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Abstract

A classic debate in cognitive science revolves around wtaeding how children
learn complex linguistic rules, such as those governingictions on verb alter-
nations, without negative evidence. Traditionally, foldgarnability arguments
have been used to claim that such learning is impossibleowidttine aid of innate
language-specific knowledge. However, recently, reseasdiave shown that sta-
tistical models are capable of learning complex rules fraomy positive evidence.
These two kinds of learnability analyses differ in theinamgptions about the dis-
tribution from which linguistic input is generated. The rfeer analyses assume
that learners seek to identify grammatical sentences inyatha is robust to the
distribution from which the sentences are generated, gnakto discriminative
approaches in machine learning. The latter assume thatlesaare trying to esti-
mate a generative model, with sentences being sampled lframmibdel. We show
that these two learning approaches differ in their use oficitmegative evidence
— the absence of a sentence — when learning verb alternatindsdemonstrate
that human learners can produce results consistent witpregtictions of both
approaches, depending on how the learning problem is fezken

1 Introduction

Languages have a complex structure, full of general rulék idiosyncratic exceptions. For ex-
ample, the causative alternation in English allows a clés®ibs to take both the transitive form,
“l opened the door”, and the intransitive form, “The door ned”. With other verbs, alternations
are restricted, and they are grammatical in only one fornr.eixample, “The rabbit disappeared”
is grammatical whereas “I disappeared the rabbit” is ungnatical. There is a great debate over
how children learn language, related to the infamous “ggwafrithe stimulus” argument [1, 2, 3, 4].
A central part of the debate arises from the fact that a chitdtiy learns language only by hear-
ing adults speak grammatical sentences, knowpoagive evidenceChildren are believed to learn
language mostly from positive evidence because reseascfohad that children rarely receive in-
dications from parents that a sentence is not grammatindltlzey ignore these indications when
they do recieve them. An explicit indication that a senteisagot grammatical is known agega-
tive evidencg5, 6, 7]. Yet, speaking a language speaking involves thegdization of linguistic
patterns into novel combinations of phrases that have resen heard before. This presents the
following puzzle: How do children eventually learn thatteém novel linguistic generalizations are
not allowed if they are not explicitly told? There have been main lines of analyses addressing
this question. These analyses have taken two differenppetises on the basic task involved in
language learning, and have yielded quite different result

One perspective is that language is acquired by learnires ridr identifying grammatically ac-
ceptable and unacceptable sentences in a way that is rabtist tictual distribution of observed



sentences. From this perspective, Gold’s theorem [8] st languages with infinite recursion,
such as most human languages, are impossible to learn freitivpaevidence alone. In particu-
lar, linguistic exceptions, such as the restrictions orb\aternations mentioned above, are cited
as being impossible to learn empirically. More recent asedyyield similar results, while making
weaker assumptions about the desired outcome of learring (feview, see [9]). In light of this,

it has been argued that child language learning abilitiescrdy be explained by the presence of
innate knowledge specific to language [3, 4, 10].

On the other side of the debate, results indicating thativels sophisticated linguistic representa-
tions such as probabilistic context-free grammars can drméel from positive evidence have been
obtained by viewing language acquisition as a process diifay a probabilistic model of the lin-
guistic input, under the assumption that the observed datsaanpled from this model [11, 12, 13].
In addition to these general theoretical results, statistearning models have been shown to be
capable of learning exceptions in language from positivengdes only in a variety of domains,
including verb alternations [14, 15, 16, 17, 18, 19]. Fumhere, previous experimental work has
shown that humans are capable of learning linguistic exmeptn an artificial language without
negative evidence [20], bearing out the predictions of sofitkese models.

One key difference between these two perspectives on tepisin the assumptions that they make
about how observed sentences are generated. In the formeraap, the goal is to learn to iden-
tify grammatical sentences without making assumptionsiathe distribution from which they are
drawn. In the latter approach, the goal is to learn a proliistribution over sentences, and the
observed sentences are assumed to be drawn from thatutistnibThis difference is analogous to
the distinction between discriminative and generative @®éh machine learning (e.g., [21]). The
stronger distributional assumptions made in the generatpproach result in a less robust learner,
but make it possible to learn linguistic exceptions withnagative evidence. In particular, gener-
ative models can exploit the “implicit negative evidencebyided by the absence of a sentence:
the assumption that sentences are generated from the paodpetbility distribution means that not
observing a sentence provides weak evidence that it dodsefmrtg to the language. In contrast,
discriminative models that seek to learn a function for lig sentences as grammatical or un-
grammatical are more robust to the distribution from whighdentences are drawn, but their weaker
assumptions about this distribution mean that they arelarnalexploit implicit negative evidence.

In this paper, we explore how these two different views ofrieeg are related to human language
acquisition. Here we focus on the task of learning an artifax@guage containing both alternating
and non-alternating verbs. Our goal is to use modeling angaimiexperiments to demonstrate that
the opposing conclusions from the two sides of the languageisition debate can be explained by
a difference in learning approach. We compare the learreénfippnance of a hierarchical Bayesian
model [15], which takes a generative approach, with a lagisgression model, which takes a dis-
criminative approach. We show that without negative evigerthe generative model will judge a
verb structure that is absent in the input to be ungrammiatidale the discriminative model will
judge it to be grammatical. We then conduct an experimerigded to encourage human partici-
pants to adopt either a generative or discriminative laggulearning perspective. The experimental
results indicate that human learners behave in accordaititenodel predictions: absent verb struc-
tures are rejected as ungrammatical under a generativérigarerspective and accepted as gram-
matical under a discriminative one. Our modeling compassand experimental results contribute
to the language acquisition debate in the following waysstiour results lend credence to conclu-
sions from both sides of the debate by showing that linguestceptions appear either unlearnable
or learnable, depending on the learning perspective. $eaour results indicate that the opposing
conclusions about learnability can indeed be attributedtether one assumes a discriminative or
a generative learning perspective. Finally, because augrgéive learning condition is much more
similar to actual child language learning, our results lamdght to the argument that children can
learn language empirically from positive input.

2 Models of language learning: Generative and discriminatie

Generative approaches seek to infer the probability dision over sentences that characterizes the
language, while discriminative models seek to identify rction that indicates whether a sentence
is grammatical. General results exist that characteriegdethrnability of languages from these two
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Figure 1: A hierarchical Bayesian model for learning vetiemations. Figure adapted from [15].

perspectives, but there are few direct comparisons of gémeiand discriminative approaches to the
same specific language learning situation. Here, we congpsiraple generative and discriminative
model’s predictions of how implicit negative evidence igdiso learn verb alternations.

2.1 Generative model: Hierarchical Bayes

In the generative model, the problem of learning verb a#téons is formulated as follows. Assume
we have a set ofn verbs, which can occur in up tb different sentence structures. Restricting
ourself to positive examples for the moment, we observea tdtn sentences:,...xz,. Then’
sentences containing veflbcan be summarized in /adimensional vectoyg® containing the verb
occurrence frequency in each of thesentence structures. For example if we had three possible
sentence structure types and verdccurred in the first type two times, the second type four $ime
and the third type zero timeg! would be[2, 4, 0] andn® would be6.

We model these data using a hierarchical Bayesian model (HBiginally introduced in [15], also
known to statisticians as a Dirichlet-Multinomial modeR]2In statistical notation the HBM is

0 ~

yn'  ~
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wherey’ is the data (i.e. the observed frequency of different gratimalasentence structures for
verb) givenn® occurrences of that verb, as summarized ab@/ecaptures the distribution over
sentence structures associated with viedssuming that sentences are generated independently and
structurek is generated with probabilit§: . The hyperparametersand/3 represent generalizations
about the kinds of sentence structures that typically oddore precisely3 represents the distribu-

tion of sentence structures across all verbs, Witfbeing the mean probability of sentence structure

k, while « represents the extent to which verbs tends to appear in oelgentence structure type.

In this model, the number of verbs and the number of poss#esice structures are both fixed.
The hyperparametetsand3 are learned, and the prior on these hyperparameters is fixeetting

A =1landu = 1 for all i. This prior asserts a weak expectation that the range ahd 3 do

not contain extreme values. The model is fit to the data by coimg the posterior distribution
p(0%yt) = faﬂp(0i|a,,8,y)p(a,ﬁ|y) dadB. The posterior can be estimated using a Markov

Chain Monte Carlo (MCMC) algorithm. Following [15], we use@sian proposals dog(«a), and
draw proposals fo8 from a Dirichlet distribution with the currer as its mean.

2.2 Discriminative model: Logistic regression

For our discriminative model we use logistic regression.ogistic regression model can be used
to learn a function that classifies observations into twes#a. In the context of language learning,
the observations are sentences and the classificationepnabldeciding whether each sentence is
grammatical. As above, we obsemweentencesy;, . . . z,, but now each sentenag is associated



with a variablec; indicating whether the sentence is grammatieal £ +1) or ungrammatical

(¢; = —1). Each sentence is associated with a feature veéi¢tor) that uses dummy variables to
encode the verb, the sentence structure, and the interaifttbe two (ie. each sentence’s particular
verb and sentence structure combination). Witlverbs andt sentence structures, this results in
m verb featuresk sentence structure features, ané interaction features, each of which take the
valuel when they match the sentence d@nethen they do not. For example, a sentence containing
the second of four verbs in the first of three sentence strestwould be encoded with the binary
feature vectof100100000100000000.

The logistic regression model learns which features ofeswrgs are predictive of grammaticality.
This is done by defining the probability of grammaticalityo®

plc; = +1|zj,w,b) =1/(1 + eXp{—wa(xj) —b}) (1)
wherew andb are the parameters of the modak andb are estimated by maximizing the log

likelihood 3°7_, log p(c;|z;, w, b). Features for which the likelihood is uninformative (e gatures
that are not observed) have weights that are set to zero.

3 Testing the models on an artificial language

To examine the predictions that these two models make aheutse of implicit negative evidence
in learning verb alternations, we applied them to a simpiifical language based on that used in
[20]. This language has four transitive verbs and threeiplessentence structures. Three of the
verbs only appear in one sentence structure (non-altag)ativhile one verb appears in two possible
sentence structures (alternating). The language codsiftaree-word sentences, each containing a
subject (N1), object (N2) and verb (V), with the order defrgan the particular sentence structure.

3.1 \Vocabulary

The vocabulary was a subset of that used in [20]. There weee tiwo-syllable nouns, each begin-
ning with a different consonant, referring to three cartanimals:blergen(lion), nagid (elephant),
tombat(giraffe). Noun referents are fixed across participantse fdur one-syllable verbs were:
gund flern, semz andnorg, corresponding to the four transitive actiorglipse push-to-sideex-
plodeandjump on While the identity of the nouns and verbs is irrelevant toiedels, we de-
veloped this language with the intent of also examining hutearning, as described below. With
human learners, the mapping of verbs to actions was randeefdgted for each participant.

3.2 Syntax and grammar

In our language of three-word sentences, a verb could appeadifferent positions (as the 1st,
2nd or 3rd word). We constrained the possible sentencestsatthe subject, N1, always appeared
before the object, N2. This leaves us with three possibleeser structures, S1,S2, and S3, each of
which corresponded to one of the following word orders: NA-{ N1-V-N2 and V-N1-N2. In our
experiment, the mapping from sentence structure to woreravds randomized among participants.
For example, S1 might correspond to N1-N2-V for one paréiotpor it might correspond to V-N1-
N2 for another participant. There was always one sentengetste, which we denote S3, that was
never grammatical for any of the verbs. For S1 and S2, graioatify varied depending on the verb.
We designed our language to have 1 alternating verb and aiemating verbs. One of the three
non-alternating verbs was only grammatical in S1. The dtlvernon-alternating verbs were only
grammatical in S2. For example, let's consider the situatthere S1 is N1-V-N2, S2 is N1-N2-V
and S3is V-N1-N2. Iflernwas an alternating verb, bottagid flern tombaandnagid tombat flern
would be allowed. Isemavas non-alternating, and only allowed in $2gid tombat semzould be
grammatical anchagid tombat semwould be ungrammatical. In this exampfiern nagid tombat
andsemz nagid tombaitre both ungrammatical. The language is summarized in Table

3.3 Modeling results

The generative hierarchical Bayesian model and the diguaitiwe logistic regression model out-
lined in the previous section were applied to a corpus ofeser@s generated from this language.



Sentence Structure
Verb S1 S2 S3
V1 +(9) +(9) -(9)
V2 -3) +(18) -(3)
V3 +(18) -(3) -(3)
V4 +(18) ?(0) -(6)

Table 1: Grammaticality of verbs. + and - indicate gramnadtand ungrammatical respectively,
while ? indicates that grammaticality is underdetermingthie data. The number in parentheses is
the frequency with which each sentence was presented tolmoedduman learners in our experi-
ment. Verb V4 was never shown in sentence structure S2. Gagigatity predictions for sentences
containing this verb were used to explore the interpretatidmplicit negative evidence.
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Figure 2: Predicted grammaticality judgments from gemeratnd discriminative models. In paren-
theses next to the verb index in the title of each plot is tmtesece structure(s) that were shown to
be grammatical for that verb in the training corpus.

The frequencies of each verb and sentence structure cotidoireae also shown in Table 1. We
were particularly interested in the predictions that the models made about the grammaticality of
verb V4 in sentence structure S2, since this combinatiordf end sentence structure never occurs
in the data. As a consequence, a generative learner regmipbsit negative evidence that S2 is not
grammatical for V4, while a discriminative learner recsivio information.

We trained the HBM on the grammatical instances of the septgnusing 10,000 iterations of
MCMC. The results indicate that V1 is expected to occur irhi#t and S2 50% of the time, while
all other verbs are expected to occur 100% of the time in tieesemtence structure for which they
are grammatical, accurately reflecting the distributionun language input. Predictions for gram-
maticality are extracted from the HBM model as follows: Tkieverb is grammatical in sentence
structurek if the probability of sentence structuke ¢}, is greater than or equal toand ungram-
matical otherwise, whereis a small number. Theoretically,should be set so that any sentence
observed once will be considered grammatical. Here, postealues off: were highly peaked
about 0.5 for V1 in S1 and S2, and either O or 1 for other verbssmience structure combinations,
resulting in clear grammaticality predictions. These drevs in Figure 2. Critically, the model
predicts that V4 in S2 is not grammatical.

Logistic regression was performed using all sentencesiicapus, both grammatical and ungram-
matical. Predictions for grammaticality from the logistegression model were read out directly
from p(c; = +1|z;, w,b). The results are shown in Figure 2. While the model has not ¥den

in S2, and has consequently not estimated a weight for thertethat uniquely identifies this sen-
tence, it has seen 27 grammatical and 3 ungrammatical pegaof S2, and 18 grammatical and
6 ungrammatical instances of V4, so it has learned positiermghis for both of these features of
sentences. As a consequence, it predicts that V4 in S2 iswgasioal.

4 Generative and discriminative learning in humans

The simulations above illustrate how generative and disoative approaches to language learning
differ in their treatment of implicit negative evidence. i3 haises the question of whether a similar
difference can be produced in human learners by changingatee of the language learning task.
We conducted an experiment to explore whether this is the cas



In our experiment, participants learned the artificial laage used to generate the model predictions
in the previous section by watching computer animated scaneompanied by spoken and written
sentences describing each scene. Participants were alddent with information about whether the
sentence was grammatical or ungrammatical. Participaete assigned to one of two conditions,
which prompted either generative or discriminative leagniParticipants in both conditions were
exposed to exactly the same sentences and grammaticétitynation. The two conditions differed
only in how grammaticality information presented.

4.1 Participants

A total of 22 participants were recruited from the commuuityhe University of California, Berke-
ley.

4.2 Stimuli

As summarized in Table 1, participants viewed each of therBsv24 times, 18 grammatical sen-
tences and 6 ungrammatical sentences. The alternatingmaestshown 9 times each in S1 and
S2 and 6 times in S3. The non-alternating verbs were showimisteach in their respectively
grammatical sentence structures and 3 times each in therarangatical structures. Presentation
of sentences was ordered as follows: Two chains of sentemeesconstructed, one grammatical
and one ungrammatical. The grammatical chain consiste@ seritences (18 for each verb) and
the ungrammatical chain consisted of 24 sentences (6 foneab). For each sentence chain, verbs
were presented cyclically and randomized within cycles.tke® grammatical chain, V1 occurrences
of S1 and S2 were cycled through in semi-random order (vetb¥¥ appeared grammatically in
only one sentence construction). Similarly, for the ungratical chain, V2 and V3 cycled semi-
randomly through occurrences of S1 and S3 and S2 and S3 tespeéverbs V1 and V4 only
appeared ungrammatically in S3). While participants weiag#ained on the language, presen-
tation of one sentence from the ungrammatical chain wasoratydinterleaved within every three
presentations of sentences from the grammatical chairje&utbject noun pairs were randomized
for each verb across presentations. There were a total &bty sentences.

4.3 Procedure

Participants in both conditions underwent pre-traininiglérto acquaint them with the vocabulary.
During pre-training they heard and saw each word along wittupes of each noun and scenes
corresponding to each verb along with spoken audio of eacim/merb. All words were cycled
through three times during pre-training. During the maipeziment, all participants were told they
were to learn an artificial language. They all saw a seriegnfences describing animated scenes
where a subject noun performed an action on an object noudrseAtences were presented in both
spoken and written form.

4.3.1 Generative learning condition

In the generative learning condition, participants wele tioat they would listen to an adult speaker
who was always spoke grammatical sentences and a childespehbk always spoke ungrammat-
ically. Cartoon pictures of either the adult or child speakecompanied each scene. The child
speaker’s voice was low-pass filtered to create a beliewvdtilg-like sound. We hypothesized that
participants in this condition would behave similarly to engrative model: they would build a
probabilistic representation of the language from the gnatical sentences produced by the adult
speaker.

4.3.2 Discriminative learning condition

In the discriminative learning condition, participantsres@resented with spoken and written sen-
tences describing each scene and asked to choose whetheofahe presented sentences were
grammatical or not. They were assured that only relevantisvatere used and they only had to fig-
ure out if the verb occurred in a grammatical location. gréints then received feedback on their
choice. For example, if a participant answered that theesestwas grammatical, they would see
either “Yes, you were correct. This sentence is grammaditioal*Sorry, you were incorrect. This
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Figure 3: Human grammar judgments, showing proportion gratital for each sentence structure.

sentence is ungrammatical!” The main difference from theegative condition is that in the dis-
criminative condition, the presented sentences are asktori®e chosen at random, whereas in the
generative learning condition, sentences from the adeltlsgr are assumed to have been sampled
from the language distribution. We hypothesized that padnts in the discriminative condition
would behave similarly to a discriminative model: they webuke feedback about both grammatical
and ungrammatical sentences to formulate rules about whdé rsentences grammatical.

4.3.3 Testing

After the language learning phase, participants in botlditimms were subjected to a grammar test.
In this testing phase, participants were shown a series itfewrsentences and asked to rate the
sentence as either grammatical or ungrammatical. Hersgatences hallergenas the subject
andnagid as the object. All verb-sentence structure combinationgwbBown twice. Additionally
the verb V4 was shown an extra two times in S2 as this was tlwatigeneralization that we were
testing.

Participants also underwent a production test in which thege shown a scene and asked to type
in a sentence describing that scene. Because we did nothisitd be a memory test, we displayed
the relevant verb on the top of the screen. Pictures of alhthens, with their respective names
below, were also available on the bottom of the screen fereeice. Four scenes were presented for
each verb, using subject-object noun pairs that were cybledigh random. Verbs were also cycled
through at random.

4.4 Results

Our results show that participants in both conditions wargdly able to learn much of the grammar
structure. Hoewever, there were significant differenceés/éen the generative and discriminative
conditions (see Figure 3). Most notably, the generativeka overwhelmingly judged verb V4 to
be ungrammatical in S2, while the majority of discriminatlearners deemed V4 in to be grammat-
ical in S2 (see Figure 3d). This difference between condlitias highly statistically significant
by a Pearson's? test (¢?(1) = 7.28,p = 0.007). This difference aligned with the difference in
the predictions of the HBM (generative) model and the logistgression (discriminative) model
discussed earlier. Our results strongly suggest partitida the generative condition were learning
language with a probabilistic perspective that allowedrthe learn restrictions on verb alterna-
tions by using implicit negative evidence whereas pargiotp in the discriminative condition made
sampling assumptions that did not allow them to learn trerradition restriction.

Another difference we found between the two conditions \wasdiscriminative learners were more
willing to consider verbs to be alternating (i.e. allow thag&rbs to be grammatical in two sentence
structures.) This is evidenced by the fact that participamthe generative condition rated occur-
rences of V1 (the alternating verb) in S1 and S2 as gramnhatitya68% and 72% of the time. This
is because many participants judged V1 to be grammaticathiereS1 or S2 and not both. On the
other hand, participants in the discriminative conditiated occurrences of V1 in S1 and S2 gram-
matical 100% of the time (see Figure 3a). Pearsqf'tests for the difference between conditions
for grammaticality of V1 in S1 and S2 were marginally sigrifit, with x?(1) = 4.16,p = .04
andy?(1) = 3.47,p = 0.06 respectively. From post-experiment questioning, we ledthat many
participants in the generative condition did not think weviould occur in two possible sentence
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Figure 4: Human production data, showing proportion of piatithns in each sentence structure.

structures. None of the participants in the discriminateadition were constrained by this as-
sumption. Why the two conditions prompted significantly eliént prior assumptions about the
prevalence of verb alternations will be a question for fattesearch, but is particularly interesting
in the context of the HBM, which can learn a prior expressingjlar constraints.

Production test results showed that participants tendegéoverbs in the sentences structure that
they heard them in (see Figure 4). Notably, even though therityeof the learners in the discrim-
inative condition rated verb V4 in S2 as grammatical, onl¢626f the productions of V4 were in
S2. This is in line with previous results that show that hoteonfa sentence structure is produced
is proportional to how often that structure is heard, andlyaneard structures are rarely produced,
even if they are believed to be grammatical [20].

5 Discussion

We have shown that artificial language learners may or mayeaonh restrictions on verb alterna-
tions, depending on the learning context. Our simulatidrgeoerative and discriminative learners
made predictions about how these approaches deal withdtnpéigative evidence, and these pre-
dictions were borne out in an experiment with human learnBegticipants in both experimental
conditions viewed exactly the same sentences and were tadther each sentence was grammatical
or ungrammatical. What varied between conditions was theth@the grammaticality information
was presented. In the discriminative condition, partictpavere given yes/no grammaticality feed-
back on sentences presumed to be sampled at random. Bet#useamdom sampling assumption,
the absence of a verb in a given sentence structure did naterimplicit negative evidence against
the grammaticality of that construction. In contrast, iggsants in the generative condition judged
the unseen verb-sentence structure to be ungrammaticil isTin line with the idea that they had
sought to estimate a probability distribution over senésnander the assumption that the sentences
they observed were drawn from that distribution.

Our simulations and behavioral results begin to clarifydbenection between theoretical analyses
of language learnability and human behavior. In showing peaple learn differently under differ-
ent construals of the learning problem, we are able to exauiminv well normal language learning
corresponds to the learning behavior we see in these tws.cBadicipants in our generative condi-
tion heard sentences spoken by a grammatical speakerstmthe way children learn by listening
to adult speech. In post-experiment questioning, gewerbdarners also stated that they ignored all
negative evidence from the ungrmamatical child speak®ilasito the way children ignore negative
evidence in real language acquisition. These observatiopport the idea that human language
learning is better characterized by the generative apprdastablishing this connection to the gen-
erative approach helps to identify the strengths and liioita of human language learning, leading
to the expectation that human learners can use implicittivegavidence to identify their language,
but will not be as robust to variation in the distribution dfserved sentences as a discriminative
learner might be.
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