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A B S T R A C T

Estimating the state of charge (SOC) of batteries is fundamental for the proper management and safe operation
of numerous systems, including electric vehicles, smart energy grids, and portable electronics. While there
is no practical method for direct measurement of SOC, several estimation approaches have been developed,
including a growing number of machine-learning-based techniques. Machine learning methods are intrinsically
data-driven but can also benefit from a-priori knowledge embedded in a model. In this work, we first
demonstrate, through exploratory data analysis, that it is possible to discriminate between different SOC from
electrochemical impedance spectroscopy (EIS) measurements. Then we propose a SOC estimation approach
based on EIS and an equivalent circuit model to provide a compact way to describe the frequency domain and
time-domain behavior of the impedance of a battery. We experimentally validated this approach by applying
it to a dataset consisting of EIS measurements performed on four lithium-ion cylindrical cells at different SOC
values. The proposed approach allows for very efficient model training and produces a low-dimensional SOC
classification model that achieves above 93% accuracy. The resulting low-dimensional classification model is
suitable for embedding into battery-powered systems and for online SOC estimation.
1. Introduction

Battery-powered applications such as smartphones, tablets, laptops,
unmanned aerial vehicles, and electric vehicles are now part of our
daily life. Furthermore, energy storage systems using battery packs
are also widely used in renewable energy generation to ensure stable
and smooth electricity transmission from renewable resources to the
primary grid. In this context, information about the remaining charge
within the battery is essential for battery management systems (BMS)
and for the end-users of most battery-operated systems. Given that
lithium rechargeable batteries are the most common choice for many
applications, estimating the remaining battery capacity is fundamental
for their management because extremely high or extremely low state-
of-charge (SOC) conditions can irreversibly damage the battery and
pose safety hazards [1].

In a controlled laboratory setting, the most common method for
direct SOC estimation is Coulomb counting, also known as Ampere-
hour counting [2]. However, this method suffers from accumulation of
error, due to its integrative nature, which makes it inaccurate in many
practical scenarios. Moreover, the relationship between the battery’s
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directly-measurable signals and the estimated SOC is highly non-linear,
varying with temperature and discharge/charge currents [3]. For this
reason, it is widely recognized that there is no practical method for SOC
direct measurement outside laboratory settings [4]. As a consequence,
much research has focused on the development of secure, practical, and
reliable methods for SOC estimation in recent years [5,6].

With the continuous development of artificial intelligence, machine
learning (ML) approaches gained popularity [7], especially deep learn-
ing (DL) methods based on neural networks [8–10]. Some recent works,
such as [11,12], extend the machine learning-based SOC estimation to
cells in battery packs.

Features derived from the current–voltage measurement, performed
by BMS during charging and discharging curve are the most commonly
used inputs, but electrochemical impedance spectroscopy (EIS), which
obtains the impedance over a wide range of frequencies by measuring
the current response to a voltage perturbation or vice versa is known
to contain rich information on all materials properties, interfacial phe-
nomena and electrochemical reactions [13]. This directly relates to
vailable online 20 July 2023
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changes and possible degradation of different internal parts of the
battery and is able to track the status of the battery [14].

However, several limitations exist in ML methods for SOC estima-
tion that should be tackled for real-world applications outside labo-
ratory settings. In particular: (i) many proposed methods require a
massive amount of data; (ii) the training of the DL models may require
several hours or days to complete; (iii) deep neural networks tend to
overfit when trained on a limited amount of data [10]; (iv) many results
in literature do not take into account the variability across different
instances of the same battery model. (v) EIS data are often fitted
into an equivalent electrical circuit model (ECM), but the effectiveness
of this approach, compared to the use of raw impedance data, has
not been clearly demonstrated; (vi) purely model-based parametric
methods rely on the assumption that the battery model is accurately
established. This last condition is hard to realize in real-world applica-
tions due to measurement noise, model parameter drift with aging, and
temperature [4].

Most SOC estimation studies rely on data obtained with labora-
tory battery analysis instrumentation with measurement accuracy not
available to BMS in field applications. A realistic dataset obtained
from an onboard measurement system should be used to investigate
the effectiveness of SOC estimation methods. These limitations are the
primary motivations for this work. In this paper, we demonstrate the
feasibility of SOC estimation based on EIS data and low-complexity
machine learning algorithms. To this end, we present the results of
an exploratory data analysis applied to a dataset of EIS measurements
performed on lithium-ion batteries at different SOC values. Our results
show that it is possible to discriminate between different SOC based on
EIS measurements. Then, we propose a low-complexity ML approach
for SOC classification, which exploits EIS data and an equivalent circuit
model of the battery.

Many existing works report accurate SOC estimation using data-
driven or model-based approaches. Direct comparison of performance
metrics such as RMSE, MAE or accuracy it is not feasible because re-
sults are strongly related to experimental conditions, variability across
different batteries, and the dataset used for method evaluation. Our
experimental results demonstrate that the proposed method extracts
almost all available information from the input dataset. The comparison
of results with and without an ECM shows that using an ECM to
incorporate the available a-priori information increases the estimation
accuracy with respect to the pure data-driven estimation on the same
dataset.

Finally, we experimentally validate this approach by applying it to
the EIS dataset. The proposed approach is different from DL-based ap-
proaches, since it does not require time-consuming training. Moreover,
this approach is validated extensively by EIS measurements performed
multiple times on the same battery and on different batteries of the
same type, therefore providing insight on its generalization ability.

Therefore, the main contributions of this work can be summarized
as follows:

1. we propose a lightweight SOC estimation method based on EIS
and an equivalent circuit model;

2. we present a pipeline for exploratory data analysis on EIS
datasets based on PCA, LDA and MCA techniques;

3. the proposed methods are validated on a real-world public avail-
able EIS dataset;

4. the experiments demonstrate the feasibility of SOC estimation
based on sparse sampling of the EIS spectra (14 frequencies);

5. furthermore, we show that bespoke dimensionality reduction
based on ECM parameter fitting achieves better accuracy than
obtained with raw impedance data.

The remainder of the paper is organized as follows: Section 2
eviews related work in SOC estimation; Section 3 illustrates the EIS
ataset employed for characterizing the proposed approach; Section 4
2

escribes the main structure of the proposed approach; Section 5 h
describes the ECM used; Section 6 details the exploratory data analysis
results; Section 7 summarizes SOC classification results; Section 7 draws
conclusions, and the final section provides additional information on
data availability and result reproducibility.

2. Related works

In the literature SOC is usually defined as the ratio of the current
available capacity 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the maximum available capacity 𝑄𝑚𝑎𝑥 and
is expressed as a percentage [9]:

𝑆𝑂𝐶 = 𝑄𝑐𝑢𝑟𝑟𝑒𝑛𝑡∕𝑄𝑚𝑎𝑥 (1)

A comprehensive overview of different SOC estimation techniques
in recent literature is given in [5]. The existing SOC estimation methods
can be summarized into two categories: direct and indirect meth-
ods [4]. The most common direct methods are look-up approaches and
ampere-hour counting (AHC). Indirect methods include model-based,
data-driven, and hybrid techniques [15].

Direct look-up methods require tabulations of an external measur-
able characteristic such as open circuit voltage (OCV) and the battery’s
impedance at a different SOC. This approach is only applicable when
the battery is in a static state, not connected to any load, and allowed to
rest to achieve an equilibrium stage — hence is not feasible for online
SOC estimation. In general, battery impedance and OCV testing are
very time-consuming and require disconnecting the equipment during
the offline measurement procedure. The multi-sine EIS implemented
in [16] allows for a shorter measurement time with respect to the
conventional stepped-sine technique and potentially enables in-situ and
in-operando monitoring.

In the AHC method (also known as Coulomb Counting), the SOC is
estimated by integrating the measured discharging current of a battery
over time. The SOC at time 𝑡1 is calculated by the following equation:

𝑆𝑂𝐶
(

𝑡1
)

= 𝑆𝑂𝐶0 −
𝜂
𝐶𝑛 ∫

𝑡1

𝑡0
𝐼 (𝑡) 𝑑𝑡 (2)

where 𝑆𝑂𝐶0 ≜ 𝑆𝑂𝐶(𝑡0) denotes the initial state of charge (at time
0), 𝜂 the Coulombic efficiency, 𝐶𝑛 the rated capacity, and 𝐼(𝑡) the
nstantaneous discharge current of the battery. To evaluate (2), the
nitial SOC of the battery must be known. Given the open-loop nature
f the algorithm, errors in the SOC estimation accumulate over time,
nd even a small measurement error results in a significant integration
rror.

Model-based indirect SOC estimation methods leverage on a model
o simulate the relationship between the battery’s external measurable
hysical properties and the SOC. The latter is eventually estimated from
he modeled relations. Model-based methods include electrochemical
odels and equivalent circuit models (ECMs). Electrochemical models

equire an in-depth understanding of the battery’s internal chemical
nd electrical characteristics and describe its internal processes in terms
f partial differential equations [7] or fractional order differential equa-
ions [17,18]. Basic ECMs include the Rint model, first-order RC model,
econd-order RC model, and Thevenin model [19]. The SOC estimation
erformance of the model-based method requires the assumption that
he battery model is accurately established. The estimation accuracy
an be improved by advanced filter algorithms [20] such as Sliding
ode Observer, Luenberger Observer, Kalman filter [21], extended and

nscented Kalman filter [4,20] and Particle filter [1]. While a model-
ased approach can result in reliable and accurate models, it requires
xtensive domain knowledge, rigorous feature engineering, and a rela-
ively long development time. An extensive review and comparison of
attery modeling can be found in [19,22–25].

By contrast, data-driven SOC estimation approaches, such as ML
ethods, require only limited knowledge of the battery internals and

an result in RMS lower than 1% [20,21]. Such approaches are be-
oming more popular for estimating the SOC and battery state-of-

ealth (SOH) due to the increasing availability of battery data and
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Fig. 1. Custom-built system for acquiring EIS data from a battery under test.

advances in computational power. A comprehensive review of SOH
estimation method can be found in [26,27]. Some of the methods
such as [11], allow for SOC and SOH co-estimation. ML methods are
intrinsically data-driven but can also benefit from a-priori knowledge,
which is embedded in a model. Therefore, the hybrid strategies that
combine the model-driven and data-driven approaches are recognized
as a promising research direction.

Although the on-board usage of EIS in battery management sys-
tems surely poses some implementation issues, different solutions have
already been proposed. Kondratiev and Kuznietsov [28] recently de-
scribed an EIS measurement equipment with unipolar signal based on
relatively simple schematics; other on-board EIS systems for battery
impedance estimation have been described by Koseoglou et al. [29]
and, earlier on, by Wang et al. [30].

3. EIS dataset

For characterizing the proposed SOC estimation approach, we use
an EIS dataset made publicly available in [31]. The proposed approach
involves processing both the raw impedance data from the dataset and
the lower-dimensional parametric representation obtained by fitting
the ECM presented in Section 5 to such data. A description of the
dataset and the measurement system used for its creation is provided
here below.

3.1. EIS measurement system architecture

The basic architecture of the custom-built EIS measurement system
is shown in Fig. 1. The data acquisition (DAQ) board generates an
arbitrary voltage excitation signal. This signal is converted into a
current signal by a Howland current pump, which makes use of a power
operational amplifier. The current signal is then fed to the battery
under test. A readout electronics section samples the current signal by
means of a shunt resistor and an instrumentation amplifier. The readout
section also samples the voltage at the battery terminals.

The resulting current and voltage time series are transferred to a
PC, where the impedance of the battery under test is estimated by
performing the Discrete Fourier Transform (DFT) of the current and
voltage signals and then dividing the DFT of the voltage by that of the
current.

The choice of the excitation signal plays an important role in
determining the accuracy and speed of the EIS measurement [32]. In
this context, a broadband random-phase multi-sine excitation signal
allows for simultaneous excitation at a wide range of frequencies, thus
providing a shorter measurement time compared with the conventional
single-sine approach. Random-phase excitation was chosen to avoid the
3

Fig. 2. Cole-Cole plot representations of a set of EIS measurement results, consisting of
the complex values of the impedance 𝑍, extracted from the dataset available in [31].
The EIS curves are measured at different values of the SOC on the same lithium-ion
cell.

increase of the crest factor (see [33] on this), thus obtaining an energy-
efficient way to excite the battery under test. Spectral leakage was
avoided using coherent sampling; i.e., by ensuring that the acquired
time series contained an integer number of periods of all excited
sinusoidal components of the multi-sine. A more detailed description
of the EIS measurement system, together with a characterization of its
measurement uncertainty, is available in [16].

3.2. Dataset description

The dataset consists of the results of EIS measurements on a set of
Samsung ICR18650-26J cylindrical rechargeable Lithium-Ion cells [31].
It contains the complex impedance of the batteries measured at four-
teen logarithmically spaced frequencies (0.05, 0.1, 0.2, 0.4, 1, 2, 4, 10,
20, 40, 100, 200, 400 and 1000 Hz) using a random-phase multi-sine
excitation signal. For each excited frequency the current amplitude was
50 mA, resulting in a measurement uncertainty of approximately 0.1
mΩ [16]. Repeated EIS measurements on four different brand-new bat-
teries and six separate discharge cycles at ten different states of charge
were obtained. All measurements were performed in a temperature-
controlled environment at 25 ± 1 ◦C. For illustrative purposes a set
of EIS curves corresponding to different SOCs is reported in Fig. 2. As
can be seen, a simple relationship between the EIS shape and the SOC
is hard to infer: this motivates the use of ML techniques.

4. Proposed approach

Our solution combines data-driven ML methods and model-based
processing with an equivalent circuit model. The goal is to estimate
the SOC of a battery starting from EIS measurement data. We treat
the problem as a supervised classification task, and we solve it using
different feature sets and classification algorithms. In particular, we
show that transforming the original EIS data through domain-specific
previous knowledge in the form of a circuit-equivalent model (see
below) improves accuracy by a large margin.

Our approach includes two main phases as described in Fig. 3: an
exploratory data analysis followed by a SOC estimation that exploits
the insights gained with data analysis. In the following sections we first
detail the equivalent circuit model, which enables injecting previous
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Fig. 3. Overview of the proposed two phases approach to battery SOC estimation. (1) Exploratory data analysis [Top]. (2) SOC estimation [Bottom] designed on.
knowledge into the EIS data (Section 5). Then we describe EDA (Sec-
tion 6), the aim of which is to assess, qualitatively, the ability of EIS
data (with and without ECM fitting) to discriminate between the dif-
ferent SOCs. Finally, we present the ML approaches for SOC estimation
along with experimental validation and benchmarking (Section 7).

5. Equivalent circuit model

Equivalent circuit models provide a compact way to describe the
frequency-domain and time-domain behavior of the impedance of a
battery. Therefore, they can allow for a transformation from the raw
EIS data to a smaller number of parameters. This can be seen as a be-
spoke dimensionality reduction stage, resulting in a lower-dimensional
data representation that is then used in the SoC estimation process.
Crucially, this allows to incorporate prior knowledge on the structure
of EIS data.

In this work, we use the 7-parameter equivalent circuit model
shown in Fig. 4. This representation has proven useful to investigate
the EIS profile of lithium-ion batteries [18]. As can be seen in Fig. 4,
the circuit model contains two resistors (𝑅0 and 𝑅1), one inductor
(𝐿) and two constant-phase elements (𝐶𝑃𝐸1 and 𝐶𝑃𝐸2). The latter
are 2-parameter fractional-order components widely used for modeling
electrochemical processes [34]. The complex impedance of the CPE is
𝑍CPE = 1

𝑄𝑠𝛼 , where 𝑠 = 𝑖𝜔 (𝜔 being the angular frequency in radians), 𝛼
is a dimension-less parameter accounting for non-ideality (in the ideal
case 𝛼 = 1, the 𝐶𝑃𝐸 is a capacitor), and 𝑄 is a generalized capacitance
measured in s𝛼𝛺−1 (s𝛺−1 ≡ F in the ideal case). When 𝛼2 = 0.5, 𝐶𝑃𝐸2
is the so-called Warburg element, accounting for ion transport across
an ideal semi-infinite electrolyte layer [35,36]. On the complex plane,
the impedance of the Warburg element is a straight line with a slope
of 45◦ with respect to the real axis. When 𝐶𝑃𝐸2 is a Warburg element,
the circuit loop in Fig. 4 is commonly known as the Randles–Ershler
circuit. For a real finite layer, the slope of 𝑍CPE2 may change, and 𝛼2
must be fitted to experimental data [18]. The total impedance of the
circuit model in Fig. 4 is:

𝑍 (𝑠) = 𝑅0 + 𝑠𝐿 +
[(

𝑍CPE1 + 𝑅1

)

∥ 𝑍CPE2

]

=

= 𝑅0 + 𝑠𝐿 +
𝑅1𝑄1𝑠𝛼1 + 1

𝑄1𝑠𝛼1 + 𝑅1𝑄1𝑄2𝑠𝛼1+𝛼2 +𝑄2𝑠𝛼2
.

(3)

This model is fitted to the EIS data by numerically solving a nonlinear
least squares problem with a multistart algorithm as in [37].
4

Fig. 4. Equivalent circuit used to model the impedance of the battery.

6. Exploratory data analysis

Exploratory data analysis (EDA) was carried out with the purpose
of visualizing the data and assessing, qualitatively, their ability to
separate the different states of charge. We carried out EDA on both the
impedance values as described in Section 3.2 and the parameters of the
equivalent circuit model as detailed in Section 5. Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) were used for
both sets of features. Maximum Covariance Analysis (MCA) was used
on the first set only.

6.1. PCA and LDA

Altogether we took into account seven sets of features — see also
Table 1 for a recap: (a) real part of the impedance, (b) imaginary part
of the impedance, (c) concatenation of (a) and (b), (d) module of the
impedance, (e) phase of the impedance, (f) concatenation of (d) and
(e), and (g) parameters of the equivalent circuit model.

Data normalization was carried out on each feature separately
using three approaches: (1) no normalization, denoted as ‘none’ in
the remainder, indicating that we used the raw features with no pre-
processing altogether; (2) min–max linear scaling to [0, 1] (‘MinMax’
in the remainder) and (3) zero-mean, unit-variance normalization (‘Z-
score’). For each of the 7 × 3 = 21 combined feature set/normalization
methods we generated planar scatter plots of the data via PCA and
LDA. As a result each point in the plots represents the projection of the
corresponding data point on the first two PCA or LDA axes. Note that
the projection maximizes the overall data variance in the case of PCA
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Fig. 5. Exploratory data analysis. The figure reports PCA and LDA projections of the two combinations feature set/normalization method that achieved the best prediction accuracy
for the state of charge. In each plot markers denote battery id, and colors indicate state of charge. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Table 1
Sets of features considered in the EDA and for the estimation of the state of charge.
Symbol ‘+’ indicates feature concatenation.

Abbrev. Description Num. of features

real Real part of the impedance 14
imag Imaginary part of the impedance 14
real+imag Real and imaginary part of the impedance 28
abs Module of the impedance 14
phase Phase of the impedance 14
abs+phase Module and phase of the impedance 28
circparams Parameters of the equiv. circuit model 7

and the ratio of between-class to intra-class variance in the case of LDA.
Fig. 5 reports four sample plots — specifically PCA and LDA projections
of the two combinations feature set/normalization method that were
the best predictors for the state of charge (more on this in Section 7).
The figure shows how data-points corresponding to different SOCs tend
to group into separate clusters, which suggests a good prediction power
of the features used. This is particularly evident with the parameter
of the ECM (Fig. 5, first row). The complete scatter plots for all the
feature sets are provided as supplementary material in a separate file
(scatter-plots.svg).

6.2. MCA

Maximum covariance analysis aims at finding components that are
maximally correlated. Specifically, we looked for linear combinations
of the frequency components of the impedance spectrum that are
maximally correlated with the SOC. The general technique can be
described as follows. Let us consider two observation matrices 𝐗 ∈
R𝑚×𝑛 and 𝐘 ∈ R𝑞×𝑛, where 𝑚 and 𝑞 are the number of observables,
and 𝑛 is the number of successive measurements. Observables are
assumed to be standardized, i.e. their mean over the 𝑛 measurements
is subtracted, and they are divided by the standard deviation over the
𝑛 measurements. Let 𝐮 and 𝐯 be two unit-vectors, and let us define:

𝐚𝑇 = 𝐮𝑇𝐗,
𝑇 𝑇 (4)
5

𝐛 = 𝐯 𝐘.
We seek the optimal 𝐮 and 𝐯 maximizing the covariance between 𝐚 and
𝐛:
cov

[

𝐚𝑇 ,𝐛𝑇
]

= cov
[

𝐮𝑇𝐗, 𝐯𝑇𝐘
]

=

= 1
𝑛 − 1

[

𝐮𝑇𝐗
(

𝐯𝑇𝐘
)𝑇

]

= 𝐮𝑇𝐂𝑥𝑦𝐯,
(5)

where 𝐂𝑥𝑦 = 1
𝑛−1𝐗𝐘

𝑇 ∈ R𝑚×𝑞 is the covariance matrix between 𝐗
and 𝐘. In [38], it is proved that the maximum covariance is obtained
from the leading modes of the singular value decomposition (SVD)
of 𝐂𝑥𝑦, 𝐮 = 𝐮1 (the first left singular vector), and 𝐯 = 𝐯1 (the
first right singular vector). The successive and mutually orthogonal
singular vectors 𝐮1,… ,𝐮𝑚 and 𝐯1,… , 𝐯𝑞 return the successive maxima
of the covariance. The components related to 𝐮𝑖 and 𝐯𝑗 for 𝑖 ≠ 𝑗 are
uncorrelated, i.e., 𝐮𝑇𝑖 𝐂𝑥𝑦𝐯𝑗 = 0.

Let 𝑠1,… , 𝑠𝑆 be the values of the SOC, 𝑓1,… , 𝑓𝐹 the values of EIS
frequencies, and let us define 𝑍′

𝑖 = ℜe𝑍𝑖 and 𝑍′′
𝑖 = ℑm𝑍𝑖, where 𝑖 is

the index identifying 𝑁 repeated measurements. Let us define the first
observation matrix:

𝐗 =

⎛
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where 𝑚 = 2𝐹 and 𝑛 = 𝑁𝑆. Let us define the second observation matrix
as:

𝐘 =
(

𝑠1,1 ⋯ 𝑠𝑆,1 ⋯ 𝑠1,𝑁 ⋯ 𝑠𝑆,𝑁
)

, (7)

i.e. all the SOC values repeated 𝑁 times in a row. The matrices are then
standardized over the 𝑛 columns. Since 𝑞 = 1, 𝐘 is not changed by the
SVD, and 𝐯 = 𝐯1 = 1 is the only possible choice. All the components
obtained with 𝐮2,… ,𝐮𝑚 are uncorrelated to the SOC.

Thus, the MCA processes the spectrum components 𝑍 (𝑓, 𝑠) (repre-
sented by 𝐗) to produce the new set of components 𝐚1,… , 𝐚2𝐹 maxi-
mally correlated with the SOC. These components are plotted versus
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Fig. 6. MCA components 𝐚1 ,… , 𝐚2𝐹 of the observation matrix (6) vs SOC for a single battery. Color: six repeated measurements. Black: average curves. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. MCA components 𝐚𝑝𝑐1 ,… , 𝐚𝑝𝑐2𝐹 of the observation matrix 𝐗𝑝𝑐 vs SOC for a single battery. Color: six repeated measurements. Black: average curves. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
SOC values in Fig. 6, for 𝐯 = 1 and 𝐮 = 𝐮1,… ,𝐮𝑚 From a simple
qualitative observation, it is clear that different components encode the
same information. In fact, there are several curves that are very similar
to each other. In order to eliminate this redundancy, the matrix 𝐗 is
replaced with its principal components 𝐗𝑝𝑐 , i.e., given the covariance
matrix 𝐂𝑋 = cov [𝐗] ∈ R𝑚×𝑚 ≡ R2𝐹×2𝐹 , it is diagonalized as 𝐃𝑋 =
𝐔𝑇𝐂𝑋𝐔, the columns of 𝐔 being a base of eigenvectors of 𝐂𝑋 ; hence
𝐗𝑝𝑐 = 𝐔𝑇𝐗. The corresponding new set of MCA components 𝐚𝑝𝑐1 ,… , 𝐚𝑝𝑐2𝐹
is plotted in Fig. 7. As exptected, only the first component is correlated
to the SOC. Components 𝐚𝑝𝑐2 ,… , 𝐚𝑝𝑐26 are not correlated to the SOC, and
they also seem independent of the SOC. A clear non-linear dependence
can instead be observed for the last two components 𝐚𝑝𝑐27 and 𝐚𝑝𝑐28, indeed
non-correlation does not imply independence. A qualitative observation
suggests that the first MCA component 𝐚𝑝𝑐1 encodes all the relevant in-
formation about the SOC. Indeed a good linear correlation between 𝐚𝑝𝑐1
and SOC appears, as confirmed by the following quantitative analysis.

In Fig. 8 six repeated measurements of first MCA component 𝐚𝑝𝑐1 ver-
sus SOC of four different batteries are reported. Each bundle of curves
has been fitted with a line by using the least square method. The slope,
intercept and Pearson correlation coefficient 𝑅 are reported in Table 2.
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Pearson coefficient values indicate a very good linear correlation. All
the values of the slope and intercept are compatible within one sigma.
Weighted means of slope and intercept have been used to estimate SOC
from 𝐚𝑝𝑐1 . The error on the estimate is defined as the difference between
the true SOC and its estimated value, and it is shown in the histogram
of Fig. 9. The histogram has been fitted with a Gaussian distribution.
The quantile–quantile plot shows that the distribution is compatible
with a Gaussian. A Kolmogorov–Smirnov test strongly confirms the null
hypothesis that the data are extracted from a Gaussian distribution
with a 𝑝-value of 0.99. This proves that the information on the SOC
is largely encoded in 𝐚𝑝𝑐1 ; once this information is extracted, only zero-
mean uncorrelated uncertainty is left. This analysis strongly suggests
that impedance spectra can be used to extract information on the SOC
of batteries.

Pearson correlation coefficients between SOC and all the other com-
ponents 𝐚𝑝𝑐2 ,… , 𝐚𝑝𝑐2𝐹 are practically zero, but the last two components
𝐚𝑝𝑐27 and 𝐚𝑝𝑐28 can be respectively fitted with a third and second order
polynomial. We tried to extract information on the SOC from these
non-linear functions, similarly to what we did for the linear fit, but the
accuracy on SOC estimation was not improved.
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Fig. 8. Six repeated measurements of first MCA component 𝐚𝑝𝑐1 versus SOC of four different batteries. The linear fit is shown in black. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Distribution of the error on the estimate of the SOC from 𝐚𝑝𝑐1 .
Table 2
Pearson coefficient R, slope and intercept of the linear fit of Fig. 8.

Battery # R Slope Intercept

1 0.983 0.0339 ± 0.0008 −1.87 ± 0.05
2 0.966 0.0333 ± 0.0012 −1.83 ± 0.07
3 0.982 0.0339 ± 0.0009 −1.86 ± 0.05
4 0.977 0.0337 ± 0.0010 −1.85 ± 0.06
Weighted mean 0.0338 ± 0.0005 −1.85 ± 0.03

In conclusion, the standard deviation 𝜎 = 6.3% of the distribution in
Fig. 9, obtained from the linear fit alone, represents the best accuracy
on SOC estimation that can be attained. No additional information can
be extracted from the present EIS data to improve the accuracy of SOC
estimation.

7. Prediction of the state of charge

7.1. Accuracy estimation

The ability to predict the state of charge from the sets of features
and data normalization methods described in Section 6 was assessed
through a series of supervised classification experiments. We treated
the problem as a multi-class classification one where each state of
charge (10%, 20%, … , 100%) represents one class label. To predict the
accuracy we adopted a leave-one-out cross-validation procedure pro-
tected for battery ID. Specifically, we picked one observation (features
+ battery ID + SOC label) at a time as the test set, then trained the
classifier with all the remaining observations minus those with the same
battery ID as the one in the test set. We iterated the process over all the
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data points and estimated the accuracy as the fraction of observations
whose SOC label was identified correctly.

The procedure was implemented using three classification models:
Gaussian Naïve Bayes (‘Gaussian NB’ in the remainder), 𝑘-Nearest
Neighbors (‘𝑘-NN’) and Linear Support Vector Classifier with one-vs-
the-rest multiclass formulation (‘lSVC’). For hyperparameter tuning
we searched over 𝑘 = {1, 2, 3} nearest neighbors for the 𝑘-NN, and
over penalty factor 𝐶 = {0.01, 0.1, 1.0, 10.0} with maximum number of
iterations = 104 for the lSVC.

7.2. Results

Table 3 summarizes the results of the ten combinations feature set,
normalization method and classifier that achieved the best prediction
accuracy. The complete results for all the combinations are available
as supplementary material (classification-results.txt).

We observe that in the best scenario it was possible to predict the
state of charge with a promising 93.9% accuracy. Also note that, in
general, the use of circuit parameters as features resulted in better
accuracy than achieved with impedance values. Indeed the six best
performing prediction models all use the parameters of the equivalent
circuit model as features; by contrast, the best performing model based
on impedance values (phase) only comes seventh in the table with an
accuracy nearly 10% lower than obtained with the circuit parameters.
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Table 3
Accuracy of SoC estimation for the top-10 combinations of feature set, normalization
method and classifier.

Feature set Normalization Classifier Classifier Accuracy [%]
hyperparameters

circparams MinMax 𝑘-NN 𝑘 = 1 93.9
circparams MinMax 𝑘-NN 𝑘 = 2 93.0
circparams MinMax 𝑘-NN 𝑘 = 3 92.2
circparams Z-score 𝑘-NN 𝑘 = 1 91.7
circparams Z-score 𝑘-NN 𝑘 = 2 90.9
circparams Z-score 𝑘-NN 𝑘 = 3 90.0
phase MinMax 𝑘-NN 𝑘 = 1 84.2
phase MinMax lSVC 𝐶 = 10.0 83.8
circparams MinMax Gaussian NB – 83.0
circparams Z-score Gaussian NB – 83.0

8. Conclusions

In this paper we have presented a hybrid approach for the criti-
cal task of estimating battery SOC from EIS data. Our method com-
bines data-driven ML with equivalent-circuit models, and was validated
experimentally on EIS data acquired from multiple lithium-ion cells.

The exploratory data analysis confirmed that EIS data can discrimi-
nate different states of charge with good reliability. Furthermore, we
demonstrated that the use of circuit parameters instead of raw EIS
impedance values resulted in better accuracy, lower dimensionality and
altogether a more efficient model for SOC estimation. Compared with
other data-driven approaches (e.g. DL) our solution also avoids the
need for a costly and time-consuming training phase. We conclude that
the approach presented here shows potential for translation into prac-
tical applications, such as online SOC estimation in battery-powered
systems.

9. Computational reproducibility

We implement Reproducibility Enhancement Principles (REP)
from [39] publishing on Code Ocean a working version of the code
together with all data required to reproduce the finding of this work in
a Code Capsule hosted on Code Ocean.

Code Ocean is a cloud-based executable repository and computa-
tional reproducibility platform allowing researchers to collaborate and
execute code. The code capsule is available at https://codeocean.com/
capsule/9473632.

A detailed description of the software is available in [40] and the
complete source code and documentation are publicly accessible on
GitHub.
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