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Introduction

[^BSTRACf]
project scheduling inevitably involves
uncertainty. The basic inputs (i.e., time,
cost, and resources for each activity) are
not deterministic and are affected by var-
ious sources of uncertainty. Moreover,
there is a causal relationship between
these uncertainty sources and project
parameters; this causality is not modeled
in current state-of-the-art project plan-
ning techniques {such as simulation tech-
niques). This paper introduces an
approach, using Bayesian network mod-
eling, that addresses both uncertainty
and causality in project scheduling.
Bayesian networks have been widely used
in a range of decision-support applica-
tions, but the application to project man-
agement is novel. The model presented
empowers the traditional critical path
method (CPM) to handle uncertainty and
also provides explanatory analysis to elic-
it, represent, and manage different
sources of uncertainty in project planning.
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Project scheduling is difficult because it inevitably involves uncertainty.
Uncertainty in real-world projects arises from the following characteristics;

• Uniqueness (no similar experience)
• Variability (trade-off between performance measures like time, cost, and quality)
• Ambiguity (lack of clarity, lack of data, lack of structure, and bias in estimates).

Matiy different techniques and tools have been developed to support better
project scheduling, and these tools are used seriously by a large majority of proj-
ect managers (Fox & Spence, 1998; Pollack-lohnson, 1998). Yet, quantifying
uncertainty is rarely prominent in these approaches.

This paper focuses especially on the problem of handling uncertainty in proj-
ect scheduling. The next section elaborates on the nature of uncertainty in project
scheduling and summarizes the current state of the art. The proposed approach is
to adapt one of the best-used scheduling techniques, critical path method (CPM)
(Kelly, 1961), and incorporate it into an explicit uncertainty model {using
Bayesian networks). The paper summarizes the basic CPM methodology and nota-
tion, presents a brief introduction to Bayesian networks, and describes how the
CPM approach can be incorporated (using a simple illustrative example). Also dis-
cussed is a mechanism to implement the model in real-world projects, and sug-
gestions on how to move forward and possible future modifications are presented.

The Nature of Uncertainty in Project Scheduling
A Guide to the Project Management Body of Knowledge (PMBOK'^ Cuide)—'['hkd edi-
tion (PMI, 2004) identifies risk management as a key area of project management:

"Project risk management includes the processes concerned with conducting
risk management planning, identification, analysis, response, and monitoring
and control on a project."

Central to risk management is the issue of handling uncertainty. Ward and
Chapman (2003) argued that current project risk management processes induce a
restricted focus on managing project uncertainty. They believe it is because the
term "risk" has become associated witb "events" rather than more general sources
of significant uncertainty.
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In different project management
processes there are different aspects of
uncertainty. The focus of this paper is on
uncertainty in projert scheduling. The
most obvious area of uncertainty here is
in estimating duration for a partiailar
activity. Difficulty in this estimation can
arise from a lack of knowledge of what is
involved as well as from the uncertain
consequences of potential threats or
opportunities. This uncertainty arises
from one or more of the following:

• Level of available and required
resources

• Trade-off between resources and time
• Possible occurrence of uncertain

events (i.e., risks)
• Causal factors and interdependencies

including common casual factors
that affect more than one activity
(such as organizational issues)

• Lack of previous experience and use of
subjective rather than objective data

• Incomplete or imprecise data or lack
of data at all

• Uncertainty about the basis of subjec-
tive estimation (i.e., bias in estimation).

The best-known technique to sup-
port project scheduling is CPM. This
technique, which is adapted by the
most widely used project management
software tools, is purely deterministic.
It makes no attempt to handle or quan-
tify uncertainty. However, a number of
techniques, such as program evaluation
and review technique (PERT), critical
chain scheduling (CCS) and Monte
Carlo simulation (MCS), do try to han-
dle uncertainty, as follows:

• PERT (Malcom, Roseboom, Clark, &
I-azer, 1959; Miller, 1962; Moder,
1988) incorporates uncertainty in a
restricted sense by using a probabil-
ity distribution for each task.
Instead of having a single determin-
istic value, three different estimates
(pessimistic, optimistic, and most
likely) are approximated. Then the
"critical path" and the start and fin-
ish date are calculated by the use of
distributions' means and applying
probability rules. Results in PERT
are more realistic than CPM, but
PERT does not address explicitly any
of the sources of uncertainty previ-
ously listed.

Critical chain (CC) scheduling is
based on Coldratt's theory of con-
straints (Coldratt, 1997). Hor mini-
mizing the impact of Parkinson's
Law (jobs expand to fill the allocat-
ed time), CC uses a 50% confidence
interval for each task in project
scheduling. The safety time (remain-
ing 50%) associated with each task
is shifted to the end of the critical
chain (longest chain) to form the
project buffer. Although it is claimed
that the CC approach is the most
important breakthrough in project
management history, its oversim-
plicity is a concern for many compa-
nies that do not understand both the
strength and weakness of CC and
apply it regardless of their particular
and unique circumstances (Pinto,
1999). The assumption that all task
durations are overestimated by a cer-
tain factor is questionable. The main
issue is: How does the project man-
ager determine the safety time? (Raz,
Barnes, & Dvir, 2003). CC relies on
a fixed, right-skewed probability for
activities, which may be inappropri-
ate (Herroelen & Leus, 2001), and a
sound estimation of project and
activity duration (and consequently
the buffer size) is still essential
(Trietsch, 2005).

Monte Carlo simulation (MCS) was
first proposed for project scheduling
in the early 1960s (Van Slyke, 1963)
and implemented in the 1980s
(Fishman, 1986). In the 1990s,
because of improvements in comput-
er technoiogy, MCS rapidly became
the dominant technique for han-
dling uncertainty in project schedul-
ing (Cook, 2001). A survey by the
Project Management Institute (PMI,
1999) showed that nearly 20% of
project management software pack-
ages support MCS. For example,
PertMaster (PertMaster, 2006)
accepts scheduling data from tools
like MS-Project and Primavera and
incorporates MCS to provide project
risk analysis in time and cost.
However, the Monte Carlo approach
has attracted some criticism. Van
Dorp and Duffey (1999) explained
the weakness of Monte Carlo simula-
tion In assuming statistical inde-

pendence of activity duration in a
project network. Moreover, being
event-oriented (assutning project
risks as "independent events"),
MCS and the tools that implement
It do not identify the sources of
uncertainty.

As argued by Ward and Chapman
(2003), managing uncertainty in proj-
ects is not just about managing per-
ceived threats, opportunities, and their
implication. A proper uncertainty
management provides for identifying
various sources of uncertainty, under-
standing the origins of them, and then
managing them to deal with desirable
or undesirable implications.

Capturing uncertainty in proj-
ects "needs to go beyond variability
and available data. It needs to
address ambiguity and incorporate
structure and knowledge" (Chapman
& Ward, 2000). In order to measure
and analyze uncertainty properly, we
need to model relations between
trigger (source), and risk and impacts
(consequences). Because projects are
usually one-off experiences, their
uncertainty is epistemic (i.e., related
to a lack of complete knowledge)
rather than aleatoric (i.e., related to
randomness). The duration of a task
is uncertain because there is no sim-
ilar experience before, so data is
incomplete and suffers from impreci-
sion and inaccuracy. The estimation
of this sort of uncertainty is mostly
subjective and based on estimator
judgment. Any estimation is condi-
tionally dependent on some assump-
tions and conditions—even if
they are not mentioned explicitly.
These assumptions and conditions
are major sources of uncertainty
and need to be addressed and han-
dled explicitly.

The most well-established
approach to handling uncertainty in
these circumstances is the Bayesian
approach (Efron, 2004; Goldstein,
2006). Where complex causal rela-
tionships are involved, the Bayesian
approach is extended by using
Bayesian networks. The challenge is
to incorporate the CPM approach
into Bayesian networks.
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CPM Methodology and Notation

CPM (Moder, 1988) is a deterministic
technique that, by use of a network of
dependencies between tasks and given
deterministic values for task durations,
calfulatt's the longest path in the net-
work called the "critical path." The
length of the "critical path" is the earli-
est time for project cotiipletion. The
critical path can be identified by deter-
mining the following parameters for
each activity:

D—duration
ES—earliest start time
EF—earliest finish time
LS—latest start time
LF—latest finish time.

The earliest start and finish times
of each activity are determined by
working forward through the network
and determining the earliest time at
which an activity can start and finish,
considering its predecessor activities.
For each activity j\

I'S, = MaxjESi + Di ;
over predecessor activities i\

EFj = ESj-̂  Dj

The latest start and finish times are
the latest times that an activity can
start and finish without delaying the
project and are found by working
backward through the network. For
each activity i:

LFj = Min |LFj- D,;
over successor activities ;'|

The activity's "total float" (TF)
(i.e., the amount that the activity's
duration can be increased without
increasing the overall project comple-
tion time) is the difference in the latest
and earliest finish times of each activi-
ty. A critical activity is one with no TF
and should receive special attention
(delay in a critical activity will delay
the entire project). The critical path
then is the path(s) throiLgh the net-
work whose activities have minimal TK

The CPM approach is very simple
and provides very useful and funda-
mental information about a project
and its aaivities' schedule. However,
because of its single-point estimate
assumption, it is loo simplistic to be
used in complex projects. The chal-
lenge is to incorporate the inevitable
uncertainty.

Proposed BN Solution
Bayesian Networks (BNs) are recog-
nized as a mature formalism for han-
dling causality and uncertainty
(Heckerman, Mamdani, & Wellman,
1995). This section provides a brief
overview of RNs and describes a new
approach for scheduling project activi-
ties in which CPM parameters (i.e., BS,
EF, LS, and LF) are determined in a BN.

Bayesian Networks: An Overview
Bayesian networks (also known as
belief networks, causal probabilistic
networks, causal nets, graphical proba-
bility networks, probabilistic cause-

effect tnodels, and probabilistic infiu-
ence diagrams) provide decision sup-
port for a wide range of problems
involving uncertainty and probabilistic
reasoning. Examples of real-world
applications can be found in
Heckerman et al. (1995), Fenton,
Krause, and Neil (2002), and Neil,
I enton, Forey, and I larris (2001). A BN
is a directed graph, together with an
associated set of probability tables.
The graph consists of nodes and arcs.
Figure 1 shows a simple BN that mod-
els the cause of delay in a particular
task in a project. The nodes represent
uncertain variables, which may or may
not be observable. Each node has a set
of states (e.g. "on time" atid "late" for
"Subcontract" node). The arcs repre-
sent causal or infiuential reiationships
between variables, (e.g., "subcontract"
and "staff experience" may cause a
"delay in task"). There is a probability
table for each node, providing the
probabilities of each state of the vari-
able. For variables without parents
(called "prior" nodes), the table just
contains the marginal probabilities
(e.g., for the subcontract" node P(on-
time)=0.95 and P(iate)=0,03). Ihis is
also caiied "prior distribution" that
represents the prior belief (state of
knowledge) about the variable. For
each variable with parents, the proba-
bility table has conditional probabili-
ties for each combination of the
parents' states (see, for example, the
probability table for a "delay in task"

On Time

Late

0.95

0.05
Subcontract

Delay in Task

Staff Experience
High

Low

0.7

0.3

Subcontract

Staff Experience

Delay
Yes

No

On Time

High

0.95

0.05

Low

0.7

0,3

Late

High

0.7

0.3

Low

0.01

0.99

Figure 1: A Bayesian network contains nodes, arcs and probability table

JUNE J007 MANAUKMENT JOURNAL 41



in Figure 1). This is also called the
"likelihood function" that represents
the likelihood of a state of a variable
given a particular state of its parent.

The main use of BNs is in situa-
tions that require statistical inference.
In addition to statements about the
probabilities of events, users have
some evidence (i.e., some variable
states or events that have actually been
observed), and can infer the probabili-
ties of other variables, which have not
as yet been observed. These observed
values represent a posterior probabili-
ty, and by applying Bayesean rules in
each affected node, users can infiuence
other BN nodes via propagation, mod-
ifying the probability distributions. For
example, the probability that the task
finishes on time, with no observation,
is 0.855 (see Figure 2a). However if we
know that the subcontractor failed to
deliver on time, this probability
updates to 0.49 (see Figure 2b),

The key benefits of BNs that make
them highly suitable for the project
planning domain are that they:
• Explicitly quantify uncertainty and model

the causal relation between variables
• Enable reasoning from effert to cause as

well as from cause to effect (propaga-
tion is both "forward" and "backward")

• Make It possible to overturn previ-
ous beliefs in the light of new data

• Make predictions with incomplete data
• Combine subjective and objertive data
• Enable users to arrive at decisions

that are based on visible auditable
reasoning.

BNs, as a tool for decision support,
have been deployed in domains rang-
ing from medicine to politics. BNs
potentially address many of the "uncer-
tainty" issues previously discussed. In
particular, incorporating CPM-style
scheduling into a BN framework makes
it possible to properly handle uncer-
tainty in project scheduling.

There are numerous commercial
tools that enable users to build BN
models and run the propagation calcu-
lations. With such tools it is possible to
perform fast propagation in large BNs
(with hundreds of nodes). In this
paper, AgenaRisk (2006) was used,
since It can model continuous vari-
ables (as opposed to just discrete).

BN for Activity Duration
Figure 3 shows a prototype BN that the
authors have built to model uncertain-
ty sources and their afferts on duration
of a particular activity. The model con-
tains variables that capture the uncer-
tain nature of activity duration. "Initial
duration estimation" is the first esti-
mation of the artivity's duration; it is
estimated based on historical data,
previous experience, or simply expert
judgment. "Resources" incorporate any
affeaing factor that can increase or
decrease the activity duration. It is a
ranked node, which for simplicity here
is restricted to three levels: low, aver-
age, and high. The level of resources
can be inferred from so-called "indica-
tor" nodes. Hence, the causal link is
from the "resources" directly to observ-

able indicator values like the "cost,"
the experience of available "people"
and the level of available "technology."
There are many alternative indicators.
An important and novel aspect of this
approach is to allow the model to be
adapted to use whichever indicators
are available.

The power of this model is better
understood by showing the results of
running it under various scenarios. It is
possible to enter observations any-
where in the model to perform not just
predictions but also many types of
trade-off and explanatory analysis. So,
for example, observations for the ini-
tial duration estimation and resources
can be entered and the model will
show the distributions for duration.
Figure 4 shows how the distribution of
the activity duration in which the ini-
tial estimation is five days changes
when the level of its available
resources goes from low to high. (All
the subsequent figures are outputs
from the AgenaRisk software.)

Another possible analysis in this
model is the trade-off analysis between
duration and resources when there is a
time constraint for activity duration
and it is interesting to know about the
level of required resource. For example,
consider an activity in which the initial
duration is estimated as five days but
must be finished in three days. Figure 5
shows the probability distribution of
required resources to meet this dura-
tion constraint. Note how it is skewed
toward high.

Subcontract Staff Experience

Delay in Task

0.64

0.32

0.0
Yes No

(a) P(Task =on fime)=0.855

Staff Experience

Delay in Task

0.32

0.16

0.0
Yes No

P(Task =on time}=0,49

Figure 2: New evidence updates the probability
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Figure 3: Bayesian network for activity duration

Figure 4: Probability distribution for "duration" (days) cfianges when the level of "resources" changes

Low Medium High

Figure 5: Level of required "Resources" when there is a constraint on "Duration"

Mapping CPM to BN
The main components of CPM net-
works are activities. Activities are linked
together to represent dependencies, ln
order to map a CPM network to a BN,
it is necessary to first map a single
activity. Each of the activity parameters
are represented as a variable (node) in
the BN.

Figure 6 shows a schematic model
of the BN fragment associated with an
activity. It clearly shows tbe relation
between the activity parameters and
also the relation with predecessor and
successor activities.

The next step is to define the con-
necting link between depetident activi-
ties. The forward pass in CPM is
mapped as a link between the EF of
each activity to the ES of the successor
activities. The backward-pass in CPM is
mapped as a link between the LS of
each activity to the LF of the predeces-
sor activities.

Extwiple
The following illustrates this mapping
process. The example is deliberately
very simple to avoid extra complexity
in the BN. How the approach can be
used in real-size projects is discussed
later in the paper.

Consider a small project with five
activities—A, B, C, D, and E. The activ-
ity on arc (AOA) network of the projea
is shown in Figure 7,

The results of the CPM calculation
are summarized in Table 1. Activities
A, C, and E with 1 F=0 are critical and
the overall project takes 20 days (i.e.,
earliest finish of activity E).

Figure 8 shows the full BN repre-
sentation of the previous example.
Each activity has five associated nodes.
Forward pass calculation of CPM is
done through the connection between
the ES and EF. Activity A, the first activ-
ity of the project, has no predecessor,
so its ES is set to zero. Activity A is
predecessor for activities B and C so
the EF of activity A is linked to the ES
of activities B and C. The EF of activity
B is linked to the ES of its successor,
activity D. And finally, the EF of activi-
ties C and D are connected to the ES of
activity E. In fact, the ES of activity E is
the maximum of the EF of activities C
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Predecessor
Predecessor

Activities

Successor
Activities

Successor

Figure 6: Schematic of BN for an activity

Figure 7: CPM network

and D. The EF of activity E is the earli-
est time for project completion time.

The same approach is used for
backward CPM calculations connecting
the LF and LS, Activity E is the last activ-
ity of the project and has no successor,
so its EF is set to EF. Activity E is succes-
sor of activities C and D so the ES of
activity E is linked to the LF of activities
C and D. The LS of activity D is linked
to the LF of its predecessor activity B.
And finally, the LS of activities B and C
are linked to the LFofactivityA. TheLF
of activity A is the minimum of the LS
of activities B and C.

For simplicity in this example, it is
assumed that activities A and E are
more risky and need more detailed
analysis. For all other activities the
uncertainty about duration is expressed
simply by a normal distribution.

Results
This section explores different scenar-
ios of the BN model in Figure 8. The
main objective is to predict the proj-

ect completion time (i.e., the earliest
finish of E) in such a way that it fully
characterizes uncertainty.

Suppose the initial estimation
of activities' duration is the same as
in Table 1. Suppose the resource
level for activities A and E is medi-
um. If the earliest start of activity A
is set to zero, the distribution for
project completion is shown in
Figure 9a. The distribution's mean is
20 days as was expected from the
CPM analysis. However, unlike
CPM, the prediction is not a single
point and Its variance is 4. Figure 9b
iliustrates the cumulative distribu-
tion of finishing time, which shows
the probability of completing the
project before a given time. For
example, with a probability of 90%
the project will finish in 22 days.

In addition to this baseline sce-
nario, by entering various evidence
(observations) to the model, it is pos-
sible to analyze the project schedule
from different aspects. For example.

one scenario is to see how changing
the resource level affects the project
completion time.

Figure 10 compares the distribu-
tions for project completion time as
the level of people's experience
changes. When people's experience
changes from low to high, the mean
of finishing time changes from 22.7
days to 19.5 days and the 90% confi-
dence interval changes from 26.3
days to 22.9 days.

Another usefui analysis is when
there is a constraint on tbe project
completion time and we want to
know how many resources are need-
ed. Figure II illustrates this trade-off
between project time and required
resources. If the project needs to be
completed in 18 days (instead of the
baseline 20 days) then the resource
required for activity A most likely
must be high; if the project comple-
tion is set to 22, the resource level for
activity A moves significantly in the
direction of low.

The next scenario investigates the
impact of risk in activity A on the
project completion time as it is
shown in Figure 12. When there is a
risk in activity A, the mean of distri-
bution for the project completion
time changes from 19.9 days to 22.6
days and the 90% confidence interval
changes from 22.5 days to 25.3 days.

One important advantage of
BNs is their potential for parameter
learning, which is shown in the
next scenario. Imagine activity A
actually finishes in seven days,
even though it was originally esti-
mated as five days. Because activity
A has taken more time than was
expected, the level of resources has
probably not been sufficient.

By entering this observation the
model gives the resource probability
for activity A as illustrated in Figure
13. This can update the analyst's
belief about the actual level of avail-
able resources.

Assuming both activities A and E
use the same resources (e.g., people),
the updated knowledge about the
level of available resources from
activity A (which is finished) can be
entered as evidence In the resources
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LS ES

LF_B

D

L F D J
1 ^

DtJRATION
SUBNET_E

\

Figure 8: Overview of BN for example (1)

for activity E (which is not started
yet) and consequently updates the
project completion time. Figure 14
shows the distributions of comple-
tion time when the level of available
resource of activity E is learned from
the actual duration of activity A.

Another application of parameter
learning in these models is the ability
to incorporate and learn about bias in
estimation. So, if there are several
observations in which actual task
completion times are underestimated,
the model learns that this may be due

to bias rather than unforeseen risks,
and this information will inform sub-
sequent predictions. Work on this type
of application (caiied dynamic learn-
itig), is still in progress and can be a
possible way of extending the BN ver-
sion of CPM.
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Activity

A

B

C

D

LJJ

D

5

4

10

2

5

ES

0

5

5

9

15

EF

C
JI

9

15

11

20

LS

0

9

5

13

15

LF

5

13

15

15

20

TF

0

4

0

4

0

Table 1: Activities' time (days) and summary of CPM calculations

Object-Oriented Bayesian
Network (OOBN)
II is clear from Figure 8 that even simple
CPM networks lead to fairly large BNs.
In real-sized projects with several aaivi-
ties, constmaing the network needs a
huge effort, which is not effective espe-

daliy for users without much experience
in BNs. However, this complexity can be
handled using the so-called object-ori-
ented Bayesian network (OOBN)
approach (Roller & Pfeffer, 1997). This
approach, analogous to the object-ori-
ented programming languages, supports

a natural framework for abstraction and
refinement, which allows complex
domains to be described in terms of
interrelated objects.

The basic element in OOBN is an
object; an entity with an identity, state,
and behavior. An object has a set of
attributes each of which is an obiect.
Each object is assigned to a class.
Classes provide the ability to describe a
general, reusable network that can be
used in different instances. A class in
OOBN is a BN fragment.

The proposed mode! has a highly
repetitive structure and fits the object-
oriented framework perfectly. The
internal parts of the activity subnet
(see Figure 6) are encapsulated within
tbe activity class as shown in Figure 15.

D Baseline Scenario
0.18

0.16

0.14

0.12

0.1
0.08
0.06
0.04
0.02

0.0
10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0

(a) Probability Distribution

D Baseiine Scenario

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

10.0 12.0 14.0 16.0 18.0 20,0 22.0

(b) Cumulative Distribution

24.0

Figure 9: Distribution of project completion (days) for main scenario in example (1)
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0.14
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0.1

0.08

0.06

0.04

0.02

-o- High-Quality Peopie

-o- Low-Quality People
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(a) Probability

1.0 -

0.9

0.8

0.7

0.6

0.5

0.4
0.3
0.2
0.1

-o- High-Quality People

-o- Low-Quaiity Peopie

10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0

{b} Cumulative

Figure 10: Change in project time distribution (days) when level of people's experience changes
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^ Complete in 18 days
-o- Complete in 22 days

0.48

0.4

0.32

0,24

0.16

0.08

0.0
Low Medium High

Figure 11 : Probability of required resource changes when the time constraint changes

Classes can be used as libraries
and combined into a model as needed.
By connecting interrelated objects,
complex networks with several dozen
nodes can be constructed easily. I'igure
16 shows the OOBN model for the
example previously presented.

The OOBN approach can also sig-
nificantly improve the performance of
inference in the model. Although a full
discussion of the OOBN approach to
this particular problem is beyond the
scope of this paper, the key point to
note is that there is an existing mecha-
nism (and implementation of it) that
enables the proposed solution to be
genuinely "scaled-up" to real-world
projects. Moreover, research is emerg-
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(a) Probability

1.0 n

0.9

-a- No Risk in A
-o- Risk in A

10.0 12.0 14,0 16.0 18.0 20.0 22.0 24.0 26.0

(b) Cumulative

Figure 12: The impact of occurring risk in activity A on the project completion time

0.8 -

0.72 -

0.64 -

0.56 -

0.48 -

0.4 •

0.32 -

0.24 -

0.16 -

0.08 -

0.0 -1
Low Medium High

ing to develop the new generation of
BNs tools and algorithms that support
OOBN concept both in constructing
large-scale models and also in propa-
gation aspeas.

Conclusions and How to Move Forward
Handling risk and uncertainty is
increasingly seen as a crucial compo-
nent of project management and plan-
ning. One classic problem is how to
incorporate uncertainty in project
scheduling. Despite the availability of
different approaches and tools, the
dilemma is still challenging. Most cur-
rent techniques for handling risk and
uncertainty in projea scheduling (sim-
ulation-based techniques) are often

Figure 13: Learnt probability distribution "resource" when the actual duration is seven days
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Figure 14: completion time (days) based on learned parameters compare with baseline scenario

Figure 15: Activity class encapsulates internal parts of network
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Figure 15 :00 model for the presented example

event-oriented and try to model the
impact of possible "threats" on project
performance. They ignore the source
of uncertainty and the causa! relations
between project parameters. More
advanced techniques are required to
capture different aspects of uncertainty
in projects.

This paper has proposed a new
approach that makes it possible to

incorporate risk, uncertainty, and
causality in project scheduling.
Specifically, the authors have shown
how a Bayesian network model can
be generated from a project's CPM
network. Part of this process is auto-
matic and part involves identifying
specific risks {which may be common
to many activities) and resource indi-
cators. The approach brings the full

weight and power of BN analysis to
bear on the problem of project sched-
uling. This makes ii possible to:
• Capture different sources of uncer-

tainty and use them to inform proj-
ect scheduling

• Express uncertainty about comple-
tion time for each activity and the
whole project with full probability
distributions

• Model the trade-off between time
and resources in project activities

• Use "what-if?" analysis
• Ixarn from data so that predictions

become more relevant and accurate.

The application of the approach
was explained by use of a simple
example. In order to upscale this to
real projects with many activities the
approach must be extended to use
the so-called object-oriented BNs.
There is ongoing work to accommo-
date such object-oriented modeling
so that building a BN version of a
CPM is just as simple as building a
basic CPM model.

Other extensions to the work
described here include:
• Incorporating additional uncertainty

sources in the duration network
• Handling dynamic parameter learn-

ing as more information becomes
available when the project progresses

• Handling common causal risks that
affea more than one aaivity

• Handling management action when
the project is behind its plan.
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