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Abstract

Natural language is full of patterns that appear to fit with general linguistic rules but are ungram-

matical. There has been much debate over how children acquire these ‘‘linguistic restrictions,’’ and

whether innate language knowledge is needed. Recently, it has been shown that restrictions in lan-

guage can be learned asymptotically via probabilistic inference using the minimum description

length (MDL) principle. Here, we extend the MDL approach to give a simple and practical methodol-

ogy for estimating how much linguistic data are required to learn a particular linguistic restriction.

Our method provides a new research tool, allowing arguments about natural language learnability to

be made explicit and quantified for the first time. We apply this method to a range of classic puzzles

in language acquisition. We find some linguistic rules appear easily statistically learnable from

language experience only, whereas others appear to require additional learning mechanisms (e.g.,

additional cues or innate constraints).

Keywords: Child language acquisition; Poverty of the stimulus; No negative evidence; Bayesian

probabilistic models; Minimum description length; Simplicity principle; Natural language; Identi-

fication in the limit

1. Introduction

A central objective of cognitive science is to understand the mental processes underlying

language acquisition. There is significant debate over how children acquire language. The

debate began when linguists observed that children do not appear to receive adequate lin-

guistic input to make language acquisition feasible (Baker & McCarthy, 1981; Braine,
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1971; Chomsky, 1965, 1975). This argument is also known as the poverty of the stimulus

(POS).

A significant part of the POS argument focuses on the influential observation that chil-

dren receive primarily positive linguistic data. This means that the child hears only exam-

ples of sentences that are possible and is never explicitly told which sentences are not
possible (Bowerman, 1988; Brown & Hanlon, 1970; Marcus, 1993). However, all language

speakers, including children, are constantly required to generalize linguistic constructions

into new phrases and sentences. This leads to the central question of how the child learns to

avoid overgeneral linguistic constructions, that is, constructions that are consistent with pre-

vious linguistic input but are ungrammatical. We will refer to these rules that prevent lin-

guistic overgeneralization as linguistic restrictions. Two examples of this can be seen in the

contraction restriction for want to and the dative alternation restriction for donate.

Example 1: Some linguistic restrictions

(1) a. Which team do you want to beat?

b. Which team do you wanna beat?

c. Which team do you want to win?

d. *Which team do you wanna win?

(2) a. I gave some money to the museum.

b. I gave the museum some money.

c. I donated some money to the museum.

d. *I donated the museum some money.

Sentence (1b) in Example 1 shows a grammatical contraction of want to in Sentence (1a).

However, the contraction in (1d) of (1c) is not allowed. Thus, there is a restriction on the

allowable contractions of want to. Similarly, give can occur both in the prepositional con-

struction, as shown in (2a), as well as the direct construction, as shown in (2b). However,

the similar verb, donate, can only appear in the prepositional construction (2c), and the

direct construction (2d) is not allowed. We shall call the problem of learning such linguistic

restrictions without negative evidence the Problem of No Negative Evidence (PoNNE). The

PoNNE can be viewed as a subset of POS because the lack of negative evidence is one way

in which the linguistic input can be impoverished.

There has been extensive research on how children learn language in light of the PoNNE

and POS (Baker & McCarthy, 1981; Bowerman, 1988; Chater & Vitányi, 2007; Crain &

Lillo-Martin, 1999; Elman, 1990; Lightfoot, 1998b; Mac Whinney, 1987; MacDonald,

2002; Perfors, Regier, & Tenenbaum, 2006; Pinker, 1994; Ritter & Kohonen, 1989;

Tomasello, 2004; Yang, 2004). On one extreme, traditional nativist linguists have argued

that the lack of negative evidence (PoNNE), as well as the more general lack of sufficient

linguistic input in general (POS), makes many linguistic constructions impossible to learn

without the aid of a large amount of innate language-specific knowledge (Chomsky, 1965;

Crain & Lillo-Martin, 1999; Lightfoot, 1998b; Pinker, 1989). They use the POS and PoNNE

to argue that the highly specific and seemingly arbitrary nature of many linguistic

restrictions implies that our innate ability to learn these restrictions could not rely on
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cognition-general mechanisms and instead must come from language-specific knowledge.

This presumed innate knowledge of language is typically viewed as a Universal Grammar:

linguistic principles that must be shared by all the world’s natural languages. From the

innateness perspective, researchers have argued that a large variety of specific linguistic

constructions are unlearnable without the aid of innate linguistic knowledge.

In response to such innateness claims, many researchers have argued that learning con-

straints other than innate language-specific ones are sufficient for successful language learn-

ing. These can be innate domain-general learning mechanisms or other learning

mechanisms that are acquired during development. Here, researchers argue that the lan-

guage input is rich enough to allow for such learning. Researchers have also pointed out that

children have access to many additional sources of noninnate linguistic information that

could aid language learning, thus alleviating the need for direct negative evidence. For

example, distinct word categories have been shown to be inferable from the distribution of

words in sentences (Redington, Chater, & Finch, 1998). Other studies have shown that

humans are sensitive to statistical patterns in syllables and other phonological cues, which

can be used to acquire language (Newport & Aslin, 2004; Spencer et al., 2009). From an

emergentist perspective, environmental information can also aid language learning. These

include communicational contexts, for example, where a speaker is looking (Tomasello,

2003); prosody, for example, tone of speaker; and gestures, for example, pointing and hand

signals (Tomasello, 2003). Computational models, such as connectionist networks, have

emphasized that linguistic knowledge can be built from an interplay of different linguistic

factors such as vocabulary, morphology, and metaphors (Bates, Marchman, Thal, Fenson, &

Dale, 1994; Elman et al., 1996; Goldberg, 1995; Mac Whinney, 1987; Seidenberg, 1997) as

well as biological constraints such as memory (MacDonald, 2002).

More recently, a significant line of research has countered innateness claims by using

computational models to show that many features of language can be learned based on posi-

tive linguistic data and language statistics alone. Here, language statistics means any infor-

mation that can be obtained from a language corpus (e.g., likely sentence structures,

relationships between words). In particular, researchers have shown that language is theoret-

ically learnable from language statistics and positive evidence only using the cognition-gen-

eral principle of simplicity (Chater & Vitányi, 2007). Computational models have simulated

positive language learning using a variety of different approaches (Chater, 2004; Chater &

Vitányi, 2007; Dowman, 2007; Elman, 1990; Foraker, Regier, Khetarpal, Perfors, &

Tenenbaum, 2007; Perfors et al., 2006; Pullum & Scholtz, 2002; Reali & Christiansen,

2005; Regier & Gahl, 2004; Stolcke, 1994; Tomasello, 2003). Connectionist models are one

key modeling approach. Here, the patterns of connections in neural networks, often com-

bined with dynamical systems theory, are used to learn behavioral patterns approximating

that which humans assume toward syntactic structures (Bates et al., 1994; Christiansen &

Chater, 2007; Elman, 1990; Elman et al., 1996; Mac Whinney, 1987; MacDonald, 2002;

McClelland & Elman, 1986; Ritter & Kohonen, 1989). A particularly influential network

approach uses simple recurrent networks (SRNs) to learn sequential language input (Elman,

1990). SRNs were shown to be capable of learning different categories of words, including

transitive versus intransitive verbs. Such models thus are capable of learning restrictions to
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overgeneralizations by accurately capturing the real and complex probability distributions

present in language (Seidenberg, 1997). Another key modeling approach uses probabilistic

models and the cognition-general learning principle of simplicity. Researchers have used

these probabilistic models to show that linguistic restrictions can be acquired by directly

learning the probability distribution of grammatical sentence structures in the language.

These models learn this probability distribution using the cognition-general principle of

simplicity (Dowman, 2000, 2007; Foraker, Regier, Khetarpal, Perfors, & Tenenbaum, 2009;

Grünwald, 1994; Langley & Stromsten, 2000; Perfors et al., 2006; Reali & Christiansen,

2005; Regier & Gahl, 2004; Stolcke, 1994). Compared with SRNs, probabilistic

modeling based on the simplicity principle has the advantage of being a more transparent,

tractable, and general methodology. Our current work builds on the probabilistic modeling

approach.

Previously, probabilistic models have been applied to learning linguistic restrictions in

either highly limited (Dowman, 2000, 2007; Elman, 1990; Grünwald, 1994; Langley &

Stromsten, 2000; Stolcke, 1994), or artificial (Onnis, Roberts, & Chater, 2002), language

datasets. These treatments often involve full models of language learning that are difficult to

scale up to the level of natural language for most linguistic constructions (their computa-

tional load makes their application to natural language sets intractable). In the context of

natural language, there have been a handful of studies that show learnability of specific

linguistic cases such as anaphoric one (Foraker et al., 2009), auxiliary fronting (Reali &

Christiansen, 2005), and hierarchical phrase structure (Perfors et al., 2006). However, there

has been no general account for assessing the learnability of wide-ranging linguistic

constructions.

Here, we provide a general quantitative framework that can be used to assess the learna-

bility of any given specific linguistic restriction in the context of real language, using posi-

tive evidence and language statistics alone. Previous learnability analyses could not be

applied to natural corpora, making previous natural language arguments prone to error or

misinterpretation. We build upon previous probabilistic modeling approaches to develop a

method applicable to natural language. Our method provides researchers with a new tool to

explicitly explore the learnability in a corpus relative to well-known information-theoretic

principles given a grammatical description.

We only aim to quantify learnability and do not aim to build a full model of language

learning. This is because it would be intractable to build a full model of language learning

that could serve as generally as our framework does in a natural language context. This

enables us to provide a general framework for evaluating learnability for a wide range of

specific linguistic constructions. When analyzing the learnability of a linguistic construc-

tion, there are two main assumptions: (a) The description of the grammatical rule for the

construction to be learned (e.g., possibilities are to frame it as a general global rule or spe-

cific local rule). (b) The choice of a corpus that approximates the appropriate input. Given

the current chosen description of the linguistic construction and an assumed corpus input,

our framework provides a method for evaluating whether a construction is present with ade-

quate frequency to make it learnable from language statistics. Our framework is very flexi-

ble because it is amenable to variation in these two main assumptions. By making these
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assumptions explicit, we can provide a common forum for quantifying and discussing

language learnability.

Our framework is analyzed from the perspective of an ideal learner, thus establishing

an upper bound on learnability. If a linguistic restriction cannot be learned by an ideal

learner, there are two possibilities: One, the learner’s representation of language is not

what we assumed it to be. In this case, a reframing of the learner’s language representation

could also potentially make a restriction learnable. For example, in the example of want to
contraction given earlier, the restriction governing contraction can be viewed as either a

singular case, that is, contraction is not allowed in this specific local context, or a general

linguistic pattern, for example, a global rule such as trace-licensing (Crain, 1991). Such a

change in assumed rule description can dramatically shift that regularity’s apparent learna-

bility (e.g., there may be many more instances of the more general pattern in the language

input). A second possibility is that additional linguistic input is required. Such additional

linguistic input could be provided through any of the multiple other sources mentioned

above (e.g., more representative corpora, situational contexts, phonological cues, prosody

and gestures, innate knowledge). Additionally, a more complex grammar may be preferred

in the light of nonlinguistic data, for example, implicit social cues, explicit instruction in

school. Our proposed framework is not tied to any particular alternative, but rather to pro-

vide a neutral way of quantifying learnability, given whatever assumptions about linguistic

representations, prior knowledge, and data available to the learner, that the theorist would

like to explore.

We see the primary contribution of this paper as methodological. Given representational

assumptions and a chosen corpus of linguistic input, our framework yields estimates of the

minimum amount of linguistic data required for learning the grammar rule that prevents

overgeneralization of a linguistic restriction.

In addition to our main goal of presenting a methodology, we illustrate our framework by

using it to estimate an upper bound on learnability for 19 linguistic constructions, many of

which have been commonly cited as being unlearnable (Crain & Lillo-Martin, 1999), and

others for which child language data have been previously collected. The quantification of

learnability for specific linguistic constructs then provides a predicted order for the acquisi-

tion by children, which can be verified in further experiments.

Interestingly, we find that our framework yields very different learnability results for dif-

ferent linguistic constructions. For some linguistic constructions, the PoNNE is not a signifi-

cant problem: These constructions are readily learnable from a relatively small corpus with

minimal prior representational assumptions. For other constructions, the PoNNE appears to

require sources of information other than language statistics alone. Where this is true, mak-

ing a different assumption about the relevant linguistic rule description may aid learnability.

Alternatively, additional data (e.g., concerning details of the speech signal, or social or

environmental context) might crucially assist learning (indeed, the purpose of our frame-

work is to encourage the comparison of results under different assumptions). These dra-

matic differences in outcome between constructions are reassuring because they indicate

that the qualitative character of the results do not depend on fine, technical details of our

assumptions.
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Although our current analyses may not be sensitive to the technical details that we

choose, they are potentially sensitive to our wider theoretical assumptions about how lin-

guistic rules are represented. We chose assumptions that were straightforward and conve-

nient. However, we stress that we do not intend to be strictly tied to these assumptions in

our analysis. Instead, our analysis is meant to illustrate our framework, which we hope will

be used by others to compare results under different assumptions. The purpose of the frame-

work is to provide a quantitative common ground that can inspire more rigorous and precise

proposals from different sides of the language debate.

The structure of the paper is as follows: First, in Section 2, we give an overview of the

methods that we use to assess learnability, including the minimum description length

(MDL) principle from which we build our framework. Then in Section 3, we describe in

greater mathematical detail how MDL can be used to practically assess learnability for an

ideal language learner given an assumed grammar rule description and a chosen corpus

input. In Section 4, we apply our framework to 19 linguistic constructions and provide lear-

nability results using our assumed grammatical rule descriptions and five English language

corpora. Finally, Section 5 highlights the implications of contrasting learnability results and

how these results can be used to provide future directions for shedding light on the POS and

PoNNE.

2. Assessing PoNNE using the simplicity principle

2.1. Background on simplicity-based models

Our framework is based on a class of probabilistic models that uses the simplicity princi-

ple. Simplicity is a cognition-general learning principle that can be used not only for lan-

guage but also for learning sequences, patterns, and exemplars. The general idea of the

simplicity principle is that the learner should choose between models based on the simplic-

ity with which they encode the data. Previous research has shown that models based on the

simplicity principle can successfully learn linguistic restrictions using positive evidence

alone (Dowman, 2000; Kemp, Perfors, & Tenenbaum, 2007; Langley & Stromsten, 2000;

Onnis et al., 2002; Perfors et al., 2006; Stolcke, 1994). Simplicity has also been successfully

applied to unsupervised morphological and phonological segmentation of language and

speech (Brent, 1999; Goldsmith, 2001; de Marcken, 1996). Simplicity models view lan-

guage input as streams of data and the grammar as a set of rules that prescribe how the data

are encoded. Inherent in these models is the trade-off between simpler versus more complex

grammars: Simpler overgeneral grammars are easier to learn. However, because they are

less accurate descriptions of actual language statistics, they result in inefficient encoding of

language input, that is, the language is represented using longer code lengths. More complex

grammars (which enumerate linguistic restrictions) are more difficult to learn, but they bet-

ter describe the language and result in a more efficient encoding of the language, that is, lan-

guage can be represented using shorter code lengths. Under simplicity models, language

learning can be viewed in analogy to investments in energy-efficient, money-saving

A. S. Hsu, N. Chater ⁄ Cognitive Science 34 (2010) 977



appliances. By investing in a more complicated grammar, which contains a restriction on a

construction, the language speaker obtains encoding savings every time the construction

occurs. This is analogous to investing in an expensive but efficient appliance that saves

money with each use. A linguistic restriction is learned when the relevant linguistic context

occurs often enough that the accumulated savings makes the more complicated grammar

worthwhile. Because learning is based on how often different linguistic constructions

appear, simplicity models are able to learn restrictions based on positive evidence alone (see

Fig. 1).

Previous applications of simplicity-based models to the learning of linguistic restrictions

in natural language have been formulated to treat only particular linguistic constructions

(Foraker et al., 2009; Perfors et al., 2006). This is because the learning of general linguistic

phenomena from a corpus representative of natural language is a too complicated task for

current computational simulations. Full learning models are difficult to apply on natural lan-

guage because the learning algorithm in these models requires a search over all possible

grammars, and this search becomes intractable over large datasets. Therefore, we do not

aim to build a full model of language learning. However, without the full search, it is still

possible to establish the minimum amount of language input required to learn a linguistic

A

C

B

Fig. 1. MDL simple grammar versus efficient language encoding trade-off. (A) A simpler grammar is often

overgeneral, that is, allows for ungrammatical sentences as well as grammatical ones. Such an overgeneral

grammar is easy to describe (i.e., short grammar encoding length) but results in less efficient (longer) encoding

of the language data. (B) A more complex grammar describes the language more accurately, that is, allows only

for grammatical sentences and does not allow for ungrammatical sentences. A more complex grammar is more

difficult to describe (i.e., longer grammar encoding length) but allows for more efficient (shorter) encoding of

language data. (C) Initially, with limited language data, the simpler grammar results in an overall shorter coding

length and is preferable under MDL. However, with more language input data, the savings accumulated from

having a more efficient encoding of language data makes the more complex grammar worthwhile.
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construction and thus quantify its learnability. This is achieved by comparing specific candi-

date grammars: the original grammar and the more complicated grammar that contains the

linguistic restriction that is to be learned. We then can establish the amount of data required

for the more complicated grammar to be worth ‘‘investing’’ in and determine whether this

amount of data is available to the child learner. This method provides an upper bound on

learnability because if a specifically chosen construction is not locally learnable based on

the available language input, it cannot be learned under the general search of a full learning

model.

This approach was used by Foraker et al. (2007) for learning restrictions on the anaphoric

one. The authors show that the anaphoric one can be learned by noticing that ‘‘one’’ never

replaces a noun without its complement (if the complement exists), whereas ‘‘one’’ can
replace a noun without its modifier. Hence ‘‘one’’ will never be followed by the comple-

ment of the noun it replaces. Here, the two grammars being compared (a grammar that pre-

dicts a string of ‘‘one’’ + complement and another grammar that does not) were of equal

complexity. Thus, here, the ‘‘correct’’ grammar is always more efficient for any language

set that includes complement phrases with just one example of the anaphoric ‘‘one’’

because the incorrect grammar would assign nonzero probability to the nonoccurring string,

‘‘one’’ + complement. This example shows that in the special case where candidate gram-

mars have equal complexity, the most accurate grammar is obviously more efficient and

hence immediately preferable under simplicity with minimal language exposure. Our frame-

work allows for learnability analysis in the general cases where the candidate grammars are

not of equal complexity.

Although we do not presume that our framework models the actual complex process of

language learning, we note that it does contain some aspects of the learning problem a child

is faced with. Child language learning is likely to be an incremental process where knowl-

edge of rules is built on previous knowledge. This type of incremental learning does not

require a comprehensive search over all possible grammars. This greatly reduces the compu-

tational load involved in acquiring each new grammatical rule. Thus, our framework may be

akin to a learner who uses previous grammatical knowledge to narrow the space of possible

grammars to particularly relevant candidates. Our method simulates the step in incremental

learning during which specific grammatical rules are (or are not) acquired.

2.2. MDL as a model of language acquisition

In practice, the simplicity principle can be instantiated through the principle of MDL.

MDL is a computational tool that can be used to quantify the information available in the

input to an idealized statistical learner of language as well as of general cognitive domains

(Feldman, 2000). When MDL is applied to language, grammars can be represented as a set

of rules, such as that of a probabilistic context-free grammar (PCFG; Grünwald, 1994). An

information-theoretic cost can then be assigned to encoding both the rules of the grammar

as well as the language under those rules. For our purposes, the language consists of the full

language corpus that a speaker has experienced. MDL does not merely select for the

simplest grammar, as has been proposed in other theories of language (Chomsky, 1955;
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Fodor & Crain, 1987). Instead, MDL selects the grammar that minimizes the total encoding

length (measured in bits) of both the grammatical description and the encoded language

length. MDL is a concrete, practical framework that takes as its input real language data and

outputs an optimal choice of grammar. The MDL framework can also be expressed as a cor-

responding Bayesian model with a particular prior (Chater, 1996; MacKay, 2003; Vitányi &

Li, 2000). Here, code length of the model (i.e., grammar) and code length of data under the

model (i.e., the encoded language) in MDL correspond to prior probabilities and likelihood

terms, respectively, in the Bayesian framework.

2.3. Two-part MDL

As with the previous work of Dowman (2007), the version of MDL that we implement is

known as two-part MDL. From here on, for conciseness we will refer to two-part MDL sim-

ply as MDL, though in general there are many other formulations of MDL that are not two

part. The first part of MDL encodes a probability distribution, and the second part encodes

the data, as a sample of that distribution. In the context of language acquisition, the first part

of MDL uses probabilistic grammatical rules to define a probability distribution over lin-

guistic constructions, which combine to form sentences. Note that these probabilities are not

necessarily the real probabilities of sentences in language, but the probabilities as specified

under the current hypothesized grammar (see Section 3.1.1, for equation and mathematical

details). The second part of MDL consists of the encoded representation of all the sentences

that a child has heard so far (see Section 3.1.2, for equation and mathematical details).

According to information theory, the most efficient encoding occurs when each data element

is assigned a code of length equal to the smallest integer ‡)log2(pn) bits, where pn is the

probability of the nth element in the data. These probabilities are defined by the grammatical

description in the first part of MDL. If the probabilities defined in the grammar are more

accurately matched to the actual probabilities in language, the grammar description will be

more efficient (see Section 3.1.3, for a concrete linguistic example). In our analogy with

energy-saving appliances, the first part of MDL would be evaluation of the cost of the appli-

ance (i.e., cheap for simple grammars, expensive for complicated, more descriptive gram-

mars) and the second part of MDL would be evaluation of the cost of using the appliance.

Note that the analogy between MDL and appliances is not absolute because with an appli-

ance, the buyer must project how often it will be used and assess ahead of time whether the

more expensive appliance is worth the investment. In contrast, under MDL, the grammatical

description is updated to be the most efficient one each time more data inputs are obtained.

Savings occur because certain grammatical descriptions result in a more efficient (shorter)

encoding of the language data. In general, more complex (i.e., more expensive) grammatical

descriptions allow for more efficient encoding of the language data. Because savings accu-

mulate as constructions appear more often, more complex grammars are learned (i.e.,

become worth investing in) when constructions occur often enough to accumulate a sufficient

amount of savings. If there is little language data (i.e., a person has not been exposed to much

language), a more efficient encoding of the language does not produce a big increase in

savings. Thus, when there is less language data, it is better to make a cheaper investment in
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a simpler grammar as there is not as much savings to be made. When there is more language

data, investment in a more costly, complicated grammar becomes worthwhile. This charac-

teristic of MDL learning can explain the early overgeneralizations followed by retreat to the

correct grammar that has been observed in children’s speech (Bowerman, 1988).

2.4. New contributions: MDL evaluation in natural language

A previous work (Dowman, 2007) has applied a full-learning MDL model to small artifi-

cial corpora. Full-learning models of MDL involve a search over all grammars that can pos-

sibly describe the input corpus. This makes full-learning models of MDL unfeasible for

large natural-language corpora. Our current work presents a new extension of previous

methods that allows MDL to be applied to natural language learning. The following new

developments of our proposed method enable MDL evaluation of natural language. First,

we show that specification of the entire grammar is not necessary. Instead, learnability can

be estimated using just the relevant portions of the two grammars. This is not an obvious

result because traditional MDL evaluation requires knowledge of the speaker’s entire gram-

mar. Here, we show how MDL differences between grammars can be evaluated without

knowledge of the full grammar, by assuming that old and new grammars only differ in spe-

cific local features that are critical to the construction being learned (derivation detailed in

Section 3.2.3). Second, though we do not need to specify the full grammar, we still need to

approximate some general form of a speaker’s grammar in order to enumerate the parts of

grammar relevant for calculating grammar differences. Here, we provide simple general

frameworks for explicitly representing a speaker’s grammar. This formulation is flexible

enough to represent the learning of a variety of linguistic rules. Although this formulation is

far from the only possible one, it is a general starting point, which can be adapted as needed

in future work. Third, we present a method for estimating language-encoding length differ-

ences between new versus old grammars, given a chosen language corpus.

3. Methods

In practical contexts, MDL application requires choosing a representational format for

the grammar. The particular representation used will affect the grammar length as well as

the data description length. As mentioned in Section 1, this representation-dependent feature

of practical MDL is useful because it provides a way to compare the effectiveness of differ-

ent representations of grammar.1 A large number of researchers have taken the perspective

that language learning involves acquiring a symbolic grammar (Chomsky, 1975; Crain &

Lillo-Martin, 1999; Fodor, Bever, & Garrett, 1974), although a range of other perspectives

on the acquisition problem have also been proposed (Elman et al., 1996; Goldberg, 2003;

Lakoff, 1987; Langacker, 1991; Tomasello, 2003). Here, we will take the symbolic gram-

mar representation perspective and illustrate our framework using a PCFG. This framework

is able to capture a wide variety of the linguistic patterns found in language. Although we

use PCFGs to illustrate our method, we stress that our framework can be implemented in
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any grammar formalism, which is a particular strength of our approach: If different

formalisms yield significantly different results, this would suggest that the nature of a

child’s language representation is important for theories of acquisition.

In this section, we will first illustrate how MDL is used to evaluate language encoding,

along with an example application of MDL to a limited language set. We will then describe

our new method, which uses the MDL framework to assess learnability in natural language

contexts.

3.1. Basic evaluation of MDL

3.1.1. The MDL code, Part 1: Encoding length of grammatical description
The first part of MDL consists of evaluating the encoding length of the grammatical

description. As mentioned above, we encode our grammar using a PCFG representation.

Some examples of PCFG rules are S->NP VP #, VP-> (tense) V#, and so on. Here, we use

an end symbol, #, to indicate the end of a rule. Because our rules allow for a variable num-

ber of left-hand-side symbols, an end symbol is necessary in our code to establish where

one rule ends and another begins. Alternatively, if all rules had the same number of left-

hand-side symbols, the end symbol would not be necessary. In order to encode these rules,

we must have an encoded representation for each the grammar symbols used, that is, S, NP,

VP, (tense), V, #. An obvious possible code for these symbols would be the basic ASCII

character set encoding that uses 8 bits per symbol (allowing for 2^8 = 256 different sym-

bols). However, this is not an optimal code for our grammar symbols because we may not

need exactly 256 different symbols, and the symbols will be used with different frequencies

in the grammatical description. To encode the grammar most efficiently, information theory

again applies: The most efficient encoding occurs when each symbol in the grammar defini-

tion is assigned a code of length of about )log2(pn) bits, where pn is the probability in the

grammatical description of the nth symbol. Thus, for an optimally encoded grammar, we

will need to tally up the frequencies of all grammar symbols used in our grammatical

description. Each grammar symbol is then encoded with a binary string of length approxi-

mately equal to � log2ðfs=FtotalÞ, where fs is equal to the frequency of occurrence of symbol

s in the grammatical description and Ftotal ¼
P

s fs is the total frequency of all symbols that

occur in the grammatical description.

Finally, our grammatical description needs to include a list of the usage probabilities for

each symbol in the grammar and each PCFG rule in the encoded language. The probability

of each grammar symbol is calculated directly from the grammar description. Symbol prob-

abilities are required to map each symbol to a code element, that is, its efficient binary string

representation described above. The probability of each PCFG rule is calculated by estimat-

ing how often each rule will be used to encode the language, that is, how often different lin-

guistic constructions and sentences appear. These probabilities will be used in the second

part of MDL to construct the code for representing specific linguistic constructions and

rules. The more accurately these probabilities reflect those in real language, the more

efficiently the language will be encoded. However, it is not practical to encode all these

probabilities to infinite values. Instead, following Dowman (2007), we assume that all
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occurrence probabilities will be encoded to fixed accuracy, for example, two decimal places.

Probabilities with accuracies of two decimal places can be encoded as integers 0 through

99. Thus, according to standard coding theory (Grünwald, 1994), all probability values will

require a constant encoding length of approximately )log2(1 ⁄ 100) = 6.6 bits. In summary,

our grammatical description will include the following: the list of PCFG rules, the probabili-

ties of all grammar symbols used to enumerate these rules, and the probabilities with which

each rule occurs in language. See Fig. 2 for an example of a grammatical description based

on PCFG rules.

A B C

Fig. 2. Examples of grammatical description. Here is a sample of the type of grammatical description that we

used in our analysis. The grammatical description is described in more detail in Appendix S1. For illustration

purposes, we associate each specific-usage rule with a unique index number in place of the unique code element,

which would be used in the actual grammar. This index number is only unique relative to the specified situation

(i.e., the specific symbol on the left-hand side). (A) Basic syntax rules include basic phrase structure grammatical

rules and their usage probabilities. (B) Specific-situation rules will be used to specify concepts related to specific

linguistic situations and their usage probabilities under specific situations, such as when contraction may occur.

Each specific usage rule comes with a specific situation definition that describes the relevant linguistic situation.

(C) Vocabulary rules represent the different words in a speaker’s vocabulary. Although we use this hypothetical

setup of grammatical knowledge, we wish to stress that our results do not heavily depend on the exact setup

chosen. The setup of these grammars is discussed further in the Appendix S1.
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The encoding length of a grammar (i.e., the investment cost) will be given by L(gram-

mar). Here, we use a formula similar to that in Dowman (2007)2 :

LðgrammarÞ ¼ �
X
s

fs log2
fs

Ftotal
þ Nsymbols þNrules

� �
Cprob bits ð1Þ

Here, fs is the occurrence frequency of symbol s. Ftotal ¼
P

s fs, the total occurrence fre-

quencies of all symbol types in the grammatical description. Nrules is the number of PCFG

rules in the grammar. Nsymbols is the number of different symbol types in the grammar. Cprob

is the constant value of encoding probabilities to fixed decimal accuracy.

Intuitively, this equation sums the encoding cost contributions from (a) all the symbols

used in the grammatical description; (b) the probabilities of each grammar rule’s usage in

the language data; and (c) the probabilities of each symbol in the grammatical description.

The first component in Eq. 1, �
P

s fs log2ðfs=FtotalÞ, is the length of encoding associated

with listing all the PCFG rules. Note that fs=Ftotal is the probability of occurrence for sym-

bol s in the grammatical rules. The second component, NrulesCprob, is the length of encoding

the probabilities with which each rule occurs in language (where Cprob is the code length for

a single rule). The third component, NsymbolsCprob, is the length of encoding the probabilities

with which the grammar symbols occur in the grammatical description. The same constant,

Cprob, is used for both symbols and rules probabilities because we assume both are encoded

to the same decimal accuracy.

3.1.2. The MDL code, Part 2: Encoding length of the language data
The second part of the MDL code consists of evaluating the length of encoding the lan-

guage data. The language is encoded relative to the grammar defined in the first part of MDL.

Here, we assume that this length will include the encoding of all sentences experienced,

including repeats.3 For example, if the sentence How are you? required 12 bits to encode, and

is experienced 400 times by a language learner, the total code length required to encode these

occurrences would be 400 · 12 = 4,800 bits. Sentences are encoded as derivations from a

grammar using a sequence of PCFG rules. In PCFG, each rule is expanded in sequence until a

sentence results. An example is provided in Section 3.1.3. Again, for optimal encoding, each

PCFG rule is represented with a code length that is about� log2 pnð Þ bits, where pn is the prob-

ability of the nth rule being used in language. A notable point is that not all constructions are

allowed in all linguistic contexts. Thus, the probability of a linguistic construction is calcu-

lated relative to all other possible linguistic constructions that can occur in the given context.

In terms of PCFG rules, this means that not all expansions are allowed for a given left-hand-

side grammar symbol. Thus, the probability of any PCFG rule is calculated only relative to all

other PCFG rules that have the same left-hand-side symbol. The length of the encoded data,

as prescribed by the grammar, L(data) will be estimated using (Dowman, 2007):

LðdataÞ ¼ �
X
r

frlog2
fr
tr
bits ð2Þ

Here fr is the frequency (in the language data) of rule r, and tr is the total frequency

(in the language data) of all rules with the same symbol on their left-hand side as rule r.

984 A. S. Hsu, N. Chater ⁄ Cognitive Science 34 (2010)



Thus, fr=tr is the probability of rule r being used relative to all other possible rules that

could be used at that point of the phrase expansion. Thus, the same binary code element will

refer to different PCFG rules depending on the current grammar symbol being expanded.

3.1.3. MDL evaluation: A simple concrete example
Let us consider some concrete examples of language encoding under MDL. A key feature

of practical MDL is that only the length of the representation is important. Thus, only the rep-

resentation lengths need to be determined in order to select the best grammar. For illustration

purposes, we will show encoding length evaluation of a single artificial grammar. In practice,

MDL involves evaluating the description length of multiple (in our implementation two)

grammars and then choosing the one with the shortest description length. Following Dowman

(2007), we use PCFGs with binary branching or nonbranching rules as shown in Example 2.

These grammars contain both terminal symbols (words) and nonterminal symbols (any other

nodes in a syntactic tree, such as lexical or phrasal categories). Within this formalism, a valid

sentence is any string of terminal symbols that can be derived by starting with the symbol S,

and repeatedly expanding symbols from left to right using any of the rules in the grammar.

Example 2: Encoding language using PCFGs
Sample phrase structure grammar:

(1) S->NP VP # 1.0

(2) NP->N # 1.0

(3) VP-> V PP # 1.0

(4) PP-> P N # 1.0

(5) N-> John # 0.25

(6) N->Mary # 0.75

(7) P-> at # 1.0

(8) V-> smiled # 1.0

Sample language data:

Mary smiled at John.
Mary smiled at Mary.

Here, we use the standard symbols S (Sentence), VP (Verb phrase), NP (Noun phrase), PP
(Prepositional phrase), and we use # to indicate an end symbol. The numbers following the

# symbol are the relative probabilities for which these rules occur in our example artificial

language. Remember, these probabilities are defined relative to all other possible expansions

of a rule, that is, all other rules with the same left-hand-side symbol. Thus, because Rules 1–

4, 7, and 8 are the only possible expansions given the symbols on their left-hand side (S,

NP, VP, PP, P, V, respectively), their relative probability of occurrence is 1. Rule 5 is

applied only one of four times and thus has the probability .25. Rule 6 is applied three of

four times and thus has probability .75. That is, to derive the first sentence in the language

data in Example 2: S is expanded to NP VP, which is expanded to N V PP, which is

expanded to, N V P N, which can be then expanded to Mary smiled at John. This sentence

would be represented by the following ordered list of the rules: 1, 2, 3, 4, 6, 8, 7, 5. That is:
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S->NP VP #, NP->N#, VP->V PP#, PP->P N#, and so on. In this highly artificial example,

there are only a few possible sentences in the ‘‘language’’ prescribed by this set of gram-

matical rules. In fact, not all possible allowed sentences are present in this ‘‘language’’ of

two sentences, that is, John smiled at Mary and John smiled at John are not in the language

input and thus this example is actually a case of an overgeneral grammar.

Table 1 breaks down the calculation of encoding length for the grammar in Example 2.

The symbol occurrence frequencies in the second column reflect the fact that there is one

token of symbol type S (occurring in Rule 1), two tokens of symbol type NP (occurring in

Rule 2), and so on. The total of the first column shows that there are 12 symbol

types, Nsymbols = 12. The total of the second column shows that there are 27 symbol tokens,

Ftotal ¼
P

s fs = 27. The total of the third column is the cost of enumerating grammar rules,

�
P

s fs log2ð fs=FtotalÞ ¼ 86:38 bits. The number of rules can be read directly from the

grammar in Example 2, Nrules = 8. Finally, we need to estimate the free parameter, Cprob,

which is the number of bits used to encode the probabilities of each symbol type and each

rule. Here, we assume probabilities will be encoded to an accuracy of two decimal places.

Thus, we set Cprob = )log2(1 ⁄ 100) bits = 6.6 (as explained in Section 3.1.1). Substituting

these values into Eq. 1, we get a total grammatical description length of 218 bits. That is the

first part of the MDL evaluation.

The second part is to quantify the encoding length of the language data. The first sen-

tence, Mary smiled at John, is encoded with the following list of the rules: 1, 2, 3, 4, 6, 8, 7,

5 and the second sentence, Mary smiled at Mary, is encoded with the following rules: 1, 2,

3, 4, 6, 8, 7, 6. Here, in our simple grammar, rules 1, 2, 3, 4, 7 and 8 occur with probability

1 and therefore require 0 bits to encode. The only contribution to encoding length comes

from Rules 5 and 6. Rule 5 requires )log2(0.25) = 2 bits and Rule 6 requires

)log2(0.75) = 0.4 bits. Thus, 2.4 bits are required for encoding Mary smiled at John (Rules

5 and 6 occurring once each) and 0.8 bits are required for encoding Mary smiled at Mary

Table 1

Encoding costs for grammar in Example 2

Symbol Type Symbol Occurrence Frequency fs Symbol Encoding Cost (bits) fs log2ðfs=FtotalÞ

S 1 )1 · log2(1 ⁄ 27) = 4.75

NP 2 )2 · log2(2 ⁄ 27) = 7.5

VP 2 )2 · log2(2 ⁄ 27) = 7.5

PP 2 )2 · log2(2 ⁄ 27) = 7.5

V 2 )2 · log2(2 ⁄ 27) = 7.5

N 4 )4 · log2(4 ⁄ 27) = 11.02

P 2 )2 · log2(2 ⁄ 27) = 7.5

Mary 1 )1 · log2(1 ⁄ 27) = 4.75

smiled 1 )1 · log2(1 ⁄ 27) = 4.75

John 1 )1 · log2(1 ⁄ 27) = 4.75

at 1 )1 · log2(1 ⁄ 27) = 4.75

# 8 )8 · log2(8 ⁄ 27) = 14.04

Column totals
Nsymbols = 12 Ftotal = 27 �

P
s fs log2ðfs=FtotalÞ = 86.38
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(Rule 5 occurring twice). Thus, the total code length for the grammar and the language data

in Example 2 is 218 bits + 2.4 + 0.8 bits = 221.2 bits. Note that by encoding the more com-

monly used Rule 6 with fewer (0.4) bits, and the more rarely used Rule 5 with more (2) bits,

we have a more efficient code than if both rules were encoded using 1 bit each. Fig. 2 shows

further examples of PCFG grammars. Figs. 3 and 4 show sentences encoded using the gram-

mar specified in Fig. 2.

For illustration purposes, Example 2 showed the encoding length evaluation for a single

grammar only. However, MDL involves description length evaluation of multiple gram-

mars (in our case two grammars), and choosing the grammar that allows the shortest

overall encoding length of both grammar and language data, that is, we want to find,

mingrammar[L(grammar) + L(data|grammar)], where L(grammar) is the length of the

grammatical description and L(data|grammar) is the length of the encoded data under that

grammar. MDL serves as a principled method of choosing between shorter grammars that

result in longer encoded data lengths versus longer grammars that result in shorter encoded

data lengths: That is, with little language data, L(grammar) will have a larger contribution to

the total length. However, as the amount of data increases (i.e., a speaker has heard a lot of

language), the contribution of L(grammar) will become small relative to L(data|grammar).

Fig. 3. Sample encoding of sentence: I wanna go home. Sentence is encoded using the code numbers that repre-

sent each of the grammatical rules shown in Fig. 2. In practice, the code number would be replaced with its

equivalent binary number with string length approximately equal to its log probability. Probabilities are calcu-

lated relative to all other rules with the same left-hand side. Thus, the same code number refers to different rules

depending on the grammar symbol being expanded. The full list of rules used is also shown.
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3.2. MDL applied to quantifying PoNNE and POS in natural language acquisition

In order to make MDL evaluation tractable in the context of natural language, we replace

a general search over all grammars with a local comparison between specific candidate

grammars. This allows us to assess the acquisition of any specific linguistic constructions in

the context of real language. Under MDL, the chosen grammar is the one that optimizes the

trade-off between grammar cost and encoding savings. This natural trade-off inherent to

MDL allows us to make comparisons between candidate grammars without considering the

whole of language. Thus, we do not have to define generative models of grammar nor con-

duct searches over the whole of language, as would be required in a full model of learning.

Instead, our framework assumes that the new and old grammars differ only in local features

that are critical to the construction being learned. Thus, all other parts of the two grammars

are assumed to remain the same. Because we are only comparing the difference between

local features of candidate grammars, we only need explicit descriptions of the portions that

differ between these grammars. These will be the portions that describe the language con-

structions being examined. The candidate grammars will be chosen to correspond to possi-

ble grammatical hypotheses children could have during learning. Although we use two

candidate grammars in our current implementation, several candidate grammars may also

be used.

The candidate grammars being compared consist of a simple more general grammar and

another more complex grammar. The more complex grammar will include the general rule

from the simple grammar as well as an additional restriction to the general rule. The simpler

Fig. 4. Sample encoding of sentence: I gave you the money. Sentence is encoded using the index numbers that

represent each of the grammatical rules shown in Fig. 2. The full list of encoded rules is also shown.
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grammar would represent the overgeneralizations in a child’s grammar, and the complex

grammar would represent the correct grammar that we all achieve by adulthood (Bowerman,

1988). The more complex grammar has a longer grammar description length, but it results

in a shorter encoding length of the language data. We can now evaluate MDL by assessing

whether the complex grammar is worth investing in. This is carried out by evaluating the

trade-off between the encoding length costs resulting from a more complex grammar

description versus the encoding length savings resulting from using the more complex gram-

mar to encode the language data. A linguistic restriction becomes learnable when the higher

cost grammar with the restriction becomes worth investing in. This means there is enough

language data such that the encoding length savings offered by the more complex grammar

exceeds its additional cost relative to the simpler grammar.

3.2.1. Approximation of speaker’s grammar
Under our framework, we assume that the learner has already acquired significant previ-

ous grammatical knowledge. This is consistent with an incremental approach to language

learning. The assumption of a certain amount of prior linguistic knowledge is reasonable

because language acquisition is an incremental process where new knowledge is continu-

ously built on previous knowledge. For example, we assume that the language speaker has a

certain amount of semantic and syntactic knowledge such as knowledge of the distinction

between verbs and nouns. We also note that we assume the child has some representation of

sentence boundaries and can distinguish noncontracted from contracted phonological forms

(want to vs. wanna). Our analysis does not require that children have formal grammatical

understanding of these concepts. Instead, they only need to be able to represent these con-

cepts with the relevant patterns of phonological strings. For example, a child only need be

aware that the word want to can be replaced with wanna, and the child does not need to have

a formal understanding of contraction. Thus, the symbol representing contraction, defined as

[contract] in our grammar, simply represents the replacement of two words by one other.

Similarly, a child could recognize the presence of a sentence boundary, based on an intona-

tions contour and ⁄ or a following pause. Any additional specific conceptual knowledge will

be discussed individually under the analysis for each construction. For our purposes, the

bulk of the child’s previously acquired grammar does not need to be defined in explicit

detail. However, a general idea of its form must be assumed so that the parts relevant to the

construction being learned can be written down explicitly. Next, we describe some rough

assumptions that we make of a child’s grammar and describe how to specify the portion of

two candidate grammars that are relevant to the acquisition of a particular construction. We

emphasize that we are not tied to this particular grammatical description. It is only one

example of many possible grammatical descriptions that can be used within our framework.

In our current analysis, we will choose a grammar that consists of three types of rules,

general-syntax rules, vocabulary rules, and specific-situation rules. The specific form of

these rules is chosen to make the analysis as convenient and tractable as possible rather than

to reflect any of the wide range of current syntactic theories. General-syntax rules depict

basic sentence syntax structures that apply generally to English language. Vocabulary rules

represent the words in a speaker’s vocabulary. Specific-situation rules describe concepts and
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knowledge needed for identifying specific linguistic situations along with the usage proba-

bilities for these specific situations. Most of the grammatical descriptions portions that are

relevant to our analysis will be contained in the specific-situation rules. Sample specific-

situation rules are shown in Fig. 2b. Next, we explain this representation of grammatical

rules further detail.

3.2.1.1. General-syntax rules: General-syntax rules include basic phrase structure grammat-

ical rules. As in Example 2, a probability is specified for each general-syntax rule, which

will determine its coding length when it is used to encode language data in general situa-

tions. The end symbol, #, demarcates the end of a rule and the first symbol following # will

be the general probability of that rule. These general probabilities may be overridden by the

probabilities specified for specific linguistic situations by specific-situation rules.

3.2.1.2. Vocabulary rules: Vocabulary rules represent the different words in a speaker’s

vocabulary. Vocabulary rules can only be introduced with special almost-terminal symbols

such as N,V, and so on. Vocabulary rule grammars will be encoded in the same way as gen-

eral-syntax rule grammars and are shown in Fig. 2c.

3.2.1.3. Specific-situation rules: Specific-situation rules will be used to specify specific lin-

guistic situations that require particular syntax rules or other rules such as contraction. These

specific situations will each have associated usage probabilities. The specific linguistic situ-

ation and their associated concepts will be defined using a specific situation definitions struc-

ture. New probabilities will be specified for each specific situation in a situation structure.

Remember, for the purposes of our MDL analysis, the precise symbols used (e.g., numbers

or letters) are not important. All that needs to be known is the total number of symbol tokens

and their frequencies of appearance in the grammar.

Example 3: Specific situation definitions

[situation definition verb1 ⁄ verb2]
[direct-dative] VP->V NP NP #
[prepositional-dative] VP->V NP PP #
[dative-alternation verb1 ⁄ verb2] verb1 verb2 #

[end]

[situation] [dative-alternation verb1 ⁄ verb2]
[direct-dative] probability
[prepositional-dative] probability

[end]

Example 3 shows such structures for two similar verbs, verb1 and verb 2, that are both

assumed to undergo the dative alternation. A specific situation definition structure would

begin with a symbol indicating the beginning of a set of definitions (e.g., [situation defini-

tion verb1 ⁄ verb2]). The end of the set of definitions would be signified by an [end] symbol.

The specific situation definitions would contain descriptions of specific linguistic situations

and map them to associated symbols, here depicted within brackets. These definitions
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include words or syntactic structures used to recognize the specific situation (e.g., [dative

verb1 ⁄ verb2]) as well as the general-syntax rules relevant to the situation (e.g., [direct-

dative], [prepositional-dative]). An end symbol, #, appears at the end of each concept, signi-

fying the beginning of a new concept. In specific situation definitions, end symbols are not

followed by probabilities as these will be defined within the situation structure for each spe-

cific situation (see Example 3). The usage probabilities for each specific linguistic situation

will be encoded beginning with the symbol, [situation], followed by the concept-symbol

corresponding to the situation (e.g., [dative verb1 ⁄ verb2]). This will then be followed by a

list of symbols corresponding to the relevant linguistic situation (e.g., [direct-dative], [prep-

ositional-dative]) followed by their relative probabilities under that specific situation.

Note that the dative alternation in Example 3 could just as easily have been represented

using basic PCFGs. This is true for verb alternations. However, many linguistic restrictions

require enumeration of more complex linguistic situations, such as that restricting the con-

traction of want to shown in Sentence 1d in Example 1. Specific-situation rules allow for

easy and efficient representation of more complicated linguistic concepts that are not so

readily described using PCFGs. For our purposes, the acquisition of a new linguistic restric-

tion can be formulated as the acquisition of additional specific situation definitions along

with the new probabilities associated with these new definitions. This will be explained in

detail in the following section. Also see Appendix S1 for further details.

3.2.2. Specifying new versus original grammars
Now that we have an idea of the grammar representation, we will show how to write

down explicitly the relevant portions of two candidate grammars. These will be from the ori-

ginal grammar, where the linguistic restriction for the considered construction has not been

acquired, and the new grammar, where the restriction rule has been acquired. Let us con-

sider a specific instantiation of the dative alternation of donate versus give as shown in the

second group of sentences in Example 1. Here, the original grammar would be the equiva-

lent of replacing verb1 and verb2 in Example 3 with give and donate. This overgeneral ori-

ginal grammar would assume that both verbs could alternate (as defined under the concept

([dative-alternation give ⁄ donate]). On the contrary, the new grammar would only allow give
to alternate ([dative-alternation give]) while restricting donate to the prepositional construc-

tion ([prepositional-only donate]). The explicitly written-out original versus new grammar

for the dative alternation restriction on donate is shown in Example 4. Here, the occurrence

probabilities of the direct-dative and prepositional-dative constructions within original and

new grammars are estimated from the spoken portion of the British National Corpus (BNC).

Example 4: Original versus new grammar for restriction on dative alternation of donate

Original grammar:

[situation definition donate ⁄ give]
[direct-dative] VP->V NP NP #
[prepositional-dative] VP->V NP PP #
[dative-alternation give ⁄ donate] donate give

[end]
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[situation] [dative-alternation give ⁄ donate]
[direct-dative] 0.8
[prepositional-dative] 0.2

[end]

New grammar:

[situation definition donate ⁄ give]
[direct-dative] VP->V NP NP #
[prepositional-dative] VP->V NP PP #
[dative-alternation give] give #
[prepositional-only donate] donate #

[end]

[situation] [dative-alternation give]
[direct-dative] # 0.87
[prepositional-dative] # 0.13

[end]

[situation] [prepositional-dative-only donate]
[prepositional-dative] # 1.0

[end]

3.2.3. Calculating cost differences for new versus original grammars
Notice that the new grammar is more complex: It has more symbols and is longer and

hence will require a longer encoding length to define. Given explicit descriptions of new

versus original grammars, we now need to use Eq. 1 to evaluate encoding length differences

between new versus original grammatical descriptions. The evaluation of Eq. 1 on the

entirety of a child’s grammar would be very difficult because it requires knowing the sym-

bol occurrence frequency, fs, for all symbols used in the grammatical description. This

would require enumerating the child’s full grammar, which would be an overwhelmingly

unwieldy task. It would also require knowing the values of Nrules and Nsymbols, the number

of rules and the number of symbols, respectively, in the entire grammar. This would again

be very hard to estimate without enumerating the child’s full grammar. However, the calcu-

lation of grammar encoding length differences is much easier than the calculation of abso-

lute grammar encoding length. For example, as shown in Eq. 3, the calculation of the

encoding length differences between two grammars only requires knowledge of symbol
occurrence frequencies that differ between the two grammars. This means we only have to

estimate occurrence frequencies for a small subset of grammar symbols in the grammatical

description (the ones that differ between the grammars being compared). Similarly, we also

only need the differences in Nrules and Nsymbols between the two grammars, which can be

obtained directly from the relevant portions of the two grammatical descriptions. Finally,

we will also need to approximate Ftotal for the two grammars.

Now we will describe how to make approximations of the variables needed to cal-

culate grammatical description length differences. First, we need to approximate the
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variables Ftotal,orig and Ftotal,new, which are the frequency total of all symbols used in the

whole of the speaker’s original and new grammars. This actually means only approximat-

ing Ftotal,orig because we can calculate Ftotal,new from Ftotal,orig by adding the total number

of additional symbols present in the new versus original grammatical description. The

approximation of Ftotal,orig heavily depends on whether vocabulary words and syntax rules

are encoded separately or together. If these are encoded together, the number of symbols

will be heavily dominated by the number of vocabulary words. Estimates of child–adult

vocabulary size range from a thousand to tens of thousands (Beck & McKeown, 1991;

Nation & Waring, 1997). Alternatively, if we were to encode syntax rules and vocabulary

words separately, we would estimate Ftotal,orig to be around a few hundred symbols. Fortu-

nately, due to the behavior of logarithmic growth, whether Ftotal,orig is estimated to be large

or very small does not significantly affect the results. Thus, we will report results for a

lower and upper estimate of Ftotal,orig from 200 to 100,000. Note from Eq. 1 that the larger

Ftotal,orig is, the more costly the grammar. Given an assumption for Ftotal,orig, we can then

calculate Ftotal,new based on differences in the total number of symbols between the new

versus original grammar. The next variable that needs approximating is the frequency of

symbols that change between the original versus new grammar. As mentioned above, the

specific individual values of fs for symbols that do not differ between the two grammars,

fs,irrelevant, do not affect grammar length differences. Only their total value,P
s;irrelevant fs;orig, is important. This total value can be calculated from the difference

between the above approximated Ftotal,orig and the known sum
P

s;relevant fs;orig, which can

be obtained from the explicit descriptions of relevant grammar portions.

Equation 3 shows that the contributions to grammar length differences from the frequen-

cies of symbols that do not change depends only on their total summed value.

�
X

s;irrelevant

fs;orig log2
fs;orig

Ftotal;new
� log2

fs;orig
Ftotal;orig

� �

¼ � log2
Ftotal;orig

Ftotal;new

� � X
s;irrelevant

fs;orig

¼ � log2
Ftotal;orig

Ftotal;new

� �
Ftotal;orig �

X
s;relevant

fs;orig

 ! ð3Þ

The left-hand side of Eq. 3 is the difference in contribution to grammar length from sym-

bols that do not change between new and old grammars, that is, difference in the first com-

ponent of Eq. 1, summed over symbols that do not change, s, irrelevant evaluated for new

and old grammars:X
s;irrelevant

fs;new log2
fs;new

Ftotal;new
and

X
s;irrelevant

fs;old log2
fs;old

Ftotal;old
:

Using the fact that fnew = forig (so these terms drop out of the equation) and by taking con-

stants independent of s out of the summation, we arrive at the middle of Eq. 3. Finally, we

use the fact that
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X
s;irrelevant

fs;orig ¼ Ftotal;orig �
X

s;relevant

fs;orig

 !

to arrive at the right-hand side of Eq. 3. Now, Eq. 1 can be used directly to write out the dif-

ference between new and old grammars. We then use Eq. 3 to replace the sum over symbols

that do not change between grammars,
P

s;relevant fs;orig, with a sum over symbols that do

change,
P

s;relevant fs;orig so that the resulting equation only depends on symbols that differ

between grammars. Thus, using Eqs. 1 and 3, we are able to use the following equation to

evaluate coding length differences between new and original grammars, Dgrammar:

Dgrammar ¼ �
X

s;relevant

fs;new log2
fs;new

Ftotal;new
� fs;orig log2

fs;orig
Ftotal;orig

� fs;orig log2
Ftotal;orig

Ftotal;new

� �

� Ftotal;orig log2
Ftotal;orig

Ftotal;new
þ ðDNrules þ DNsymbolsÞCprob

ð4Þ
Here DMrules and DMsymbols are the differences in the number of rules and symbols, respec-

tively, between new versus original grammars. fs,orig and fs,new are occurrence frequencies of

symbol s in the original and new grammars, respectively. Ftotal;orig ¼
P

s fs;orig and

Ftotal;new ¼
P

s fs;new are the total occurrence frequencies of all symbols in the whole origi-

nal and new grammars, respectively. Cprob is the constant length for encoding probabilities

to fixed decimal accuracy for symbols in the grammar and rules in the language. Using Eq. 4,

and an assumed value of Ftotal,orig, it is now straightforward to use the explicitly defined new

versus original grammars, such as in Example 4, to obtain grammar encoding differences.

(Note that in the grammar definition everything within brackets is considered a single sym-

bol). In Appendix S2, we show a sample detailed calculation of grammar length differences

using the linguistic restriction on is contraction.

3.2.4. Calculating language encoding cost differences under new versus original grammars
The complex grammar allows for a more efficient encoding of language: Under the com-

plex grammar, every time donate occurs, we save )log2(0.2) = 2.3 bits. This is because,

under the complex grammar, 0 bits are required to encode which form donate occurs in

because we already know that donate can only occur in the prepositional form. In practice,

the encoding length savings will also contain the weighted contributions from all other

linguistic situations whose encoding costs change. In Example 4, this includes the two alter-

nations of give as well (i.e., differences in encoding lengths of give-dative and give-preposi-
tional under new vs. original grammars) as well as donate. In order to calculate total

encoding savings, we assume that the relative occurrence frequencies estimated from cor-

pora for each linguistic situation is representative of their average relative occurrence proba-

bilities in language. Total language encoding savings under the new grammar can be

reported with respect to the number of occurrences of a particular linguistic situation
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(e.g., encoding savings per occurrence of donate). We can then calculate the total savings

per occurrence of the jth relevant linguistic situation, TotalSavingsj, by summing the fre-

quency-weighted encoding gains ⁄ losses over all situations and dividing by the frequency of

occurrence for the jth specific situation.

TotalSavingsj ¼
P

ifreqi � savei
freqj

;

where freqi is the frequency of the ith relevant linguistic situation and savei is the difference

in encoding costs under the new versus original grammars. Now, given the grammar length

cost and the encoding length savings, we can estimate how much language exposure is nec-

essary before the more complicated grammatical rule is learned. In MDL terms, this corre-

sponds to the amount of data needed before the more complicated grammar is the most

worthwhile investment, that is, yields a smaller overall description length.

3.2.5. Using corpora to approximate learner’s input
The crucial step in assessing learnability of a specific grammatical rule is to make an

assumption about the grammatical input to the child learner by choosing a representative

corpus. It is from the chosen corpus that one estimates the occurrence frequencies for the

construction that is being learned as well as the relative probabilities of occurrence for

the other constructions relevant to the two grammars. For example, if we were evaluating

the learnability of the restriction on the dative alternation of donate, as described in Exam-

ple 4, we would need to evaluate the expected probability of the prepositional and direct

form. For the original grammar, the probability of the prepositional form would be esti-

mated using occurrences of both donate and give. For the new grammar, the probability of

the prepositional form would be estimated using only occurrences of give. We then would

use the corpora to estimate the occurrence frequency of donate.

The most appropriate type of corpus for our purposes is one of child-directed speech.

Here, we use the Brown and Bates corpuses from the CHILDES database (Mac Whinney,

1995). However, many of the constructions do not occur often enough to allow for estimates

of their occurrence frequencies to be statistically significant. Therefore, we will also provide

analysis based on additional corpus sets using the spoken and full portions of the BNC

(Davies, 2009) and the spoken and full portions of the Corpus of Contemporary American

English (COCA) (Davies, 2008). The Bates corpus contains transcripts of child-directed

speech for 27 children at ages 1 year 8 months and 2 years 4 months. The Brown corpus

contains transcripts of child-directed speech for 3 children ranging from ages 1 year

6 months to 5 years 1 month. In the combined Bates and Brown corpora, there are a total of

342,202 words worth of child-directed speech. The BNC contains 100 million words (90%

written, 10% spoken). Written excerpts include extracts from periodicals and journals for all

ages and interests, academic books and popular fiction, published and unpublished letters

and memoranda, and school and university essays. The spoken part consists of unscripted

informal conversations (recorded by demographically balanced volunteers selected from dif-

ferent age, region, and social classes) and spoken language from wide-ranging contexts such
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as formal meetings to radio shows and phone-ins. The COCA consists of 385 million words

(79 million spoken) equally sampled from spoken, fiction, popular magazine, newspaper,

and academic sources. It was updated with 20 million words each year starting in 1990.

Children in working class families hear an average of 6 million words per year (Hart &

Risley, 1995). Using these numbers, we can estimate the proportion with which a construc-

tion occurs within the corpus (by dividing the construction occurrence frequency by the

corpus word count) and multiply this proportion by 6 million words to approximate the

occurrence frequencies in a year of a 2- to 5-year-old child’s experience.

4. Results

In the section, we show learnability results for 19 linguistic constructions that we exam-

ine using an example instantiation of our framework. We will examine restrictions on the

contractions of want to, going to, is, what is, and who is. We will examine the optionality of

that reduction. We will examine restrictions on the dative alternation for the following

verbs: donate, whisper, shout, suggest, create, and pour. Finally, we will also examine fixed

transitivity for the following verbs: disappear, vanish, arrive, come, fall, hit, and strike. For

each of these constructions, we will provide an overview of the linguistic restriction to be

learned, a description of our proposed new versus original grammars, and then the results of

our quantitative analysis (see Appendix S3 for the full list of original vs. new grammatical

descriptions). Some of our chosen constructions had clear learnability results agreed upon

by all corpora, whereas others had results that varied much more among corpora. Again, we

stress that our analysis is not tied to any particular learnability outcomes for the debate on

PoNNE and POS, but simply provides a quantitative method of assessing an upper bound on

learnability. The results of our analysis show that some restrictions are easily learnable by

an ideal learner from language statistics alone, whereas others are not.

Only the contractions of going to, what is, who is, and is are analyzed using the CHIL-

DES corpus because these were the only ones that occurred in CHILDES with high enough

frequency. Additionally, for these and the rest of the constructions, we show results using

both spoken and entire portions of the BNC and COCA. We will refer to these in the text as

spoken BNC, all BNC, spoken COCA, and all COCA. Not all constructions occurred in the

spoken portions of these corpora, but for convenience we will display them in the same

table. Although BNC and COCA are not necessarily the most accurate representations of

child-directed speech, they still may serve as a rough approximation as they are a reflection

of the relative frequencies of the constructions in general language. More precise estimates

can be made by creating ⁄ using large corpora that are carefully collected to represent gradual

and accumulated language experience. This is an avenue for further research.

As mentioned above, the approximation of Ftotal,orig (the estimated total number of sym-

bols used in a child’s original grammar) depends on whether vocabulary words and syntax

rules are encoded separately or together. However, because of the behavior of logarithmic

growth, the relative results remain similar for a large range of Ftotal,orig estimates. Here, we

report results for estimates of Ftotal,orig = 200 and 100,000 for the following: encoding
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length differences in original versus new grammars, encoding length savings for each occur-

rence of the construction being examined, the estimated number of occurrences needed for

the construction to be learnable under MDL, the estimated occurrence frequency in 1 year

of a child’s language experience based on the frequencies found in the corpus, and the esti-

mated number of years a child would need to learn the construction based on MDL. We use

the approximation that a child hears about 6 million words per year (Hart & Risley, 1995).

4.1. Specific constructions and learnability results

We present our results as follows: We group the 19 constructions we have analyzed into

similar classes (e.g., alternating verbs, transitive verbs, different contractions). For each

class, we first explain the rules to be learned and describe the original and new grammar

being considered for learning. Then for each construction class, we present a table summa-

rizing results from each corpus. First, we report encoding length savings, and projected

occurrences in a year, the two values that do not depend on estimated values of Ftotal,orig.

We then report other values that do depend on estimated values of Ftotal,orig. The columns in

our results tables are as follows: (1) DLd, encoding length savings per construction occur-

rence (MDL Part 2). (2) O1yr, the number of projected occurrences in 1 year of a child’s lan-

guage experience. This is calculated as follows: O1yr ¼ ðTyear=TcorpusÞ �Ocorpus, where

Tyear is the total number of words per year a child hears on average (approximated as 6 mil-

lion), Tcorpus is the total number of words in the combined corpus (342,202 for CHILDES,

10 million for spoken BNC, 100 million for all of BNC, 79 million for spoken COCA and

385 million for all of COCA), Ocorpus is the total number of occurrences in the corpus. (3)

DLg,200, differences in grammar encoding costs (MDL Part 1), assuming Ftotal,orig = 200. (4)

N200, the number of construction occurrences needed to make learning the more complicated

grammar ‘‘worthwhile.’’ (5) Y200, the estimated amount of time in years necessary for

acquisition of the language construction by an ideal learner assuming Ftotal,orig = 200. This

is calculated as follows: Y200 ¼ N200=O1yr, where N200 is the number of occurrences needed

to learn the construction. (6) DLg,100000. (7) N100000. (8) Y100000. Columns 6–8 are the same

as Columns 3–5 but for assumed value of Ftotal,orig = 100,000. These results assume that the

child learner receives evenly distributed language input throughout all years, which is

obviously untrue. However, these numbers provide a rough approximation of relative

learnability for the different constructions by an ideal learner. In summary, the symbols for

our results table are as follows:

DLd: Encoding length savings per construction occurrence (bits)

O1yr: Estimated occurrence frequency in a year of language experience

DLg,200 and DLg,100000: Grammar cost differences (bits)

N200 and N100000: Number of occurrences needed for learning

Y200 and Y100000: Number of projected years needed to learn

BNCsp: British National Corpus, spoken

BNCall: British National Corpus corpus, all

COCAsp: Corpus of Contemporary American English, spoken
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COCAall: Corpus of Contemporary American English, all

CHIL: CHILDES corpus (if available)

Contraction of want to:

a. Which team do you want to beat?

b. Which team do you wanna beat?

c. Which team do you want to win?

d. *Which team do you wanna win?

Want to can be contracted to wanna under most linguistic circumstances. However, the

linguistic restriction arises in cases exemplified by the following: In (a,b) contraction is

allowed, whereas in (c,d) contraction is not allowed. In general, contraction is not allowed

in a wh-question when the wh-word refers to a subject of the infinitive verb. The difference

between the two example sentences above is the difference between the implied object of

the word want. In the first sentence, you want you to beat some team and you is both the

implied object and the subject of want. In the second sentence, you want a team to win.

Here, the implied object is team, not you. Crain and Lillo-Martin (1999) have stated, ‘‘this

restriction is a prime candidate for universal, innate knowledge.’’

Under the original grammar, we assume that contraction of want to is always allowed.

Under the new grammar, contraction of want to is only allowed when the implied object and

subject of want are the same. See Table 2 for analysis results.

Contraction of going to:

a. I’m going to help her.

b. I’m gonna help her.

c. I’m going to the store.

d. *I’m gonna the store.

When going introduces an infinitive verb such as in (a,b), contraction is allowed. When

going is used to introduce a prepositional phase such as in (c,d), contraction is not allowed.

There has been significant discussion as to the exact explanation for the restriction on going
to contraction, which includes morpholexical and intonational arguments (Park, 1989;

Pullum, 1997). Under our original grammar, we assume contraction of going to is always

allowed. Under our new grammar, contraction of going to is allowed when going introduces

an infinitive verb (i.e., going to help) and not allowed when going introduces a prepositional

phrase (i.e., going to the store). See Table 3 for analysis results.

Table 2

Learnability results for want to

want to DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 0.4 1.2 158 386 321.8 283 691 575.6

BNCall 0.13 0.2 158 1,265 5,271 283 2,263 9,427

COCAsp 0 0 158 NA NA 283 NA NA

COCAall 0.03 0.3 158 5,694 21,493 283 10,185 38,442
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Contraction of is:

a. Jane is taller than John.

b. Jane’s taller than John.

c. Jimmy is shorter than she is.

d. *Jimmy is shorter than she’s.

Is can be contracted if it occurs in the middle of the sentence (a,b), but not at the end

(c,d) (Crain, 1991; Crain & Lillo-Martin, 1999; Lightfoot, 1998a; Pullum & Scholtz, 2002).

There are also several other restrictions on the contraction of is (Lightfoot, 1998a). Thus,

restrictions on is contraction could also be analyzed including other more general restriction

rules. For our current analysis, we will only explore restrictions on is contraction in individ-

ual contexts such as at the end of a sentence, as described here, and in the two other contexts

below. The fact that children never apparently make incorrect contractions of is has been

used as an argument for evidence of Universal Grammar (Crain & Lillo-Martin, 1999;

Lightfoot, 1998a). Others have argued that is contraction can be learned under the rule that

contraction only occurs when is is not stressed in the sentence (Pullum & Scholtz, 2002).

Our results show that is contraction in this context is very easily learnable from language

statistics under MDL.

Under the original grammar, we assume contraction of is is always allowed. Under our

new grammar, we assume contraction of is is not allowed when is occurs at the end of the

sentence. See Table 4 for analysis results.

Contraction of what is ⁄ who is:

a. What is your name?

Who is here?

b. What’s your name?

Table 4

Learnability results for is

is DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 1.6 4,655.4 112.3 71 0.0 201.6 128 0.0

BNCall 0.9 1,352.5 112.3 132 0.1 201.6 237 0.2

COCAsp 3.7 3,265 112.3 30.3 0.01 201.6 54.4 0.017

COCAall 1.1 1,723.3 112.3 103 0.1 201.6 185 0.1

CHIL 2.9 6,698 112.3 39 0.006 201.6 71 0.01

Table 3

Learnability results for going to

going to DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 1.0 108.6 112.3 108 1.0 201.6 194 1.8

BNCall 0.5 36.9 112.3 241 6.5 201.6 432 11.7

COCAsp 0.1 55.9 112.3 1,837 32.9 201.6 3,298 59.0

COCAall 0.1 37.0 112.3 1,187 32.1 201.6 2,132 57.6

CHIL 0.80 438 112.3 140 0.32 201.6 252 0.58
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Who’s here?

c. What is it?

Who is it?

d. *What’s it?

*Who’s it?

What is and who is can be contracted to what’s and who’s, only if the phrase is not fol-

lowed by an it, which then terminates the sentence or phrase. In (a,b) contraction is allowed,

whereas in (c,d) contraction is not allowed.

Under the original grammar, we assume that contraction of what is ⁄ who is is always

allowed. Under the new grammar, if what is ⁄ who is is followed by it and a punctuation, con-

traction is not allowed. See Tables 5 and 6 for analysis results.

Optionality of ‘‘that’’:

a. Who do you think mom called?

b. Who do you think that mom called?

c. Who do you think called mom?

d. *Who do you think that called mom?

Wh-questions (e.g., questions beginning with Who and What) generally may have comple-

ment clauses that begin with or without that. The linguistic restriction rules depend on the

wh-trace (trace of the wh-word). The wh-trace is the empty position where the noun replac-

ing the wh-word would occur in the answer to the Wh-question. For example, sentence (a)

could be answered with I think mom called dad. Here, the wh-trace (i.e., position of replace-

ment noun dad) is at the end of the sentence. In this situation, that can be either present or

Table 5

Learnability results for what is

what is DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 1.6 240.0 112.3 71 0.3 201.6 127 0.5

BNCall 1.3 60.2 112.3 85 1.4 201.6 153 2.5

COCAsp 1.6 68.4 112.3 70 1.0 201.6 126 1.8

COCAall 1.3 50.2 112.3 84 1.7 201.6 151 3.0

CHIL 2.1 1,2589 112.3 54 0.004 201.6 97 0.008

Table 6

Learnability results for who is

who is DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 2.4 40.2 112.3 46 1.1 201.6 83 2.1

BNCall 0.8 10.3 112.3 149 14.5 201.6 267 26.0

COCAsp 1.2 6.5 112.3 94 14.4 201.6 169 25.9

COCAall 0.8 6.4 112.3 140 21.7 201.6 251 39.0

CHIL 2.0 351 112.3 55 0.16 201.6 99 0.28
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absent when the wh-trace is at the end of a sentence (a,b). Sentence (b) could be answered

with I think dad called mom. Here, the wh-trace (i.e., position of replacement noun dad) is

at the beginning of the complement clause and the reduction of that is mandatory for the

interrogative. For a more explicit description of the restriction on that reduction, see the

grammatical descriptions in Appendix S3. The restriction regarding the reduction of that
has been a classic central example in PoNNE arguments. Many have maintained that chil-

dren do not receive the language experience needed to learn this restriction (Crain, 1991;

Crain & Lillo-Martin, 1999; Haegeman, 1994).

Under the original grammar, we assume all complement clauses in wh-questions may

begin with or without that. Under the new grammar, that must be omitted (i.e., mandatory

that reduction) before the complement clause when the wh-trace is at the beginning of the

complement clause. See Table 7 for analysis results.

Dative alternations:

a. I gave a book to the library.

I told the idea to her.

I made a sculpture for her.

I loaded the pebbles into the tank.

b. I gave the library a book.

I told her the idea.

I made her a sculpture.

I loaded the tank with pebbles.

c. I donated a book to the library.

I shouted ⁄ whispered ⁄ suggested the idea to her.

I created a sculpture for her.

I poured the pebbles into the tank.

d. *I donated the library a book.

*I shouted ⁄ whispered ⁄ suggested her the idea.

*I created her a sculpture.

*I poured the tank with pebbles.

The verbs give, tell, make, and load can undergo the dative alternation, which means that

give can be used in both the prepositional and direct construction (a,b). A language learner

may mistakenly also assume that the respective semantically similar verbs donate, shout,
whisper, suggest, create, and pour can also undergo the dative alternation (c,d) when in

Table 7

Learnability results for that

that DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 0.1 32.4 247.6 2,643 81.6 416.7 4,448 137.3

BNCall 0.05 10.4 247.6 4,694 449.6 416.7 7,900 756.7

COCAsp 0.3 86.4 247.6 984 11.4 416.7 1,656 19.2

COCAall 0.1 24.3 247.6 1,703 70.1 416.7 2,866 118.0
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fact, these verbs are only allowed in the prepositional construction. The dative alternation

restriction was one of the original examples cited by Baker as being puzzling in light of

the PoNNE (also known as Baker’s paradox). These restrictions on the dative alternation

have been one of the primary examples of the learnability paradox under PoNNE (Baker,

1979; Bowerman, 1988; Fodor & Crain, 1987; Gropen, Pinker, Hollander, Goldberg, &

Wilson, 1989; Mac Whinney, 1987; Mazurkewich & White, 1984; Pinker, 1989; White,

1987). A notable point concerning dative alternations, is that children do overgeneralize

this restriction in speech production (Bowerman, 1988; Gropen et al., 1989). This is in

contrast to other restrictions that are rarely uttered and for which the overgeneral forms are

usually not explicitly produced in children’s speech. Our ability to eventually learn this

dative restriction as adults has been widely used to support the importance of innate

linguistic knowledge (Baker, 1979; Gropen et al., 1989; Pinker, 1989). The knowledge

of this restriction has been argued to require innate knowledge of morphophonological

and semantic criteria (Gropen et al., 1989; Mazurkewich & White, 1984). Several studies

have examined children’s knowledge of the restrictions on the dative alternation (Gropen

et al., 1989; Mazurkewich & White, 1984; Theakston, 2004).These studies found that

children acquired grammatical knowledge for low-frequency verbs at later ages than for

high-frequency verbs.

For our current learnability analysis, we treat each semantically similar category of verbs

uniquely. Under the original grammar, we assume that give and donate are in the same cate-

gory of ‘‘giving verbs,’’ tell, shout, whisper, and suggest are all in the same category of

‘‘telling verbs,’’ make and create are in the same category of ‘‘making verbs,’’ fill and pour
are in the same category of ‘‘filling verbs,’’ and hence all can undergo dative alternation.

Under the new grammar, the relevant individual verbs in each of the categories can only

appear in the prepositional construction. See Tables 8–13 for analysis results.

Table 8

Learnability results for donate

donate DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 4.9 7.2 44.9 9 1.3 89.7 18 2.5

BNCall 2.6 15.7 44.9 17 1.1 89.7 34 2.2

COCAsp 4.3 14.8 44.9 10 0.7 89.7 21 1.4

COCAall 3.4 15.0 44.9 13 0.9 89.7 26 1.7

Table 9

Learnability results for shout

shout DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 5.0 1.2 44.9 9 7.5 89.7 18 15.0

BNCall 4.6 3.5 44.9 10 2.8 89.7 20 5.5

COCAsp 6.7 0.7 44.9 7 9.8 89.7 13 19.5

COCAall 6.7 2.3 44.9 8 3.4 89.7 16 6.8
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Fixed transitivity:

a. I hid the rabbit.

I landed the plane.

I dropped the ball.

I pushed him.

b. The rabbit hid.

The plane landed.

The ball dropped.

I pushed.

Table 11

Learnability results for suggest

suggest DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp NA 0.0 44.9 NA NA 89.7 NA NA

BNCall 5.3 0.5 44.9 9 17.8 89.7 17 35.6

COCAsp NA 0.0 44.9 NA NA 89.7 NA NA

COCAall 6.2 0.2 44.9 7 35.7 89.7 14 71.3

Table 12

Learnability results for create

create DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp 0.4 6.6 44.9 127 19.2 89.7 253 38.4

BNCall 0.2 6.9 44.9 187 27.0 89.7 373 54.1

COCAsp 0.3 12.1 44.9 129 10.7 89.7 259 21.4

COCAall 0.3 12.9 44.9 132 10.2 89.7 263 20.4

Table 10

Learnability results for whisper

whisper DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp NA 0.0 44.9 NA NA 89.7 NA NA

BNCall 5.3 0.5 44.9 9 17.8 89.7 17 35.6

COCAsp 6.9 0.2 44.9 7 28.6 89.7 13 57.2

COCAall 5.9 1.2 44.9 8 6.5 89.7 15 12.9

Table 13

Learnability results for pour

pour DLd O1yr DLg,200 N200 Y200 DLg,100000 N100000 Y100000

BNCsp NA 11.4 44.9 NA NA 89.7 NA NA

BNCall 0.4 12.8 44.9 124 9.7 89.7 247 19.4

COCAsp 0.4 7.3 44.9 115 15.8 89.7 230 31.5

COCAall 0.4 23.7 44.9 110 4.6 89.7 220 9.3
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c. I disappeared ⁄ vanished the rabbit

*I came ⁄ arrived the train.

*I fell the ball.

I struck ⁄ hit him.

d. I disappeared ⁄ vanished.

The train came ⁄ arrived.

The ball fell.

*I struck ⁄ hit.

The verbs hide, land, drop, and push can occur both transitively and intransitively. This

means they can appear both with and without an object (a,b). A language speaker may mis-

takenly also assume that the respective semantically similar verbs disappear (or vanish),

come (or arrive), fall, and hit (or strike) can also occur both transitively and intransitively

(c,d) when in fact, disappear, vanish, come, arrive, and fall are intransitive only (cannot

occur with an object), whereas hit and strike are transitive only (cannot occur without an

object). The restrictions on verb transitivity are also among one of the most cited examples

investigated in light of the PoNNE (Ambridge, Pine, Rowland, & Young, 2008; Brooks &

Tomasello, 1999; Brooks, Tomasello, Dodson, & Lewis, 1999; Brooks & Zizak, 2002;

Theakston, 2004). As with the dative alternations, children have been noted to make over-

generalization errors of transitivity in their speech production (Bowerman, 1988; Gropen

et al., 1989).

Here we again treat each semantically similar category of verbs uniquely. Under the ori-

ginal grammar, we assume that hide, disappear, and vanish are in the same category of

‘‘disappearing verbs,’’ land, come, and arrive are all in the same category of ‘‘arriving

verbs,’’ drop and fall are in the same category of ‘‘falling verbs’’ and push, hit, and strike
are in the same category of ‘‘violent action verbs’’ and hence all appear both transitively

and intransitively. Under the new grammar, the relevant individual verbs in each of the cate-

gories can only appear in the correct type of transitivity. See Tables 14–20 for analysis

results.

4.2. Summary of learnability results

The grammatical complexity of learning the new rule is represented by the differences in

encoding length between grammatical descriptions (i.e., encoding investment). The restric-

tions on verb alternation and verb transitivity were the least costly investments because here

learning only involved recognizing that particular verbs should be part of a separate cate-

gory. Contractions were the next least costly rule, requiring about twice as many bits as verb

alternation and transitivity. This is because learning of contractions requires knowledge of

the surrounding syntactic context in which the contraction is not allowed. In particular, want
to is the most complicated contraction to learn because the relevant syntactic context

required identifying the referent implied object. The most complicated ⁄ costly construction

of all was the restriction on that reduction, which requires about five times as many bits as

restrictions on verb alternation and transitivity. How difficult we predict a construction to
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Table 17

Learnability results for arrive

arrive DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 0.2 58.8 44.9 236 4.0 89.7 471 8.0

BNCall 0.2 151.1 44.9 205 1.4 89.7 411 2.7

COCAsp 0.2 105.9 44.9 245 2.3 89.7 491 4.6

COCAall 0.1 1,561.0 44.9 884 0.6 89.7 1,766 1.1

Table 18

Learnability results for fall

fall DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 1.2 70.2 44.9 39 0.6 89.7 77 1.1

BNCall 0.5 87.8 44.9 90 1.0 89.7 181 2.1

COCAsp 0.4 89.0 44.9 107 1.2 89.7 213 2.4

COCAall 0.3 144.1 44.9 141 1.0 89.7 283 2.0

Table 14

Learnability results for disappear

disappear DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 0.2 61.8 44.9 206 3.3 89.7 412 6.7

BNCall 0.3 117.2 44.9 129 1.1 89.7 258 2.2

COCAsp 0.1 233.4 44.9 378 1.6 89.7 755 3.2

COCAall 0.1 287.0 44.9 425 1.5 89.7 849 3.0

Table 15

Learnability results for vanish

vanish DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 0.3 4.2 44.9 128 30.6 89.7 257 61.2

BNCall 0.5 37.7 44.9 92 2.4 89.7 185 4.9

COCAsp 0.2 21.8 44.9 200 9.2 89.7 400 18.4

COCAall 0.2 44.7 44.9 220 4.9 89.7 440 9.8

Table 16

Learnability results for come

come DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 0.0 957.0 44.9 1,583 1.7 89.7 3,165 3.3

BNCall 0.1 487.5 44.9 422 0.9 89.7 844 1.7

COCAsp 0.1 654.8 44.9 716 1.1 89.7 1,431 2.2

COCAall 0.1 533.9 44.9 416 0.8 89.7 831 1.6
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learn depends on both the grammatical complexity of the rule (i.e., encoding investment

cost) as well as how often the linguistic restriction occurs, both relative to alternative forms

of the construction (i.e., encoding savings) and in absolute occurrence frequency (i.e., pro-

jected number of occurrences in a year of language experience).

Our results show that there is a significant split in learnability among the different con-

structions. Below we discuss general trends, focusing on the estimated number of years

required for learning based on Ftotal = 100,000. Note that results for Ftotal = 200 will require

roughly half the estimated time required for learning. Regardless of the value of Ftotal used,

results in trends and implications on learnability are similar.

The restrictions on the contractions of is and what is, the dative alternation restriction on

donate and the fixed transitivities of come, fall, and strike appear clearly highly learnable

from language statistics alone under MDL. The restrictions on is seem to be the most easily

learnable due to its extremely high occurrence frequency. Restrictions on come, fall, hit, and

what is, all of which appear learnable in less than 4 years of language experience, also are

highly learnable due to their relatively high occurrence frequencies. On the contrary, donate
did not have particularly high occurrence frequencies. Instead, its learnability stems from the

high encoding savings per appearance. Intuitively, this means that under the original gram-

mar, the direct form of donate was expected to appear frequently relative to the prepositional

form. Thus, the fact that donate does not appear in the direct form is easily noticed. Other con-

structions that had restrictions that appeared mostly learnable are disappear, arrive, hit and

shout. Restrictions on disappear, arrive, and hit are estimated to take about 1–3 years from

all the corpora except spoken BNC, which estimate these to take about 7–8 years. Shout is

more easily learnable from the full corpora requiring an estimated 6–7 years for both all BNC

and all COCA versus 15 and 20 years from spoken BNC and spoken COCA, respectively.

Among the most difficult to learn from language statistics under our chosen representa-

tions were restrictions on contraction of want to, optionality of that reduction, and dative

Table 20

Learnability results for hit

hit DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 1.1 12.6 44.9 41 3.2 89.7 81 6.4

BNCall 1.5 50.4 44.9 29 0.6 89.7 59 1.2

COCAsp 1.6 39.5 44.9 28 0.7 89.7 57 1.4

COCAall 1.2 44.9 44.9 37 0.8 89.7 74 1.7

Table 19

Learnability results for strike

strike DLd N1yr DLg,200 Nneeded,200 Y200 DLg,100000 Nneeded,100000 Y100000

BNCsp 0.9 48.6 44.9 51 1.0 89.7 102 2.1

BNCall 1.4 61.7 44.9 31 0.5 89.7 63 1.0

COCAsp 0.7 153.2 44.9 62 0.4 89.7 124 0.8

COCAall 0.8 157.3 44.9 58 0.4 89.7 116 0.7
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alternation of suggest and create. The restrictions on want to seem most clearly difficult to

learn from language statistics alone, with the estimated years needed being thousands of

years. This is due mostly to the extremely low occurrence frequency of wanna in the rele-

vant context, although the high encoding investment costs and low encoding savings also

contributed. Note that the low reported occurrence frequency of want to does not mean that

appearances of want to and wanna were rare, but that appearance of want to in the form rele-

vant for learning the linguistic restriction was rare (i.e., in wh-questions).4

The restriction on that reduction also required far longer than the length of a human

childhood to acquire. Although the linguistic contexts relevant to learning restrictions on

that insertion occurred reasonably often, this construction was difficult to learn due to its

high grammatical complexity (extremely high encoding investment cost) and its very low

encoding savings per occurrence. The low encoding savings reflects the fact that the reduced

form of that (a clause not beginning with that) is much more common, occurring �95% of

the time, compared with the nonreduced form (a clause beginning with that), which

occurred �5% of the time. This means that is often not present, even when its presence is

allowed. Thus, a learner will have a harder time noticing the suspicious fact that it is always

dropped in the cases when it is never allowed. Such low encoding savings also explains the

difficulties of learning suggest and create. In general, experiments have shown that ‘‘diffi-

cult’’ constructions do take longer to learn. For example, the rules governing that insertion

are not mastered in older children. A study by Gathercole showed that most fifth grade chil-

dren could not identify ungrammatical insertions of that (Gathercole, 2002). However, most

young adults are aware of the restrictions on that reduction (as well as the rest of our exam-

ined constructions) so learning does actually occur much earlier than our analysis would

suggest. It is possible that the restrictions on these constructions can be represented as part

of a different syntactic category or more general regularity, which would make it learnable

from the available data. Alternatively, learning for these constructions could be achieved

from numerous other sources previously mentioned, such as situational and communica-

tional contexts, phonological cues, prosody, gestures, or innate language biases.

Some of the constructions, contractions of going to and who is and dative restrictions on

shout, whisper, and pour and fixed transitivity of vanish, had estimated learnabilities that var-

ied widely depending on the different corpus we used. These different results could arise for

two reasons. First, the corpora may differ in the number of occurrences for the construction

that has the linguistic restriction. Second, the encoding savings per occurrence may differ due

to different ratios of occurrences for the constructions’ alternate forms. Often, both reasons

contribute to results differences because the greater frequency of occurrence of a given con-

struction also often means it occurs more often relative to the alternative constructions. For

example, gonna appears more often in CHILDES (O1yr = 438) and spoken BNC (O1yr = 109)

relative to all BNC (O1yr = 37), all COCA (37), and spoken COCA (56). Also, the relative fre-

quency occurrences of gonna versus going to was much greater in the spoken BNC (�50%

vs. 50%) and CHILDES (60% vs. 40%) than in COCA (5% vs. 95% for entire corpus as well

as spoken only). This is reflected in the smaller savings per occurrence estimated from COCA

(0.1 bits for spoken and entire corpus) versus BNC (1.0 bits for spoken and 0.5 bits for entire

corpus), and CHILDES (0.8 bits). Hence, restrictions on gonna are more difficult according to
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Spoken and all COCA (59 and 58 Years, respectively) and all BNC (12 Years) than

according to CHILDES (0.6 Years) and spoken BNC (2 Years). The restriction on who’s
it occurred proportionally more often in CHILDES and next most often in spoken BNC

(Olyr = 351, 40, 10, 6, and 6 from CHILDES, spoken BNC, all BNC, spoken COCA, and

all COCA, respectively). This is reflected in the estimated years required from the five

corpora: 0.3, 2, 26, 26, and 39 years for CHILDES, spoken BNC, all BNC, spoken

COCA, all COCA respectively. In these cases, child-directed speech appeared to have

more contractions than adult corpora. The fact that gonna and who’s it do appear so fre-

quently based on estimates from the CHILDES corpus suggests that children do hear

these contractions often enough to acquire it at an early age. The learnability of whisper
varies significantly among the corpora, from an estimated 13 years using all COCA to

infinite years using spoken BNC, which had no instance of whisper. Similarly spoken

BNC had no occurrences of load in the direct form. Thus, it predicts that it is extremely

difficult to learn the dative restriction on the similar verb pour, whereas COCA estimates

learnability of this restriction in 9 years. The learnability of vanish ranges from 5 years

based on all BNC to 61 years based on spoken BNC. The learnability of these construc-

tions, based on the data and representations we have considered, remains unclear with our

present analysis.

5. Discussion

The contribution of this paper is to provide a simple quantitative framework to assess the

learnability of specific linguistic phenomena based on language statistics alone. Our frame-

work allows for quantitative analysis of learnability under different assumptions regarding

the formulation of the grammatical rule to be learned and the corpus that represents a lear-

ner’s input. The purpose of our framework is to make these varying assumptions explicit

and allow these assumptions to be varied and compared among one another in future work.

By making these assumptions explicit, we can provide a common forum for quantifying and

discussing the learnability of different linguistic constructions.

Although our framework does provide a method of estimating the amount of time an ideal

learner would require for acquiring specific linguistic rules, this does not mean that our

method would regularly predict concrete ages of acquisition in real children. Our methods

only provide an upper bound on learnability for an idealized learner based on language sta-

tistics. However, measures of relative learnabity should give an indication for how relatively

learnable constructions are in reality. Interestingly, even with our use of simple default

assumptions, we are able to obtain some contrasting results on learnability: Some of the lin-

guistic phenomena which have been viewed as raising puzzles for learnability appear to be

learnable from a modest amount of data, whereas others seem to require vast quantities of

data, which are not available to the child. Below we show comparison of our methods with

existing data on grammar judgements in children. We also further discuss the possible

implications results of our methods could have on child language learning.
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5.1. Comparison with existing child data

It is difficult to pin down precisely the age at which children learn the various construc-

tions. However, there have been a few studies that examine child grammatical knowledge of

linguistic restrictions. These measures of grammatical knowledge can be compared with our

results regarding the relative learnability of these constructions. Here we compare the results

of learnability estimated from our method with experimental data from two studies. In both

these cases, our predictions are in accordance with the experimental data. Furthermore, our

assessment of learnability matches the experimental data better than entrenchment (Theak-

ston, 2004; Tomasello, 2003), one of the other commonly used explanations for how chil-

dren might retreat from overgeneralization errors. Entrenchment is the hypothesis that the

likelihood of a child overgeneralizing a construction is related to the construction’s input

occurrence frequency.

We first compare our results with a study by Theakston (2004), which asks 5- and 8-year-

olds whether ungrammatical, overgeneral uses of various constructions are acceptable. Here,

we compare our results with the subset of their data that involves the verbs shout, whisper,

disappear, vanish, come, arrive, fall, and pour appearing in the constructions we have ana-

lyzed. We predicted that the more learnable a construction was, the less likely the ungrammat-

ical form would be accepted. Results for 5-years-olds show a very similar trend to that of the

8-year-olds so we will only show the 8-year-old data. Fig. 5a shows plots of the percentage of

8-year-old children who found an ungrammatical sentence acceptable versus MDL learnability,

log(occurrences needed ⁄ projected occurrences in 1 year of child’s experience), estimated

using all BNC. Fig. 5b shows a similar plot but with occurrence frequency instead of learna-

bility, representing the entrenchment hypothesis. Fig. 5a shows that there is a very linear

trend between grammatical acceptability and our estimates of learnability with a noted outlier

for the verb pour. Fig. 5b shows a less linear trend, but relatively monotonic relationship

between grammatical acceptability with noted outlier of pour and an additional outlier of fall.
Thus, it appears that our analysis of learnability using MDL matches the data better and more

linearly than the entrenchment explanation. Results for spoken and all COCA (not shown) are

very similar to the full BNC results we show. Spoken BNC results are less linear, perhaps due

to the low occurrence frequency counts of many of the constructions in that corpus.

The second study is one by Ambridge et al. (2008), which elicits from 5- to 6-year-olds

and 9- to 10-year-olds grammaticality judgements of grammatical and ungrammatical sen-

tences for constructions susceptible to overgeneralization. This includes sentences involving

three of the constructions we have analyzed: disappear, vanish, and fall. Here, we predicted

that learnability would correlate with how much more grammatical the correct usage of the

construction would be judged relative to the incorrect usage. In the data, for both groups of

children, relative grammaticality was greatest for fall, less for disappeared, and least for van-
ished. Our assessments of learnability (occurrences needed ⁄ projected occurrences in 1 year

of child’s experience) scaled correctly with the relative perceived grammaticality. This was

true for analysis based on both spoken and all parts of both BNC and COCA. Additionally,

for all of our corpora except spoken BNC, the entrenchment hypothesis (i.e., pure frequency

of occurrence) did not predict the right ordering of relative grammar judgements. This is
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because fall, which has the greatest relative grammaticality judgment of the three construc-

tions, does not have the highest projected 1 year occurrence frequency (except for in spoken

BNC). However, despite its lower occurrence frequency, fall is estimated to be the most

learnable of the three constructions due to its relatively high encoding savings and low new

versus original grammatical description cost. Thus, our MDL analysis of learnability also

appears to be more successful at matching this data than the entrenchment hypothesis.

5.2. Possible extensions

Here we use our framework to provide learnability results using a particular set of gram-

matical assumptions. However, we do not suggest that these are definitive answers. We do

A

B

Fig. 5. Comparison of MDL analysis versus entrenchment hypothesis with data from Theakston (2004). The

data are the percentage of 8-year-olds who found that ungrammatical, overgeneral uses of various constructions

are acceptable. Here, we show results chosen from the subset of their data that involve the following construc-

tions that we have analyzed: shout, whisper, disappear, vanish, come, arrive, fall, and pour. (A) Percentage of

8-year-old children who found an ungrammatical sentence acceptable versus MDL estimates of learnability

(occurrences needed ⁄ projected occurrences in 1 year of child’s experience) using the full BNC. (B) Similar plot

but with occurrence frequency instead of learnability, representing the entrenchment hypothesis.
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not aim to resolve the PoNNE debate in general, nor for the specific cases presented here.

The intention of our framework is to provide provisional results for both easy and difficult-

to-learn constructions that serve to challenge and provoke arguments from different sides of

the debate. If a construction is estimated to be difficult under our analysis, and is easily

acquired by children at an early age, then further research is needed to find either alternative

representations of the rule that are easier to learn or other cues in language that could facili-

tate learning.

For example, it is possible that with a different representation that used wider language

contexts, constructions that seem unlearnable under our instantiation of MDL will become

learnable. For example, maybe want to contractions would become learnable if they are

framed as part of a more general linguistic rule that occurs more frequently in language.

Another example is that actual verb learning may not be as incremental as we have pre-

sented here. Our analysis assumed each verb construction was learned individually, which

results in a conservative estimate on learnability. Alternatively, it is possible that once an

intransitive verb is learned, a general category for intransitive verbs may be formed, with

which other verbs may quickly be automatically associated. Such an alternative assumption

can also be incorporated into our framework. If a construction does not appear learnable

under any representation from language statistics alone, researchers will need to look else-

where for learning cues. Real children obtain language cues from a wide variety of linguistic

sources. Thus, a construction that appears unlearnable under our analysis such as contraction

of want to maybe be learnable in the context of other external cues, gestures, prosody, into-

nation, or phonology, or even with assumed innate language biases. Alternatively, some

form of positive evidence may be available for these constructions such as implicit social

cues, or explicit instruction in school. It is also possible that other domain-general learning

mechanisms such as those more similar to recurrent neural networks may be employed dur-

ing learning. Directed experiments could then be conducted to test these hypotheses. Addi-

tionally, learnability is of course greatly affected by the corpus used. A more carefully

assembled corpus that matches the cumulative child experience of language may provide

more accurate estimates of learnability. Finally, for constructions that appear theoretically

learnable, it remains to be shown whether the assumed representations actually are those

used by children. For example, it could be possible that children actually use representations

that result in the construction being unlearnable. Furthermore, our analysis reflects that of

an ideal learner and further experiments are required to evaluate the degree to which this

corresponds to the behavior of real learners.

Although we do not intend our method to be a precise model of language learning, we

believe our framework can be used to provide clues into the process of learning. In the case

that learnability results for certain constructions using our method should indeed be corrobo-

rated by child experimental data regarding age of acquisition, this could present further

questions about the mechanisms children use to acquire language. Psychological studies

have shown that MDL principles are indeed used for learning structures of categories

(Chater & Vitányi, 2002; Feldman, 2000). Further research can be done to examine whether

a similar computation is actually employed by children during language learning. Our

method assumes that children have the capacity to choose from reasonable alternative
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grammars. One reason complete MDL models of natural language learning are difficult to

implement is that the space of all possible grammars is too large to compute. If real child

learners did use an MDL-related algorithm for learning, they would have to be capable of

coming up with a finite space of possible alternative grammars. For learning to proceed at a

reasonable pace, these should be grammars that do decrease overall encoding description

length. Otherwise, the learner would be spending his or her energies inefficiently consider-

ing the infinite space of all possible more costly grammars and never learn the correct (i.e.,

least costly) one. Future research could examine how children are able to form such reason-

ably constrained hypotheses of alternate grammars, which contain the correct grammars that

they eventually adopt as the correct ones by adulthood. Furthermore, our method also

implies that language learners have some notion of the relative complexity of various gram-

matical rules. With increased language experience, the contribution of the grammar encod-

ing length to the overall MDL evaluation becomes small relative to the language encoding

length. Given that grammar length differences become less important as language experi-

ence increases, one may hypothesize that older children may be less sensitive to differences

in grammatical complexity than younger ones are, and test if this is true.

We invite researchers to use our method to compare and contrast the different language

representations that may prove most amenable for learning. We hope this will help direct

and focus directions of further research on the extent to which children are able to acquire

language without negative evidence.

Notes

1. Practical MDL results depend on the chosen form of language representation. In con-

trast, theoretical MDL learnability results show that, in the limit of infinite data,

encoding lengths do not depend significantly on the chosen representation: Grammars

encoded by different programming languages will not differ in encoding length by

more than a constant that does not depend on the data (Vitányi & Li, 2000).

2. Here we include the term NsymbolsCf, which encodes the probabilities with which each

symbol is used in the grammar. These probabilities determine the code (i.e., distribu-

tion of code symbols ‘‘001,’’ ‘‘01,’’ etc.) that allows for most efficient representation

of the grammatical description. From this code, one can then establish the correspon-

dence between each grammar symbol and its encoded representation. This term was

not included in the equation in Dowman (2007), where it was assumed that all gram-

mars used the same set of symbols. By allowing for a specifically tailored set of sym-

bols, our formulation allows for more efficient grammar representations.

3. It is also possible to encode all sentences by assuming that repeats of linguistic phrases

are encoded differently from the first occurrences—for example, by using a code that

refers back to the previous occurrence, rather than regenerating occurrences from

scratch. This corresponds to learning types of utterances rather than tokens. This

encoding is commonly used in compression methods. However, due to presumed lim-

its on human memory capacity, such an encoding scheme is only conceivable for a
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limited number of very common utterances and is unlikely to be applied to the bulk of

language data (although it is possible that this type of encoding might be used at the

level of individual constructions, rather than whole utterances). In any case, the type-

based approach will typically require more data for learning, because, in essence, it

strips out any repeated linguistic constructions. As our concern is to outline the behav-

ior of an ‘‘ideal’’ learner, given specific representations of the linguistic structure to

be learned, we do not consider such ‘‘type-based’’ encoding schemes here. Notice, in

particular, that any linguistic structure that is unlearnable under our present analysis

will also be unlearnable given a type-based encoding scheme.

4. The use of a corpus inevitably raises the question that the transcriber may not have

heard a contraction correctly. We feel that while possible, this possibility is small.

More important, this is unlikely to be the cause of the low-occurrence frequencies of

wanna appearing in relevant contexts. This is because, while the contracted form

wanna does occur frequently in general, it is only this contracted form in the context

of a wh-question that does not occur in CHILDES, and indeed also rarely in the other

corpora we examine. Other contracted forms also occur frequently throughout the cor-

pora we examine. Thus, due to the high frequency in all corpora of contracted forms

in general, we believe that the low frequency of wanna in the wh-question form is gen-

uinely reflective of a low occurrence frequency in language usage. This argument also

applies to other cases where occurrence frequencies were low.
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