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ABSTRACT 
This paper describes an automatic mixing system for improving audio quality in teleconferencing applications. 

The work was focused on applying audio effects such as multitrack level balancing, spatialization, and equalization 

in order to reduce speech masking, thus allowing simultaneous speakers to be heard in a teleconference. The system 

used the ITU-R BS.1770 loudness measurement method and cross-adaptive audio effects to achieve average level 

balancing. A novel Force-directed model was implemented to automatically set the virtual position of each source. 

The equalization method was based on spectral decomposition techniques and a target of equal average perceptual 

loudness in each frequency band. Subjective evaluation was performed in the form of a multi-stimulus listening 

test, which indicated that the proposed automatic mixing system could compete with a manual mix by an 

experienced sound engineer. 

1 Introduction 

Audio enhancement for teleconferencing applications 

usually focuses on automatic gain control technology, 

acoustic echo cancellation, and noise suppression for 

real-time communications [1]. However, in multiple-

contributor communication scenarios, it is difficult to 

hear others’ voices when there is more than one person 

speaking simultaneously. Existing audio systems may 

perform badly in such situations and may cause, 

confusion for the audience. 

Auditory masking is a phenomenon whereby the 

perception of one sound is affected by the presence of 

another sound [2]. Such masking typically happen 

when two sounds occur within the same critical 

bandwidth [3][4]. The audibility of a source (maskee) 

will be affected if another source (masker) has a higher 

amplitude within a critical band than that of the maskee 

[5]. Such masking can be categorized into a variety of 

types. The most referred to form is simultaneous 

masking, in which the maskee sound occurs at the 

same time as the masking sound. In contrast, in 

forward masking or post-masking, a sound will be 

masked by a preceding sound. The maximum interval 

time for this phenomenon is 10ms. In backward 

masking or pre-masking, the sound is masked by a 

masking sound that follows the maskee (maximum 

interval time around 30ms) [1].  

Moreover, a high frequency produces a greater 

masking effect than a low frequency [6]. In a multi-

participant teleconferencing situation, frequency 

masking will cause the audio quality to become muddy 

due to the listener needing to parse a diversity of 

contents occupying similar spectral positions.  

Unmasking in music 

In music production, there are many research methods 

addressing masking issues. Previous work considered 

the effectiveness of equalization, stereo panning, and 

compression for unmasking with musical content [7]. 

However, they compared the audio effects individually 

and did not consider the whole system for unmasking 

work. Furthermore, a mixing solution that reduces 

masking in teleconferencing may require a quite 

different use of audio effects than a mix aimed at 

reducing masking with multitrack music content. 

Automatic mixing and intelligent tools have been 
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suggested to address masking issues for almost every 

aspect of music production [8]. Automatic mixing was 

developed around 15 years ago as a means of reducing 

the burden of manual mixing work for musicians or 

audio engineers [9]. Compared with manual audio 

engineering, which requires extensive effort and 

experience to manually set appropriate parameters and 

apply audio effects, intelligent systems typically aim 

to extract dynamic features from an audio source, and 

use that information to determine the parameters of 

audio effects to apply. After that, the intelligent system 

will process the input signal in a manner similar to the 

actions performed by a trained engineer. However, in 

a multitrack mixing context, the characteristics of one 

track will affect other tracks, and single-track audio 

processing cannot solve this problem.  

The work presented in [10] was focused on the use of 

an adaptive filter to adjust the levels of multiple 

sources in a mix, in order to reduce the masking of one 

source. But this would typically increase the masking 

on other sources. 

Tom et al. [11] suggested an automatic system to 

minimize masking in a multitrack recording through 

spatialization. They used masking detection through 

spectral overlap and divided the audio frequency into 

low, mid and high bands. They then arranged the 

different frequency bands to set them in different 

location. Pestana took an extreme approach [12], 

devising a tool that positioned individual frequency 

bands from all sources across the stereo panning range. 

Hafezi [13] found that automatic equalization can 

resolve masking in multitrack music production. 

Wakefield and Dewey [7] argued that panning is the 

preferable method for the unmasking of stereo mixing, 

but they also suggest that the method may not be 

appropriate if the lead vocal track is the key track and 

call for further investigation and experimentation in 

future work. In [14], Matz et al implemented and 

evaluated combinations of automatic mixing tools, as 

well as a harmonic exciter [15], to generate a mix. In 

their subjective tests, participants indicated that the 

automatic mixing tools could improve the sound 

balance and transparency of a mix. 

Unmasking in speech 

While previous research provides extensive 

knowledge and experience for the task of unmasking, 

it focused on music or instrument mixing, rather than 

voice unmasking. 

For speech, there is considerably less research in 

solving masking in multiple microphone systems. 

Dugan [16] proposed using an automatic microphone 

system that can consider all the microphone input 

levels to eliminate masking of microphones and 

achieve voice enhancement through dynamic range 

compression. When people use a microphone, system 

gain is concentrated at that microphone and others are 

attenuated. Dugan argued that an automatic system can 

provide an instant reaction for every microphone, thus 

helping to avoid system reaction time, technical errors 

and cost of manual operation, and defects usually 

associated with voice-operated systems. However, 

Dugan’s approach removes all sources except the 

dominant speaker. Thus, it removes masking on just 

one source, by preventing any other source from being 

heard. 

Quan Wang et al. [17] discussed a system which used 

a deep neural network to train a voice filter based on 

spectrum masking. The output of the network 

minimized the difference between the masked 

amplitude spectrogram and the target magnitude 

spectrogram. However, this and many other related 

studies focus on time-frequency masking, which is 

related but not the same as auditory masking. In 

contract, Zhou et al [18] performed single-channel 

speech enhancement based more directly on 

psychoacoustic masking.  

Others have incorporated visual information. The 

research of Gu et al. [19] is based on multi-channel 

separation, visual modality for target, direction 

information, speaker characteristic, and spatialized 

audio with room impulse response. Wu et al. [20] 

presented work in multi-modal speech separation 

using TasNet (time-domain speech separation 

network) and extracted lip embedding from video 

stream.  

All of these studies are focused on separating out the 

speech from one mixture/one environment/one audio 

stream for the purpose of unmasking, but do not 

consider multitrack scenarios. 
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Rothbucher, et al. used HRTF synthesis to place 

every speaker in a 3D space in the open-source VoIP 

conferencing software Mumble [21]. Their work 

resulted in a plugin which let users manually adjust 

their virtual location in a teleconferencing situation. 

In contrast, our system will automatically send users 

to different locations based on analysis of the spectral 

content from each speaker.  

Proposed approach 

The proposed system addresses masking in speech 

teleconferencing. It will focus on remote 

teleconferencing situations involving participants 

with individual computers and playback devices, 

rather than meetings with multiple participants in a 

sound-equipped meeting room.  

The level balancing methods use the ITU-R BS.1770 

loudness measurement method [22] and cross-

adaptive audio effects to achieve average level 

balancing for each voice track, in order to reduce 

auditory masking due to level differences. The 

spatialization method allocates Azimuth and 

Elevation parameters to localize each source, based 

on the smoothed average fundamental frequency of 

each voice track, considering the number of 

user/tracks, the action of users joining or leaving, and 

long-term changes in spectral content. The   

equalization method is based on spectral 

decomposition techniques, and a target of equal 

average perceptual loudness in each frequency band, 

to avoid spectral masking. 

This work has been implemented in the Web browser 

for real-time applications. Audio analysis and audio 

effects use the Web Audio API [23]. Testing is 

performed using input data from the LibriSpeech 

dataset [24], which consists of approximately 1000 

hours of 16kHz English speech. 

The latency of the system is analysed by considering 

the overlap length and the window size in the system 

(network latency was not yet measured). Subjective 

and objective tests compare the proposed automatic 

mix against original content, existing automatic 

mixing systems, and a manual mix. The proposed 

system will adapt to process any number of mono or 

stereo tracks, and at any sample rate.  

To the authors’ knowledge, this represents the first 

study of a whole automatic mixing system targeted at 

teleconferencing applications. 

2 Algorithm 

The automatic system passes the audio tracks through 

audio analysis and effect blocks and the tracks are 

processed separately. The whole system is composed 

of three main parts: level balance, equalization 

balance, and spatialization balance which are shown in 

Figure 1. 

Figure 1: Block diagram of the proposed algorithm. 

2.1Level Balance 

The first step in the automatic mixing system is to 

average all the tracks’ audio levels.  

Loudness detection 

According to ITU-R BS.1770 recommendation [22], 

LUFS stands for relative full-scale loudness units or 

full-scale loudness units (the maximum level the 

system can handle). It is a standardized measure of 
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sound loudness that considers human perception and 

electrical signal strength. In the first, we use the k -

weighting filter which consists of two bi-quadratic IIR 

filters, one is a high-shelf filter with corner frequency 

fc = 1681hz and the other one is a high pass filter fc = 

38hz, to provide a frequency weighting for the psycho-

acoustic model. 

Fader Calculation 

The total loudness of all tracks is summed and divided 

by the track count, to produce a dynamic target 

loudness that allows for intended fluctuations in the 

overall mix signal level. The gain applied to each track 

at sample n is given in Equation 1, where Gm[n] is the 

gain applied to track m, Lav[n] is the target loudness 

level, and Lm[n] is the loudness level of track m.

𝐺𝑚[𝑛] = 10
𝐿𝑎𝑣[𝑛]−𝐿𝑚[𝑛]

20  (1) 

where 𝐿𝑎𝑣[𝑛] = ∑ 𝐿𝑚[𝑛]

𝑀

𝑚=1

/𝑀 

A set of three tracks, containing different levels of 

speech, were collected from the LibriSpeech dataset, 

and processed in real-time with our system. Fader 

values are then calculated as a ratio of the track 

loudness to the average loudness. As with other 

variables, the fader values are smoothed using an 

exponential moving average filter. Table 1 gives the 

measured loudness, in LUFS, of each track before and 

after level balancing. The loudness of each track has 

converged, resulting in a smaller standard deviation.  

Before 
level 

balancing 

After level 
balancing 

Track1 -33.8 -19.8

Track2 -14.9 -19.2

Track3 -50.5 -22.0

Standard 

deviation 

14.6 1.2 

Table. 1: The LUFS of the voice tracks before and 

after level balancing. 

2.2Equalization. 

We used a graphic equalizer to maintain equal 

average perceptual loudness within each frequency 

band, as in [25]. The equalization (EQ) method was 

based on spectral decomposition techniques. The first 

step is to decompose the spectrum of inputs through a 

filter bank consisting of 6 frequency bands: 20-60Hz, 

60-200Hz, 600Hz-3kHz, 3-8kHz, and 8kHz and

above.

The loudness of each frequency band was then 

estimated using LUFS, unlike [25] which used its 

own loudness estimation technique. 

To test the effectiveness of the multitrack EQ and 

level balancing, we compared the magnitude spectra 

of input and output tracks. This is shown in Figure 2, 

which shows more similar spectra for the equalised 

tracks. Note that this could be problematic, since it 

could mean more overlapping content in the 

frequency domain, potentially leading to more 

masking. 

Figure. 2: Self-equalization of voice signals 

2.3Localization methods 

The spatialization method allocates Azimuth and 

Elevation parameters to localize each source, based on 

the smoothed average fundamental frequency of each 

voice track, considering the number of user/tracks, the 
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action of users joining or leaving, and long-term 

changes in spectral content.

We estimated the fundamental frequency (F0) of each 

track using Yin’s algorithm [26]. We then found 

differences in average F0 estimates for each pair of 

tracks in a multitrack, as shown in Table 2, which is 

used for spatialisation of each track. 

Track1 Track2 Track3 

Track1 - 128.8 87.56 

Track2 128.8 - 110.22 

Track3 87.56  110.22 - 

Table. 2: The difference, in Hertz, in fundamental 

frequencies for each pair of tracks for three speech 

tracks in a multitrack with simultaneous speakers. 

The automatic localization method will position the 

sources using a force-directed layout model that 

considers the number of user/tracks in the system. 

Figure 3 depicts the resultant positions of tracks for 

multi-tracks with 3 voices and with 9 voices. 

Figure. 3: Spatial positioning of sources for 3 tracks 

and for 9 tracks. The listener is placed at the origin. 

Force-directed layout Model 

We allocate the position of tracks on a sphere. The 

positions of sources in spatial audio may result in the 

loudness being unbalanced. Furthermore, the 

similarity of each track may result in masking. To 

address these issues, we chose the force-directed 

layout, also known as a spring embedder, which is 

commonly used to position sources on a graph surface 

[26]. This model is based on Coulomb's law.  

𝐹 = 𝑘
𝑞𝑢𝑞𝑣

𝑟2
 (2) 

which gives the force F for two charges qu and qv 

separated by a distance r. k is the Coulomb constant. 

In our context, 𝑞𝑢𝑞𝑣  is replaced by the reciprocal of 

the difference in fundamental frequencies of the two 

tracks. 

𝑞𝑢𝑞𝑣 =
1

|F0u − F0v|
 (3) 

If 𝑞𝑢𝑞𝑣 is large, the two tracks have close fundamental 

frequencies, so the distance between them should 

become large to avoid masking. 

To apply the force-directed layout as in [26], the 

system will generate random positions for sources on 

a sphere around the listener. The geometric (Euclidean) 

3D distance, between any two tracks will also be 

calculated. Positions are then updated iteratively by 

applying the force for all pairs of sources and in all 

directions. 

Considering the intended use of the system in speech, 

our algorithm was further adapted to incremental force 

directed layout. If a new audio track is added to the 

system, the system will recalculate and resend the 

positions. However, changing all tracks’ positions at 

the same time will result in a burst of noise at the 

beginning. We also allowed the algorithm to be 

adaptive, so that one may control the size of the sphere 

(i.e, room size), or vary the Coulomb constant k to 

change the strength of dispersion of sources around the 

sphere. 

3 Implementation 

All the test audio samples were extracted from the 

LibriSpeech dataset [23], which is derived from 

audiobooks and consists of approximately 1000 hours 

of English speech at 16kHz. We designed the system 

to run on the Web as shown in Figure 4 and simulated 

a multi-person communication scene using 3 tracks, 5 

tracks, 7 tracks, and 9 tracks of speech audio. All the 

audio samples were processed through a Web-based 

automatic mixing system and through Web Audio 

recording to be collected and analysed. 
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Figure 4: A screenshot of the proposed algorithm 

front-end on the Web. 

4 Evaluation 

We used an online listening test platform, Go Listen 

[27], to perform a multi-stimulus test to subjectively 

evaluate the effectiveness of the automatic unmasking 

system for multitrack content. The test methodology 

was similar to the Multiple Stimuli with Hidden 

reference (MUSHRA) [28].  

We performed blind comparisons for mixes including 

our system, the original unmixed content (referred to 

as the hidden reference), a low range anchor, a middle 

range anchor, and a manual mix performed by an 

experienced audio engineer.  All sound sources were 

first loudness normalized to prevent loudness 

differences from biasing the results. 

The test designed took approximately 10-15 minutes 

to complete. To complete the test, participants were 

asked to use a computer, as well as headphones.

There was in total of 17 participants in the test, 

demographic information of which can be found in 

Table 3.  

During the test, participants were asked to compare the 

stimuli presented to them and give a score for the 

clarity of each audio, as well to recognize the number 

of different speech signals present. 

Gender Female  4 

Male 13 

Audio 
experiences 

Some 2 

Yes 15 

Hearing 
impairment 

No 17 

Yes 0 

Table. 3: Demographic characteristics of participants. 

5 Results 

Test1 
In the first test, participants were asked to rate each 

mix and check whether they can hear different number 

of speech signals present in the audio. As seen in 

Figure 5, the manual mix received a consistently high 

rating.  The rating of the Auto mix (the mix derived 

from our system) was consistently close to the manual 

mix in participant’s ratings. In the scenario of 3 and 7 

people, the rating of our system’s mix is similar with 

the that of the manual mix. In the scenario of 5 people, 

our system’s mix rating exceeded that of the manual 

mix. Overall, the mix generated by the automatic

mixing system performed better than the unmixed

version in different scenarios.
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Figure 5: The multi stimulus test results comparing 

overall mixes. 

Test2 
Our system was composed of three independent 

automatic mixing tools (EQ, spatialization, and level 

balance). Therefore, Test 2 asked participants to 

compare mixes using just one of those tools with 

equivalent manual mixes, see Figure 6. In the scenarios 

with 3, 7 or 9 tracks, the manual level balancing 

received the highest rating. For the 5 tracks scenario, 

the Auto Pan had the highest rating. From Figure 6, 

level adjustment is most effective for overall quality. 

The auto level and manual level received a good rating 

in each scenario. 

The Auto EQ had a lower rating compared with other 

audio effects for 5, 7 and 9 tracks. Therefore, the Auto 

EQ may affect the result of the automatic mixing 

system’s output quality and needs to be further 

evaluated and improved in future work.  

Auto panning received a fairly good rating in the 5,7 

and 9 people scenarios. However, both auto and 

manual panning received a low rating for 3 speakers, 

suggesting that panning may not be preferred when 

there are few sources. 

Figure 6: Subjective test results for different 

combinations of mixing tools, for 3, 5, 7 and 9 tracks. 
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Participants were again asked to rate the quality of 

the mix. 

As expected, Figures 5 and 6 showed that the quality 

of the mix generally decreases with track count, most 

likely because intelligibility becomes increasingly 

difficult as the number of simultaneous speakers 

increases. This was true for both automatic and manual 

mixes. 

Figure 6 also suggests that the level balance is the most 

important mixing tool for this task. This is due both to 

the fact that level imbalance directly causes masking 

of the lower amplitude track, and that the more 

frequency-specific masking issues are much harder to 

address with equalisation. However, this contrasts 

slightly with [7], which showed that panning was the 

most effective tool to address masking issues in their 

experiment. 

Some participants reported that too many low 

frequencies can cause inaudibility, and some high 

frequency sibilance will affect the understanding of 

words. Additionally results showed that the clarity 

improves as the distance between speakers is 

increasing. In the 9 people scenario, participants could 

either concentrate and understand one voice, or all the 

voices together as "noise”. 

6 Conclusions 

In this work, we presented an online automatic mixing 

system which combined three audio effects to achieve 

unmasking of multiple-voice audio content.  We 

compared our system’s work with original audio and 

manual mixing audio versions. Moreover, we explored 

the effectiveness of three different effects for mixing 

in speech scenarios.  The level balancing appeared to 

be the most important factor for mixing multi-speaker 

scenarios. 

Listening test ratings showed that overall, the 

automatic mixing system can compete with the manual 

mix and that level balancing is the most important 

factor for unmasking. 

Future work should aim to find a more optimal 

solution for unmasking, and in particular, improve the 

automatic equalization tool. The system can be 

compared directly against existing microphone mixers, 

and scenarios where listeners prefer the ability to hear 

simultaneous speakers should be identified. It should 

also be deployed in real world scenarios, e.g., 

teleconferences, VR chat or multiplayer games.  
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