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ABSTRACT

We present a dynamic range compressor with ballistics implemented in a differentiable framework that can be
used for differentiable digital signal processing tasks. This compressor can update the values of its threshold,
compression ratio, knee width, makeup gain, attack time, and release time using stochastic gradient descent and
backpropagation techniques. The performance of this technique is evaluated on a reverse engineering of audio
effects task, in which the parameter settings of a dynamic range compressor are inferred from a dry and wet pair of
audio samples. Techniques for initializing the parameter estimates in this reverse engineering task are outlined and

discussed.

1 Introduction

Dynamic range compression is an essential tool in mix
engineering and audio production [1]. This nonlinear
audio effect is often used to reduce the dynamic range
of a signal. This is done by selectively attenuating
peaks in the signal while leaving quieter portions un-
touched. Digital implementations of dynamic range
compressors (DRC) vary, leading to much diversity in
the types of controls exposed to users and the considera-
tions taken into account when setting parameter values

[2].

Challenges arise in the design of digital DRC as it is a
nonlinear time-dependent audio effect with memory. A
typical feedforward digital DRC, as outlined in [3], is
composed of the following modules: a level detector

tasked with measuring the level of the incoming signal;
a gain computer tasked with calculating the instanta-
neous attenuation or gain to be applied to the signal;
and a gain smoother tasked with modifying the output
of the gain computer based on the time-varying fluctua-
tions of the input signal’s loudness. Key to the design
of many DRCs are the attack and release times that
control the gain smoother. These parameters help to
avoid introducing distortion and control how quickly
the DRC acts.

Due to the complexity of a DRC and its usage, much
work has gone into characterizing, estimating, and au-
tomating its parameters. Previous literature has devel-
oped procedures and test signals for profiling DRCs
[3], used regression models and reference signals to
control a DRC [4], developed feature-based heuristics
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to operate a DRC [5], and implemented cross-adaptive
algorithms to set DRC parameters settings across a
multitrack recording [6].

Parallel to this work is the field of differentiable digital
signal processing (DDSP) [7], in which common DSP
modules are manually implemented in a differentiable
framework such as Tensorflow or Pytorch [8, 9]. This
autodifferentiated regime allows for these modules to
be implemented in or controlled by neural networks
due to their ability to backpropagate gradients. Indi-
vidual effects such as parametric EQs [10, 11], rever-
beration [12], and distortions have been implemented
[13]. DDSP has found usage in tasks such as audio
synthesis [14, 15, 16], singing voice synthesis [17, 18],
and reverse engineering audio effects [19].

This work is organized as follows. Section 2 details
common parameters to control a DRC and previous
approaches to implementing a differentiable DRC. Sec-
tion 3 outlines the implementation of a DDSP DRC
based on the design presented in [3]. To our knowledge
this is the first such implementation with uncoupled at-
tack and release times. Section 4 presents an evaluation
of the proposed method on test signals and on a reverse
engineering of audio effects task. Finally, section 5
discusses the performance of the DRC.

2 Background

2.1 Dynamic Range Compressor Parameters

The operation of a DRC can be defined using the fol-
lowing parameters. The analysis presented here is pri-
marily adapted from [2].

Threshold is the level used to determine whether or not
to apply compression to the input signal. When the
signal is measured above the threshold, compression is
applied. In this formulation, the knee is not centered
about the threshold; instead, it begins after the thresh-
old. How the input’s level is measured varies across
DRC designs, with typical implementations includ-
ing sample-by-sample peak detection and root-mean-
square (RMS) measures.

Ratio determines the amount of compression applied
and is a measure of the input/output ratio for signals
crossing the threshold.

Knee-width is a threshold-dependent value that allows
for a smooth transition in the DRC’s compression char-
acteristic curve above and below the threshold. A small

value creates a sharp transition between unity gain and
the compression ratio, and a larger value produces a
gradual transition.

Makeup Gain refers to a gain applied to the compres-
sor’s output signal.

Attack time and release time determine how long it
takes the compressor to attenuate the signal according
to the ratio after surpassing the threshold and how long
the compressor continues to attenuate the signal after
dropping below the threshold, respectively. In many de-
signs these parameters also control how the attenuation
applied by the compressor is smoothed over time.

2.2 Differentiable Compressors

While blackbox neural networks have been used to em-
ulate DRCs [20, 21], to the authors’ knowledge only
one DDSP DRC has been proposed in the literature
[22]. There the authors implemented a DRC using Py-
torch with tunable threshold, ratio, knee width, makeup
gain, and a ballistics control. The authors approximate
both attack and release time with a joint smoothing pa-
rameter that controls a single pole IIR filter to smooth
the DRC'’s attenuation curve. This IIR filter is then
approximated using an FIR filter. As stated by the au-
thors, forcing the attack time and release time to be
shared restricts the modelling capabilities of the DRC.

As stated in [22], the difficulty in implementing a DRC
using a differentiable framework lies in the recursive na-
ture of the attack and release calculation. This sample-
by-sample “differentiation through time” is costly in
both time and memory. Thus the methodology pre-
sented here seeks to avoid sample-by-sample calcula-
tions and instead approximates attack and release pas-
sages as smoothing filters applied to a downsampled
loudness curve of the audio signal.

3 Proposed Method

Refer to Figure 1 for a block diagram of the proposed
system. Given a fixed length audio signal sampled at
44.1kHz and values for parameters mentioned in Sec-
tion 2.1 the following steps are used to apply dynamic
range compression.

First, a root mean square (RMS) level measurement is
calculated using a Sms window and hop size 0.22ms
and converted to dB. This generates a loudness curve
measured at 4410 frames per second.
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Fig. 1: Block diagram of proposed system

Then, attack and release passages are estimated by
finding when this loudness curve crosses the threshold
value. Attack passages are calculated by convolving a
rectangular window of length 7, with the rising edge
of the input signal passing the threshold, and release
passages by convolving a rectangular window of length
T,; with the falling edge. The length of these rectangu-
lar windows correspond to the attack and release times
calculated in frames. These passages finally interfere
with one another when they overlap so that the DRC
is not simultaneously set to attack and release. Finally,
gain smoothing passages are calculated by finding the
portions of the loudness curve both above the thresh-
old and outside of attack passages. Thus three masks
are produced that are the length of the signal’s loud-
ness curve corresponding to attack passages, release
passages, and smoothing passages.

Afterwards a compression characteristic is calculated
using the threshold, ratio, and knee width for the du-
ration of the signal. This compression characteristic
curve is then subtracted from the original signal’s loud-
ness curve in order to produce an attenuation curve.
Note that this curve measures the dB attenuation per
frame that when applied to the original signal produces
the characteristic curve.

Given a time constant 7 in frames, an approximate
moving average filter with support [0, N] takes the form

1
- Y (tanh(0.1 * relu(7 — x))

h(x) tanh(0.1 xrelu(t—x))

D

where tanh(x) refers to the hyperbolic tangent function
and relu(x) refers to the rectified linear unit. While a
multiplicative constant larger than 0.1 would make h(x)
more closely approximate a moving average filter, it
was experimentally found that the 0.1 scaling factor
provides a decent approximation while allowing for
gradients to backpropagate through the system.

Three approximate moving average filters are calcu-
lated using 74, T+, and Ty, corresponding to the attack
action, release action, and gain smoothing action of the
DRC. These three filters are convolved in parallel with
the attenuation curve, windowed according to the at-
tack/release/smoothing passages mentioned above, and
then summed. Afterwards the makeup gain is applied.

Finally the smoothed attenuation curve is converted
from dB to a linear scale, upsampled from 4410 frames
per second to the original sampling rate using linear
interpolation, delayed by 5ms to simulate the lag in
level measurement, and applied to the original audio
sample via multiplication.
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Table 1: DRC parameters used in ReaComp VST and
learned from gradient descent on test signal.

ReaComp Learned Value

Threshold (dB) —10.0 —11.7
Ratio 10.0 4.8
Makeup Gain (dB) -3.0 -3.0
Knee Width (dB) 0.0 1.6
Attack Time (ms) 40.0 54.0

Release Time (ms) 200.0 268.0
Smoothing Time (ms) - 31.1

Table 2: DRC parameters used in ReaComp VST and
learned from gradient descent on speech sig-

nal.
ReaComp Learned Value
Threshold (dB) —15.0 —20.5

Ratio 5.0 1.8
Makeup Gain (dB) 3.9 34
Knee Width (dB) 1.0 0.0
Attack Time (ms) 3.0 35.1
Release Time (ms) 300.0 37.6
Smoothing Time (ms) - 13.2

4 Reverse Engineering Dynamic Range
Compression

The modeling capability of the proposed method is
evaluated using a reverse engineering of dynamic range
compression task [3], in which the parameters of a
DRC are inferred using a compressed signal and its dry
counterpart. A similar task was proposed in [23], where
dynamic effects processing in a multitrack mix was es-
timated using frame-based polynomial gain estimation.
Two signals were chosen to test the performance of the
method: a signal proposed in [3] to profile the ballistics
of a DRC, and a clip of speech. Compressed signals
were generated using the Cockos VST ReaComp plugin
with an RMS level detector set to Sms.

4.1 Initialization and Optimization

Because the methodology proposed in Section 3 can be
implemented in an autodifferentiating framework such

as Tensorflow, a gradient descent can be performed to
optimize DRC parameters for a given dry/wet audio
pair. The cost is calculated by passing a dry audio
sample through the estimated DRC and measuring the
distance between the estimated and target wet audio
signal. Gradient descent is performed using the Adam
method with an initial learning rate of 10~ [24]. The
cost function chosen is multiscale spectrogram loss
with window sizes 46ms, 12ms, and 3ms [7]. This
loss function is chosen to avoid phase issues that may
arise. Optimization is allowed to run for a maximum
of 40000 iterations. Early stopping is employed with a
patience of 1000 iterations.

The DRC parameters must be initialized such that each
contributes to the compression applied to the dry signal.
Otherwise, these parameters will not update during
optimization. Furthermore, “reasonable” parameters
should be chosen to avoid portions of the loss surface
very far from expected DRC parameters. As such the
threshold value is initialized close to the mean value
of the dry signal’s downsampled RMS level curve, the
ratio initialized close to 2.0, the knee-width initialized
close to 2dB, makeup gain initialized just above 0dB,
T, and Ty initialized close to 45 frames (about 10ms),
and 7,, initialized close to 450 frames (about 100ms).

4.2 Results

Tables 1 and 2 compare the VST plugin settings to the
parameters learned in the gradient descent. Figures 2
and 4 show the uncompressed, VST compressed, and
differentiable DRC compressed waveforms for the test
signal and speech signal respectively. Figures 3 and
5 show the downsampled loudness curves of the VST
compressed and differentiable DRC compressed wave-
forms for the test signal and speech signal respectively.

5 Discussion

In general it is difficult to compare parameter settings
across DRCs as their implementations vary greatly
across designs. Furthermore, few DRCs have an ex-
plicit 75 to measure. As such attention will be paid to
the compressed waveforms themselves.

With the test signal, the differentiable DRC is able
to match the static characteristic of the target signal
well, with nearly 0dB residual. Though the learned
release time is off by 68ms from the VST, the differen-
tiable DRC’s release passage closely matches that of
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Fig. 2: Test signal waveforms
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Fig. 3: Test signal loudness curves
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the VST’s. The biggest discrepancy occurs during the
attack passage, where the differentiable DRC cannot
match the VST’s sloped attack attenuation settling.

The speech signal tasks the differentiable DRC with
matching a “light touch” compression on a dynamic sig-
nal, which it is able to do within about 3.5dB. Though
the differentiable DRC’s threshold is set several dB
lower than the VST, it compensates with a longer attack
time — this smoothing decreases the initial attenuation
to portions of the loudness curve just above -20dB. It
is interesting to note that the differentiable DRC learns
a makeup gain 0.5dB smaller than the target. Better
initialization may help avoid this bias and improve the
parameter estimation.

6 Conclusion

We have presented a method for implementing a dy-
namic range compressor with attack and release in an
autodifferentiating framework. This is achieved by
convolving approximate moving average filters with a
characteristic attenuation curve, windowing, and then
summing to simulate the attack smoothing, release
smoothing, and overall gain smoothing found in typical
dynamic range compressor designs. The performance
of this differentiable dynamic range compressor is base-
lined on a reverse engineering of compression task.
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