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ABSTRACT

We present a lightweight method of reverse engineering distortion effects using Wiener-Hammerstein models
implemented in a differentiable framework. The Wiener-Hammerstein models are formulated using graphic
equalizer pre-emphasis and de-emphasis filters and a parameterized waveshaping function. Several parameterized
waveshaping functions are proposed and evaluated. The performance of each method is measured both objectively
and subjectively on a dataset of guitar distortion emulation software plugins and guitar audio samples.

1 Introduction

There is a wealth of research in the fields of linear or
nonlinear system identification. The audio research
community makes no exception and have been inves-
tigating these problems for decades, with a specific
attention to virtual analog modeling, i.e. the process of
recreating analog devices through digital signal process-
ing [1]. Great attention has been devoted to understand
and simulate distortion circuits and vacuum-tube de-
vices (e.g. amplifiers, filters, compressors, oscillators)
[2].

More recently, work has been done to reverse engineer
audio effects given a dry and wet pair of audio samples
[3]. This theoretical framework casts audio effects
in such a manner that they can be implemented in a
differentiable framework such as Tensorflow. In [3] the
authors emulate a linear mixing chain that incorporates
gain, panning, equalisation (EQ), and convolutional
reverb.

This work expands on reverse engineering audio effects
with differentiable digital signal processing by propos-

ing methods for reverse engineering distortion effects
using Wiener-Hammerstein (W-H) models.1 The per-
formance of each method is measured both objectively
and subjectively on a dataset of guitar distortion emula-
tion plugins and guitar audio samples.

2 Background

Depending on the degree of prior knowledge applied to
model a target device, the existing approaches for sys-
tem identification can be divided into three categories:
white-, grey- and black-box.

2.1 White-box Modelling

White-box modeling is based on the complete knowl-
edge of the system, uses ordinary/partial differential
equations to describe its behaviour and adopts numeri-
cal methods to solve them in the continuous or discrete
domain. Since they reproduce all the important char-
acteristics of a target device, such models can achieve

1Examples can be found here

https://jtcolonel.github.io/DistRevEng/
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Fig. 1: Block diagram of the proposed system.

very good results and are preferable when the sound of
a specific analog device is to be replicated with high
accuracy. Although, such models can be very time
consuming to develop, require exact knowledge of the
equations describing nonlinear elements and can re-
sult in substantial computational load. Simple systems
can be modeled manually by solving differential equa-
tions [4, 5, 6]; but, for more complex cases, there exist
general-purpose frameworks like: state-space models
[7, 8, 9], wave digital filters [10, 11, 12, 13, 14, 15],
port-hamiltonian systems [16].

2.2 Black-box Modelling

Black-box modeling requires no prior knowledge about
the system and relies exclusively on input-output mea-
surements. The main advantage of such approaches is
that they simplify the modeling procedure to gathering
sufficient data, but they might require time-consuming
optimisations and they seldom offer any interpretability.
Examples of black-box methods are: Volterra series
[17, 18], dynamic convolution [19], neural networks
[20, 21].

2.3 Grey-box Modelling

Grey-box approaches combine a partial theoretical
structure, referred to as block-oriented model, with data
- typically input/output measurements - to complete the
model. Grey-box models have the advantage of greatly
reducing the prior knowledge necessary to model a
device while maintaining a degree of interpretability,
thanks to the block oriented approach. Although, the
specific structure - together with the measurement and
optimization procedures - are critical to achieve a good
approximation, especially for nonlinear systems where
the output is a function of the input signal amplitude.

These models are typically represented as an intercon-
nection of linear filters and static nonlinearities, such
as: Hammerstein models (static nonlinearity followed
by linear filter), Wiener models (linear filter followed
by static nonlinearity) or Wiener-Hammerstein mod-
els (static nonlinearity inbetween two linear filters)
[22, 23, 24, 25]. But they also include more complex
arrangements like cascaded and parallel blocks (see
[26] for other examples of block-oriented models). In
the case of distortion circuits and amplifiers, Wiener-
Hammerstein models have been extended to include:
non-static nonlinearities (i.e. hysteresis and memory)
[27, 28], pre- and power-amp modeling [29, 30, 31].

2.4 Neural Networks in White-, Grey- and
Black-box Modelling

With the recent rise of machine learning the research
community started applying neural networks and differ-
entiable DSP to white-, grey- and black-box modelling.
In [32], the authors adopt a deep neural network in the
context of a state-space model, which they call state tra-
jectory network. The network uses both the input signal
and an internal state to predict the output. The authors
apply the method to a first-order and a second-order
diode clipper. In [33] the authors introduce the concept
of differentiable white-box virtual analog modeling,
with the idea of using backpropagation to optimize the
components’ values in an analog circuit. The authors
apply this method to find the resistors’ and capacitors’
values that best approximate the frequency response
of an RC filter and a tone-stack. Another recent work
[34] uses recurrent neural networks with fast convo-
lutional layers to model partial-differential equations
governed systems. Specifically, they use the proposed
approach to investigate: lossy dispersive string, 2D
wave equation and tension modulated string.
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Many examples of deep learning based black-box mod-
eling are cited in a recent review paper [21]; while
applications of DDSP for grey-box modelling are given
in [35, 36]. In the first case the authors implement dif-
ferentiable biquad filters and cascade them with tanh
nonlinearities to model a guitar distortion pedal. In the
second case, differentiable IIR filters are implemented
and used together with a multilayer perceptron to de-
rive a Wiener-Hammerstein model of another distortion
pedal.

2.5 Wiener-Hammerstein Models

The typical W-H model consists of a linear block, a non-
linear block, and a linear block cascaded in series. The
W-H models in this work are time-invariant, formulated
using graphic equalizer pre-emphasis and de-emphasis
filters for the linear blocks and a parameterized wave-
shaping function as the nonlinearity. While previous
literature focused on power series and Chebyshev poly-
nomials to model the nonlinear blocks [37, 38], in this
work we also investigate several waveshaping functions.
Figure 1 shows a diagram of the proposed W-H model
used in this work.

3 Dataset

We assembled a novel dataset of processed electric
guitar samples following the same procedure described
in [39], using unprocessed recordings from the IDMT-
SMT-Audio-Effects dataset [40].

The source dataset2 includes monophonic (624 sin-
gle notes) and polyphonic (420 intervals and chords)
recordings (wav - 44.1kHz, 16bit, mono) from 2 differ-
ent electric guitars, each with two pick-up settings and
up to 3 plucking styles. The monophonic recordings
cover the common pitch range of a 6-string electric
guitar, and the polyphonic samples were obtained mix-
ing single notes recordings to generate 2-note intervals
and 3- or 4-note chords. All samples are 2 seconds
long. The monophonic recordings required removal
of background noise before the note onset, which we
obtained using a python script together with Librosa’s
[41] onset detection function.

To assemble our dataset we selected an overdrive, dis-
tortion and fuzz plug-ins (see Table 1) designed to

2https://www.idmt.fraunhofer.de/en/business_units
/m2d/smt/audio_effects.html

Table 1: Plugins used in this work

Designer Plugin Emulation of Id

Audified Multidrive ProCo Rat RAT
Pedal Pro

Mercuriall Greed Smasher Mesa/Boogie MGS
Grid Slammer

Analog
Obsession

Zupaa Vox Tone Bender VTB

Table 2: Plugin settings used to generate the dataset

Id Level Gain Tone/Eq

RAT [1.0] [0.2, 0.5, 1.0] [0.2, 0.8]
MGS [1.0] [0.2, 0.5, 1.0] [0.2, 0.8]
VTB [1.0] [0.1, 0.2, 0.5, 0.8, 1.0] —

emulate some of the most iconic and widely used ana-
logue guitar effect pedals. By selecting 3 different
types of distortion plug-ins from 3 different develop-
ers we aimed to cover a wide range of timbres and
designs while keeping the amount of data limited. All
the plugins have 2 or 3 controls and, regardless of the
specific name adopted by the designer, the controls
can be identified by their processing function: Level,
Gain, Tone/Equalisation. A summary of the controls
and settings is shown in Table 2. These values were
chosen as they were found to be perceptually distinct
from one another. The samples’ were processed in
MATLAB - making use of its VST plugin host features
- and both unprocessed inputs and processed outputs
were normalised to 0dBFS.

4 Methods

4.1 Learnable Graphic EQ

Similar to the formulation in [3], separate 20-band fi-
nite impulse response (FIR) graphic EQs are learned
for the pre-emphasis and de-emphasis linear blocks
[42]. These EQs are calculated using the frequency
sampling method as in [43]. First, a frequency trans-
fer curve is specified. The inverse short-time Fourier
transform (ISTFT) of this magnitude response is taken
using a zero-phase response to obtain the filter’s im-
pulse response (IR). Afterward the EQ is applied by
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multiplying the magnitude response of this new IR with
the windowed STFT of the input audio signal.

The 20-band graphic EQ can be characterized using a
20 dimensional ΘEQ gains. The 20 values specify the
gain of each octave band filters, which are centered at
40, 65, 80, 130, 200, 270, 400, 540, 800, 1000, 1500,
2000, 3000, 4000, 6000, 8000, 12000, and 16000 Hz
respectively. Shelving filters are used for frequencies
below 40Hz and above 16000 Hz that match the atten-
uation specified at the lowest and highest octave band
respectively.

These 20 values are transformed via

ΘEQ gains← σ(ΘEQ gains) (1)

where σ denotes the sigmoid function

σ(x) =
1

1+ e−x (2)

The values in the transformed ΘEQ gains range from
(0,1) due to the bounds of the sigmoid function.

Finally a piecewise linear frequency transfer curve ΘEQ
is constructed using linear interpolation between the
octave band attenuations specified by ΘEQ gains. Thus
the EQ module’s frequency transfer curve is bounded
from (0,1) at all points. The estimated values are ini-
tialized with random uniform noise from [-1,1], which
initializes the octave band gains from -6dB to -1dB.

Because this EQ formulation only allows for the at-
tenuation of frequencies, a gain value is specified in
tandem with the pre-emphasis filter, and a volume value
is specified in tandem with the de-emphasis filter. It
was found that this decoupling of gain and attenuation
helps stabilize the optimization.

4.2 Waveshaping nonlinearity functions

4.2.1 Tanh Nonlinearity

A hyperbolic tangent (Tanh) with DC offset is used
as the baseline nonlinearity in this work. The tanh
function

tanh(x) =
e2x−1
e2x +1

(3)

is often used to model distortion effects due to its satu-
rating behavior towards ±∞. To enable the modelling

of nonsymmetric distortion, a DC offset bDC can be ap-
plied before the tanh nonlinearity. However, this offset
must be removed after the nonlinearity to ensure the
output signal maintains no DC offset

f (x,bDC) = tanh(x+bDC)− tanh(bDC) (4)

4.2.2 SumTanh Nonlinearity

Proposed in this work is a family of functions called
a “harmonic sum of tanh functions” with DC offset
(SumTanh)

f (x) = a1 tanh(x)+a2 tanh(2x)+ . . .

an−1 tanh((n−1)x)+an tanh(nx)
(5)

As a weighted sum of tanh functions, the SumTanh
family exhibits saturation towards ±∞. As a sum of
odd functions, the SumTanh family are odd functions,
meaning they can model symmetric distortions. Note
that ac tanh(c×0) = 0, meaning the waveshaper intro-
duces no DC offset. To model asymmetric distortions,
a DC offset can be introduced via

f (x,bDC) = a0 +a1 tanh(x+bDC)+ . . .

+an tanh(n(x+bDC))
(6)

with a0 set to −∑
n
c=1 ac tanh(c× bDC) to remove the

DC component after the nonlinearity. For stability, a1
is initialized close to 1 and ac are initialized close to
0 otherwise. During optimization, f (x) is normalized
such that max(| f (x)|) = 1

4.2.3 PowTanh Nonlinearity

Also proposed in this work is a family of functions
called a “power sum of tanh functions” (PowTanh)

f (x) = a1 tanh(x)+a2 tanh(x2)+ . . .

an−1 tanh(xn−1)+an tanh(xn)
(7)

As a weighted sum of tanh functions, the PowTanh
family exhibits saturation towards ±∞. However, as a
sum of even and odd functions the PowTanh can model
both symmetric and asymmetric distortions. Note that
ac tanh(0c) = 0, meaning the waveshaper introduces no
DC offset. As such, no DC offset is included in this pa-
rameterization. For stability, a1 is initialized close to 1
and ac are initialized close to 0 otherwise. During opti-
mization, f (x) is normalized such that max(| f (x)|) = 1
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4.2.4 Fourier Series

Because they are well known for their modelling ca-
pability, a parameterized Fourier series waveshaper is
investigated. An Nth degree Fourier waveshaper takes
the form

f (x) = a1 sin(x)+a2 sin(2x)+ · · ·+a n
2

sin(
n
2

x)+

b0 +b1 cosx+b2 cos(2x)+ · · ·+b n
2

cos(
n
2

x)
(8)

As a sum of even and odd functions, this waveshaper
can model both symmetric and asymmetric distortions.
However, this waveshaper can introduce a DC offset
due to its cosine components, and thus b0 is fixed to
−∑

n/2
c=1 bc.

Traditionally, the support of a Fourier series is [−π,π].
However, a fourier series can exhibit overshoot behav-
ior towards the ends of that support. Therefore, the
input audio signal to the waveshaper is normalized be-
tween [−0.9π,0.9π] to avoid overshoot artefacts. In
practice this means the gain parameter in Figure 1 is
ignored. As the waveshaper is expected to model dis-
tortion, the coefficients of the Fourier series are ini-
tialized with an Nth order approximation to a square
wave. During optimization, f (x) is normalized such
that max(| f (x)|) = 1

4.2.5 Legendre Polynomials

Because they are well known for their modelling ca-
pability, a parameterized Legendre polynomial wave-
shaper is also investigated. Legendre polynomials are a
family of polynomials Pn(x) orthogonal on [−1,1] with
Pn(1) = 1. From Rodrigues’ formula these polynomials
can be expressed as

Pn(x) =
n

∑
k=0

xk
(

n
k

)( n+k−1
2
n

)
(9)

and the waveshaper takes the form

f (x) = a0 +a1P1(x)+a2P2(x)+ · · ·+anPn(x) (10)

As a sum of even and odd functions, this waveshaper
can model both symmetric and asymmetric distortions.
However, this waveshaper can introduce a DC offset

Table 3: Mean multiscale spectrogram loss of the
waveshapers evaluated across pedals

Waveshaper RAT MGS VTB Total

Powtanh 1.321 0.559 2.117 1.332
Sumtanh 1.321 0.573 2.400 1.431
Fourier 1.588 0.603 2.686 1.625
Legendre 1.703 0.640 2.893 1.746
Tanh 1.353 0.597 2.478 1.476

due to its constant components, and thus a0 is fixed to
−∑

n
c=1 acPc(0).

Similar to the Fourier series, Legendre polynomials
can exhibit overshoot behavior towards the edges of
its support. Therefore, the input audio signal to the
waveshaper is normalized between [−0.9,0.9] to avoid
overshoot artefacts. In practice this means the gain
parameter in Figure 1 is ignored. As the waveshaper
is expected to model distortion, the coefficients of the
Legendre polynomials are initialized with an Nth order
approximation to the square wave. During optimization,
f (x) is normalized such that max(| f (x)|) = 1

4.3 Optimization

Stochastic gradient descent (SGD) is used to update
the W-H parameters to fit a dry/wet audio pair. These
parameter include the attenuations of each band in both
pre-emphasis and de-emphasis filters, the gain parame-
ter, each coefficient in the waveshaper, and the volume
parameter. The cost is calculated by passing a dry audio
sample through the estimated W-H model and measur-
ing the distance between the estimated and target audio
signal. SGD is performed using the Adam method with
an initial learning rate of 10−3. The cost function cho-
sen is multiscale spectrogram loss with window sizes
46ms, 12ms, and 3ms [43]. The optimizations are al-
lowed to run for a maximum of 40000 iterations. Early
stopping is employed with a patience of 1000 iterations.
The learning rate is dropped to 10−4 when the first early
stopping is reached, or when the optimization reaches
20000 iterations.

5 Results

5.1 Objective Evaluation

The dataset outlined in Section 3 was used to mea-
sure the objective performance of each waveshaping

AES 153rd Convention,  2022 October
 Page 5 of 10



Colonel et al. Reverse Engineering Distortion

Fig. 2: Example of estimated waveforms for each
waveshaping model on a VTB example

Table 4: Results of pairwise comparison of waveshap-
ing method architecture on perceptual similar-
ity rating across all stimuli, with Bonferroni
Correction, o > 0.9, *<0.001 ·=no compari-
son

Ref
Sum-
Tanh

Pow-
Tanh

Fourier Legendre Tanh

Ref · * * * * *
SumTanh * · o * * o
PowTanh * o · * * o
Fourier * * * · * *
Legendre * * * * · *
Tanh * o o * * ·

method. Each waveshaper was modeled using 10 de-
grees of freedom. Presented in Table 3 are the aver-
age multiscale spectrogram losses measured on each
waveshaping method across each plugin and across
all plugins. Across all plugins, the PowTanh method
performs best. Similarly, the PowTanh method outper-
forms all other methods on the RAT and VTB plugins.
On the MGS plugin, the SumTanh performs best. Both
PowTanh and SumTanh methods outperform the Tanh
baseline on all tasks. Notably, the Fourier and Legen-
dre waveshapers did not outperform the Tanh baseline
on any of the tasks.

5.2 Subjective Evaluation

A listening test was conducted using webMUSHRA
on a subset of 12 samples from the dataset [44]. This
subset consists of two unique monophonic and two
unique polyphonic stimuli passed through each of the
three distortion plugins. No plugin parameter settings
were repeated across any of the stimuli. Participants
were asked to rate how closely each of the learned W-
H models’ outputs matched a reference signal, with 0
representing a poor match and 1 representing a perfect
match. The reference signal was included as a hidden
anchor. A total of 17 participants took part in the study,
with an average age of 31 years and standard deviation
of 5.34. 8 participants identified as men, 7 as women,
and 3 as nonbinary or gender nonconforming. 11 par-
ticipants reported having at least 5 years of experience
with music production or audio engineering, 2 reported
having 3 years experience, and 4 participants reported
no experience. No participants reported any diagnosed
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Fig. 3: Box and whisker plots of participant ratings
across all plugins.

hearing impairments. Box and whisker plots of the
participants’ ratings are presented in Figure 3.

The analysis that follows is adapted from the perceptual
study presented in [45]. The null hypothesis is that the
perceptual evaluation scores are from the same distribu-
tion. A one-way ANOVA, with Bonferroni correction,
shows for all stimuli that the effect each waveshaper
had on user perception was statistically significant.

With the null hypothesis rejected, a post-hoc Tukey
pairwise comparison, with Bonferroni correction to re-
duce the chance of type I errors, was used. Table 4
shows the results of these pairwise comparisons for all
architectures used. The pairwise comparisons demon-
strate that across all plugins, the perception of each
waveshaping method differs significantly from the ref-
erence. However, when broken down by plugin type
the perception of the SumTanh model does not differ
significantly from the reference for the MGS and VTB
effects. For the MGS effects the caluclated p-value
between the reference stimulus and SumTanh stimulus
is 0.372, and for the the VTB effects the calculated
p-value is 0.064.

6 Discussion

Despite outperforming all models in the objective eval-
uation, the PowTanh waveshaper did not hold up to

perceptual evaluation. Instead, the SumTanh model
proved to be the most perceptually accurate model.
This demonstrates that multiscale spectrogram loss
does not necessarily correlate to perceptual closeness.
Both the Fourier and Legendre waveshapers performed
worse than the baseline Tanh model in the perceptual
evaluations.

Figure 2 shows the estimated waveforms of learned
W-H models for each waveshaper given a VTB target.
Both the SumTanh and PowTanh models are able to
match the asymmetric distortion well. The Fourier
model exhibits an obvious tremolo-like artefact, and the
Legendre model shows an overshoot behavior during
the attack of the sample. These behaviors were typical
across the objective study. The Tanh model was unable
to learn the asymmetry in the waveform, a behavior
that deserves future exploration.

Figure 4 shows the learned EQs and waveshaping func-
tion for the SumTanh model mentioned above. In
this example the learned gain is 16.084, DC offset is
−0.026, and volume is 1.170. The pre-emphasis filter
appears to mimic a standard high-pass filter with a cut-
off frequency of 1kHz, and the de-emphasis filter has
a slight attenuation for most of the middle frequencies
and a steep notch at 100Hz. The waveshaper learned
to have a slight overshoot for values close to 0 and to
saturate at a value less than 1. Future work may involve
better understanding the trajectories of these learned
parameters over the course of the optimization.

Further studies must be undertaken to fully understand
where the SumTanh and PowTanh models underper-
formed in the perceptual evaluation. One potential is-
sue may be that anti-aliasing is not explicitly addressed
in either of these models. While the multiscale spec-
trogram loss would penalize aliasing harmonics, most
waveshaping distortion models explicitly account for
anti-aliasing. While internal oversampling may be fea-
sible within the DDSP framework, it would certainly
be possible to oversample the dry/wet audio pairs and
apply a fixed lowpass filter after the de-emphasis filter
when fitting parameters. The authors note that com-
putation time to fit an example would scale with the
oversampling factor.

7 Conclusion

A lightweight method for reverse engineering a mem-
oryless audio distortion effect given a dry/wet pair
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Fig. 4: Example of learned parameters using the SumTanh waveshaping model on the VTB stimulus. (A) Pre-
emphasis filter (top) and de-emphasis filter (bottom), (B) Learned waveshaping function

has been presented. This method utilizes Wiener-
Hammerstein models implemented in a differentiable
framework. These models consist of graphic EQs for
their linear blocks and learnable waveshapers for the
nonlinear block. Newly proposed families of learn-
able waveshaping functions have been outlined and are
demonstrated to outperform a baseline Tanh nonlinear-
ity as well as Fourier series and Legendre polynomial
learnable waveshapers. Ultimately the proposed Sum-
Tanh family performs best in a perceptual evaluation,
and the proposed PowTanh family performs best in an
objective evaluation.
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