), attention scores are calculated over the previous
contextual states that represent the previous utterances. This
assigns higher attention scores to emotionally relevant utter-
ances (uCA

t ). Finally, the context vector Ci is calculated by
globally pooling the states with αi.

Next, we use a GRU cell to update the current speaker state
qi,t−1 to the new state qi,t based on the incoming utterance
uCA

t and the attentive context act. The update equations for
GRUS are as follows:

Fig. 2. Update schemes for speaker and listener state in a dialogue. Here
Person i is the speaker and Persons j ∈ {1,M} and j ̸= i are the listeners

qi,t = GRUS(qi,t−1, (act ⊕ uCA
t )) (10)

3) Listener State: The listener state captures how the lis-
tener’s state changes in response to the speaker’s utterance,
which can be observed by the participants through acoustic
features, visual expressions, and other related aspects. The
internal state of the participants is influenced by their emotions
and the perceived effects from other participants, which may
not always be explicitly expressed. In addition to emotions,
this state can also encompass aspects that the participant
actively tries not to express or features that are considered
common knowledge and do not require explicit communica-
tion. Therefore, considering the effect on oneself is crucial for
representing the internal state of the participants.

To update the intra-listener state qj,t−1 to qj,t, we adapt the
visual modality vDAN

t and the bi-modal utterance represen-
tation uCA

t at timestamp t with the listener state qj ,t−1 (see
Figure 4):

qj ,t = GRUL(qj,t−1, (v
DAN
t ⊕ uCA

t )) (11)

4) Emotion State: The emotional state Et represents the
emotional mood of the participant and the inferred emotion
class of the current utterance at time step t. The emotion state
is updated based on the context state Ct, speaker state qi,t, and
listener state qj,t (see Figure 4). This update is done using a
GRUE model, which combines all these factors as follows:

Et = GRUE(Et−1, (Ct ⊕ qi,t ⊕ qj,t)) (12)

5) Classification: We feed emotion state Et into a fully
connected network to get the final emotion inferences of all
utterances:

Pt = softmax(WsmaxEt + bsmax) (13)
yt = argmax(Pt[k]) (14)

Categorical cross-entropy loss is used as the loss function,
and L2-regularization is applied by adding a penalty to the
cost function.
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Fig. 3. Update schemes for emotion state in a dialogue. Here Person i is the
speaker and Persons j ∈ {1,M} and j ̸= i are the listeners

III. EXPERIMENTS

A. Database and Metrics

We evaluated our proposed model on a multi-modal and
multi-party dataset for conversational emotion recognition:
Multi-modal EmotionLines Dataset (MELD). MELD is a
multi-modal scenario that includes audio, visual, and text
modalities for each utterance in a conversation [22].

Table 1: Dataset Distribution on Multi-modal EmotionLines Dataset

Train Validation Test
Anger 1109 153 345
Disgust 271 22 68
Fear 268 40 50
Joy 1743 163 402
Neutral 4710 470 1256
Sadness 683 111 208
Surprise 1205 150 281
Total 9989 1109 2610

MELD contains 13,708 utterances with pre-defined seven
emotions (anger, disgust, sadness, joy, neutral, surprise, and
fear) from 1,433 dialogues of the TV series ”Friends”. Each
conversation involves two or more speakers. For a fair compar-
ison, we conducted audio-video modality experiments using
the predefined train/validation/test splits in MELD, which
consist of 9,989, 1,109, and 2,610 utterances, respectively (see
Table 1). Due to the unbalanced distribution of utterances
across different emotion labels in the dataset, we evaluated
the mean classification performance using precision, recall,
and weighted F1-score for the seven emotion categories.

B. Baselines and State-of-the-Art

For a comprehensive evaluation, we compared our model
with the following baselines and state-of-the-art models in

multimodal emotion recognition (Table 2). We utilized the
published results from references [30-33].
• M2F2 proposed a multi-head fusion attention module

to extract emotion-rich latent representations of emotion-
relevant features from the audio, text, and visual modalities.
Specifically, they introduced a new adaptive margin triple
loss function to help the extractor module effectively learn
representations [30].
• MM-DFN designed a graph-based dynamic fusion ap-

proach to fuse multimodal context features for emotion recog-
nition [31].
• CTC introduced MELD with Fixed Audiovisual Informa-

tion via Realignment using recent active speaker detection and
automatic speech recognition models [32].
• GA2MIF employed a multimodal fusion approach named

Graph and Attention based Two-stage Multi-source Informa-
tion Fusion for emotion detection in conversations [33].

C. Experimental Setup

In this study, the dataset is divided into a training set,
validation set, and test set at a ratio of 8:1:1 [22]. We
implemented our proposed model using the PyTorch 1.11.0
framework. The model was trained with the Adam optimizer,
using an initial learning rate of 1e-4 and a batch size of
32. Cross-entropy loss was employed as the loss function.
To prevent overfitting, the network was regularized using the
L2 norm of the model’s parameters with a weight of 3e-4.
Additionally, a dropout rate of 0.3 was applied during training.

IV. RESULTS AND DISCUSSION

In this section, we compare the performance of AVAFN with
state-of-the-art methods on the MELD dataset for audio, video,
and bi-modal emotion recognition. Additionally, we provide a
discussion and analysis to demonstrate the effectiveness of the
proposed method.

A. Comparison with Baselines and State-of-the-Art Models

To demonstrate the effectiveness of our proposed method,
we compare it with state-of-the-art approaches in emotion
recognition tasks on the benchmark MELD dataset (refer to
Table 2 and Figure 5). Based on these results, we draw the
following observations. Firstly, among the single-modal meth-
ods, audio features demonstrate relatively better performance
compared to visual features on the MELD dataset. Particularly,
the utilization of the pre-trained wav2vec audio embedding
proves to be effective in representing emotion-rich features.
Secondly, in the case of bi-modal methods, the audio-video
emotion recognition models outperform most of the single-
modal emotion recognition analyses on the MELD dataset.
Overall, our proposed AVAFN framework exhibits superior
performance compared to the existing best model, achieving
a 3.31% higher F1-score on the MELD dataset.

Our proposed approach demonstrates a strong ability to
accurately infer emotions such as neutral, anger, sadness, sur-
prise, joy, and disgust, which are explicitly expressed through
audio and video modalities (refer to Figure 5). However,
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Fig. 4. Precision, recall, F1 score performance of the proposed on the MELD
dataset.

when it comes to the emotion of fear, most existing models
struggle to recognize it, potentially due to the implicit ways
in which speakers express fear and the limited number of
samples available for this emotion in the dataset. While the
M2F2 model can capture long-term contextual dependencies,
it fails to consider the correlations between different modali-
ties. In contrast, our AVAFN framework effectively leverages
the structural similarities within each modality, maintains
consistency across modalities, and learns speaker-sensitive
dependencies, resulting in improved emotion recognition.

While the performance of the visual modality is relatively
lower, it does not imply that it lacks effective emotional
information. Specifically, the emotion of sadness tends to
be misclassified as fear or disgust. In a dialogue system, a
short utterance consisting of a single word, like ”okay,” can
express three different emotions: joy, neutrality, and sadness.
The visual cues, such as a frown or a crying face, are crucial
for recognizing sadness. In our work, we utilize a pre-trained
DAN model to extract high-level visual representations that
are relevant to emotions. This approach demonstrates the
effectiveness of incorporating prior localized temporal knowl-
edge from traditional feature-based transfer learning methods,
which greatly enhances highlight detection.

Table 2: Average weight F1 score performance of the proposed and
state-of-the-art methods for audio-video fusion on the MELD.

model auio video audio-video references
M2F2 39.63 32.44 35.74 [30]

MM-DFN 42.72 32.34 44.67 [31]
CTC 40.54 35.28 39.81 [32]

GA2MIF 43.54 [33]
AVAFN 45.2 36.2 47.98

The audio modality shows promise in effectively addressing
the aforementioned issues by providing rich emotional features
in the joint representation. The time-dependent acoustic con-
tent at the utterance level encompasses various information,
including pitch, energy, tone, and loudness. This knowledge
plays a crucial role in capturing the essence and progression
of emotion-relevant information from speakers in emotion-

Fig. 5. Attention weight visualization of our model from the cases in MELD
dataset.

aware spoken dialogue systems. Integrating audio information
with visual information offers significant advantages, such as
introducing additional audio features, disambiguating visual
information, and bridging the gap to real-world environments
for improved recognition. For instance, as depicted in Figure 6,
a sequence of video frames with unchanged facial expressions
can convey ambiguous emotions in different situations, such
as joy, neutrality, or sadness. However, when corresponding
audio information, such as the speaker’s high voice and sobs, is
introduced, it becomes easier to discern the sentiment of the ut-
terance as positive. In general, deploying joint representations
from different modalities tends to yield better judgment of the
emotional state by leveraging complementary information.

The AVAFN framework surpasses the state-of-the-art model
in emotion recognition by achieving a 3.31% higher F1-score,
which can be attributed to two main factors. Firstly, AVAFN
integrates the audio and video features by jointly fusing
them into a shared space using cross-attention calibration
and weighted fusion with temporal awareness. This fusion
module effectively combines the audio and visual modal-
ities by assigning significant attention weight to emotion-
relevant acoustic features, enhancing the details present in each
individual modality, and adaptively integrating the implicit
complementary content to amplify the interactions and corre-
lations. Secondly, AVAFN incorporates attentive long-distance
contextual information from the surrounding utterance history,
allowing for better control of information flow during emotion
transitions and capturing speaker-sensitive emotional dynamics
in multiturn conversations. These factors enable AVAFN to

Authorized licensed use limited to: Queen Mary University of London. Downloaded on April 05,2024 at 12:07:35 UTC from IEEE Xplore.  Restrictions apply. 



maintain speaker-sensitive dependencies and facilitate syn-
chronization.

B. Ablation Studies

AVAFN has four branches of bi-directional GRU cells to
capture intra- and cross-modal interactions of audio and video,
and learn attentive contextual information, and model speaker
state and listener information. Emotion recognition in con-
versations requires understanding the temporal dynamics and
dependencies among utterances. GRU, as a variant of recurrent
neural networks, is known for its ability to model sequential
data and capture long-term dependencies. It is designed to
allow information to flow through the network over longer time
steps. By utilizing GRU, our model can effectively capture the
temporal evolution of emotions in conversations. Addition-
ally, GRU provides flexibility in modeling various types of
dependencies within the conversation. It can learn to focus on
relevant contextual information while disregarding irrelevant
or noisy inputs. This adaptability allows GRU to capture the
nuanced relationships between utterances and the emotional
context within the conversation, enabling it to capture the long-
term dependencies necessary for accurate emotion recognition.

The results of the ablation studies presented in Table 3
demonstrate the importance of various components of our pro-
posed AVAFN framework for emotion recognition in dialogue
systems. The results indicate that the long-distance emotion-
relevant contextual information is crucial for dialog-aware
emotion recognition, and the combination of the attentive con-
textual module (AVAFN w/o ACM) improves the performance
by at least 2.64% when compared to models that do not use
it. Additionally, the self-speaker module (AVAFN w/o SSM)
and intra-listener module (AVAFN w/o ILM) contribute to the
performance of the model by capturing speaker influence and
listener state, respectively.

Table 3: Albation study on the MELD dataset

Method w-average F1
(AVAFN w/o ACM) 45.35
(AVAFN w/o SSM) 46.58
(AVAFN w/o ILM) 46.92
(AVAFN) 47.98

The attentive contextual module (AVAFN w/o ACM) con-
tributes the most to the performance of the model by in-
corporating long-term emotion-relevant contextual informa-
tion from surrounding history utterances. The cross-attention
coupled with weighted fusion in the fusion unit introduces
the underlying interaction between audio and video features,
which enhances the dependencies and stability across various
modalities. By introducing more attentive weight to relevant
video data, we empowered the information on the video repre-
sentation to help the audio content effectively adjust the weight
of words by temporal-awareness. Our fusion unit effectively
deploys different information into a new space to magnify
the details embedded in a single modality from the contextual
level and adapatively integrates implicit complementary infor-

mation to strengthen the interactions and correlations between
different information subspaces, reducing information gaps.

C. Case Studies
The conversational snippet presented in Figure 6 highlights

the effectiveness of our proposed framework in detecting
emotion shifts during a conversation. The snippet starts with
Rachel being in a sadness state while Joey is the speaker.
However, Joey changes his focus and questions Rachel on
her state, which leads to her feeling fear. Our framework is
able to accurately infer the emotion shift from sadness to fear,
demonstrating its ability to capture the dynamics of emotional
states during a conversation.

The challenge in this scenario is that it can be difficult to
recognize the emotion of Rachel from her calm tone of fear. By
giving more weight to frightened expression, our framework
is able to effectively complement the audio modality with
the visual modality to capture more rich emotional features.
The cross-attention coupled with weighted fusion is crucial
in selecting the most critical information from all modalities,
which enhances the model’s ability to detect emotion shifts and
accurately classify the emotional state of the speaker. Overall,
our framework aims to strike a balance between different
modalities and improve the comprehensive capabilities of the
model for emotion-aware spoken dialog systems (See Figure
6).

V. CONCLUSION

In this paper, we proposed the AVAFN framework based
on high-level pre-trained models, namely wav2vec and DAN,
in a dynamic manner. The cross-attention module, as the
core unit of the AVAFN framework, played a crucial role in
explicitly modeling inter- and intra-modal interactions within
and between audio and video modalities. Additionally, bidirec-
tional GRU components were adopted to capture long-distance
contextual dependencies and model the state of the speaker and
listener. Our approach achieved state-of-the-art performance
in utterance-level recognition when evaluated on the standard
benchmark MELD dataset.

While the achieved performance in multimodal emotion
recognition is encouraging, there are still some limitations that
need to be addressed to improve emotion recognition further.
Most benchmark datasets used for the multimodal emotion
recognition task rely on controlled databases with non-realistic
recording conditions and error-less text transcriptions. There-
fore, in practical applications, to develop an applicable and
generalizable model, we need to construct it for the problem
of multimodal emotion recognition in conversations that can
handle the following scenarios: 1) exploring unexpected au-
tomatic speech recognition errors; 2) performing inference in
cases of noisy or absent modalities, or unaligned temporal
multimodal data.
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