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Using Ranked Nodes to Model Qualitative 
Judgments in Bayesian Networks 

Norman E Fenton, Martin Neil and Jose Galan Caballero 

Abstract— Although Bayesian Nets (BNs) are increasingly being used to solve real world risk problems, their use is still 
constrained by the difficulty of constructing the node probability tables (NPTs). A key challenge is to construct relevant NPTs 
using the minimal amount of expert elicitation, recognising that it is rarely cost-effective to elicit complete sets of probability 
values. We describe a simple approach to defining NPTs for a large class of commonly occurring nodes (called ranked nodes). 
The approach is based on the doubly truncated Normal distribution with a central tendency that is invariably a type of weighted 
function of the parent nodes. In extensive real-world case studies we have found that this approach is sufficient for generating 
the NPTs of a very large class of nodes. We describe one such case study for validation purposes. The approach has been fully 
automated in a commercial tool, called AgenaRisk, and is thus accessible to all types of domain experts. We believe this work 
represents a useful contribution to BN research and technology since its application makes the difference between being able to 
build realistic BN models and not. 

Index Terms— Bayesian networks, node probability tables, ranked nodes, probability elicitation, risk analysis.  
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1 INTRODUCTION

n recent years Bayesian Networks (BNs) have become 
increasingly recognised as a potentially powerful solu-
tion to complex risk assessment problems [9]. BNs have 

been widely used to represent full probability models in a 
compact and intuitive way. In the BN framework the in-
dependence structure in a joint distribution is character-
ised by a directed acyclic graph, with nodes representing 
random variables and directed arcs representing causal or 
influential relationships between variables [26]. The con-
ditional independence assertions about the variables, rep-
resented by the lack of arcs, reduce significantly the com-
plexity of inference and allow the underlying joint prob-
ability distribution to be decomposed as a product of lo-
cal conditional probability distributions (CPDs) associ-
ated with each node and its respective parents. If the vari-
ables are discrete, the CPDs can be represented as Node 
Probability Tables (NPTs), which list the probability that 
the child node takes on each of its different values for 
each combination of values of its parents. Since a BN en-
codes all relevant qualitative and quantitative informa-
tion contained in a full probability model, it is an excel-
lent tool for many types of probabilistic inference where 
we need to compute the posterior probability distribution 
of some variables of interest (unknown parameters and 
unobserved data) conditioned on some other variables 
that have been observed.  

Our own work in this area has produced solutions to a 
number of real world, high-stakes problems such as: 

• Safety of embedded systems in the railway in-

dustry [21]; 
• Military vehicle reliability, [22]; 
• Risk of mid-air collisions in Air Traffic [23]; 
• Software defect prediction in consumer electron-

ics products [6],[7],[8],[24]. 
All of these applications involved building extremely 

large-scale BN models. As a result of the difficulties we 
encountered in earlier real-world BN model building (such 
as in the model for software safety in the nuclear industry 
[17]) we were well aware of the limitations of relying on 
purely ‘hand-crafted’ approaches in which each variable 
and each NPT had to be elicited exhaustively with domain 
experts. By extending the ideas of object-oriented Bayesian 
Networks [13] we developed a range of methods that could 
be deployed in practice. For example, in [21] we described 
a range of techniques that were primarily targeted at the 
problem of building large-scale BN topologies. The tech-
niques described there have been validated in numerous 
projects and have been formally incorporated into BN tools 
such as Hugin [11] and AgenaRisk [1]. Similar methods are 
described in [18]. However, our previous work, and that of 
others, has said little about the even harder problem of 
building NPTs in large-scale BNs, especially for nodes with 
many states. This paper focuses on one, and only one, es-
pecially important part of this problem: how to build large 
NPTs for a commonly occurring class of nodes called 
‘ranked’ nodes (which represent qualitative variables that 
are abstractions of some underlying continuous quantities).  

We begin in Section 2 by outlining the problem and rele-
vant related work. In Section 3 we formalise the notion of 
ranked nodes along with the conditions under which they 
occur most commonly in BNs. In Sections 4 and 5 we de-
scribe the class of causal weighting functions required to 
generate the NPTs for these ranked nodes. Our method is 
based on the representation of NPTs by means of paramet-
ric probability functions where the child node’s probability 
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is defined as a weighted function of the parent node val-
ues. The weighted rank node functions specified herein 
(which turn out to be sufficient for most applications) are:  

• Mean Average 
• Minimum 
• Maximum 
• MixMinMax 
In Section 6 we describe the other instance where 

ranked nodes commonly occur, namely as indicator nodes. 
In Section 7 we describe how ranked nodes are declared in 
the AgenaRisk software and how the corresponding NPTs 
are generated. This approach has been validated in a num-
ber of recent case studies such as [7],[8],[25]; an illustrative 
case study example is provided in Section 8 that shows 
how the approach was used effectively by domain experts 
(with little statistical expertise) to generate large-scale 
NPTs and overcome problems with previous manual ap-
proaches.  

2 THE PROBLEM AND BACKGROUND 
Consider the BN fragment shown in Figure 1. Such frag-
ments are very typical of those that frequently occur in 
the real-world models already cited – this particular one 
occurred in at least two of the projects referred to in Sec-
tion 1. They are characterised by the fact that node values 
are typically measurable only on a subjective scale like 
{very low, low, medium, high, very high} and only ex-
tremely limited statistical data (if any) is available to in-
form the probabilistic relationship for Y given X1 and X2. 
Yet, there is significant expert subjective judgement that 
can be used. 

 
Figure 1: Typical qualitative BN fragment 

Assuming each of the nodes has five states (in the many 
commercial studies we have been involved with experts 
are rarely satisfied with 3-point scales), the NPT for the 
node Y has 125 states. This is not an impossible number to 
elicit exhaustively, but from extensive experience we know 
that all kinds of inconsistencies arise when experts attempt 
to do so (some specific issues are described in the case 
study in Section 8). If the number of states increases to 
seven (which experts commonly insist on) and/or the node 
Y has additional parents then exhaustive elicitation be-
comes infeasible, especially as real-world models invaria-
bly involve dozens of fragments like these.  

Hence, the problem and challenge is to produce an ap-

propriate NPT for the node Y that makes the most of lim-
ited expert elicitation. This problem is certainly not new 
since it has been addressed in [4],[28],[31] and there have 
been serious case studies on specific elicitation techniques 
[15],[16],[20],[29]. Also the Noisy-OR [10] and Noisy-MAX 
[3] methods are well established as a standard way of en-
coding expertise in large NPTs. Noisy-OR has the disad-
vantage that it applies only to Boolean nodes and implicitly 
ignores the interaction effects between variables. Noisy-
MAX, despite the fact that it applies to ranked nodes with 
many states, does not model the range of relationships we 
seek here.  

There is a large body of literature covering the psycho-
logical biases encountered during elicitation and use of 
probability values. Such biases often arise through inap-
propriate or misleading question choice and depend on 
how the problem and question are framed (for more see 
[12]). In the BN literature there are a few relevant papers 
that describe experimental results gained from applying 
different probability elicitation. One is [32] which found 
that human experts produced better results when Noisy-
OR parameters were elicited rather than complete NPTs. 
Also [27] gives a very good overview of a number of dif-
ferent methods that can be used for elicitation, including 
probability wheels and the verbal-numerical response 
scale. The work on verbal-numerical response scales is de-
scribed in detail in [30] where it was reported that its use 
markedly improved the efficiency of elicitation and accu-
racy of results. Size restrictions prevent us from directly 
addressing the role of elicitation in the whole model build-
ing process and the inherent challenges that might be en-
countered, so we address only one type of probabilistic 
relationship that one might want to build into a BN. Our 
approach is complementary to the elicitation methods and 
for the purpose of quick comparison the differences are: 

• Ranked nodes are useful when representing ranked 
relationships in NPTs involving nodes that are near 
continuous; 

• Noisy-OR is useful in cases involving Boolean 
nodes; and  

• Verbal-numerical response scale is useful for rela-
tionships when nodes are labelled. 

3 THE NATURE OF RANKED NODES 
Ranked nodes represent discrete variables whose states 
are expressed on an ordinal scale that can be mapped 
onto a bounded numerical scale that is continuous and 
monotonically ordered. We can assume that all ranked 
nodes are defined on an underlying unit interval, [0-1], 
scale. For a given number of intervals defined, and la-
belled, on this scale we simply discretise accordingly. For 
example, for a 5-point scale such as {very low, low, aver-
age, high, very high} our interval widths for each state are 
0.2. Thus "very low" is associated with the interval [0 - 
0.2), "low" is associated with the interval [0.2 - 0.4) etc.  

As far as the user is concerned the underlying numeric 
scale is invisible — the displayed scale is still the labelled 
one rather than the numeric one, but the latter is used for 
the purposes of computation and generating the NPT. 
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The crucial thing about ranked nodes is that they can 
make the BN construction and editing task much simpler 
than is otherwise possible. In particular, provided they 
appear in the appropriate combinations described below, 
the normally complex task of constructing sensible asso-
ciated NPTs is drastically simplified.  

In the real-world applications described in Section 1, 
experts typically wanted to complete an NPT using a 
simple averaging scheme to compute the maximum or 
minimum value as a guide to defining the “central ten-
dency” of the child node based on a set of causal parent 
node values. Hence, in [6] (in attempting to construct the 
NPT for a node like Y) we adopted an approach based on 
sampling values, that resulted in expert elicitation asser-
tions like the following: 

• When X1 and X2 are both ‘very high’ the distribu-
tion of Y is heavily skewed toward ‘very high’. 

• When X1 and X2 are both ‘very low’ the distribu-
tion of Y is heavily skewed toward ‘very low’. 

• When X1 is ‘very low’ and X2 is ‘very high’ the dis-
tribution of Y is centred below ‘medium’. 

• When X1 is ‘very high’ and X2 is ‘very low’ the dis-
tribution of Y  is centred above ‘medium’. 

Since we are assuming that each node has an underly-
ing numerical scale in the interval [0, 1] such assertions 
suggest intuitively that Y is some kind of weighted aver-
age function. In fact, experts found it easier to understand 
and express relationships in such terms. Many so-called 
"self-assessment" or "scorecard" systems are based around 
little more than weighted averages of attribute hierar-
chies. However, such systems are usually implemented in 
spreadsheet-based programmes that have associated with 
them a number of problems: difficulty in handling miss-
ing data; problems with assessing credibility of informa-
tion sources; difficulty in using different scales. 

Since all of these problems are readily solved using 
BNs, the challenge is to provide the appropriate BN im-
plementation that captures the explicit simplicity of the 
weighted average while also preserving the intuitive 
properties that the resulting distributions have to satisfy. 
For example, simply making Y the (exact) weighted aver-
age of its parents does not work – since the only uncer-
tainty in the distribution of Y given its parents will be the 
result of discretisation inaccuracy rather than deliberate 
modelling. What is especially tricky to model properly 
are the intuitive beliefs about the causes given certain 
child observations — i.e. so-called back propagated beliefs. 
For example, suppose we have observed Y and X1 and 
wish to infer the value of X2 like: If Y  is ‘very high’ and X1 
is ‘very low’ then we would be almost certain that X2 is 
‘very high’. If Y is ‘very high’ and X1 is ‘average’ then we 
would be confident that X2 is ‘very high’ but not as confi-
dent as in the above case.   

Using an interpolated Beta distribution to approximate 
Y (as in [6]), does not preserve these back-propagation 
beliefs. However, a straightforward solution for defining 
the NPT for P(Y |X) (where X represents the set of parent 
variables X1,X2 …, Xn) in such a way that these various 
properties are all satisfied is provided by the Truncated 

Normal distribution, which we describe next. 

4 MODELLING RANKED CAUSES USING A DOUBLY 
TRUNCATED NORMAL DISTRIBUTION 

Formally, the ranked nodes’ causal structure is character-
ised by a joint probability distribution with a set of 
causes, X, containing i=1,2,…,n  ranked nodes, Xi, as par-
ents of Y: 

1

( , ) ( | ) ( )
n

i
i

p X Y p Y X p X
=

= ∏  

In general, the node Y is considered to be a consequence 
of two or more cause nodes where each of the cause nodes 
is assumed to be independent when calculating the NPT. 
The BN in Figure 1 was a very simple example. 

We draw an analogy with linear regression where 
yi=βx+ε with ε approximating a Normal distribution of 
mean 0 and variance σY2  (written N(0, σY2)) and where the 
contribution to the variance of Y is σY2. The regression 
analogy is apt since we are attempting to “target” the area 
of central tendency in Y given different values of Xi and 
then are adding a fixed amount of uncertainty around 
this. The only issue we need to resolve is the contribution 
of each cause to the effect and a clear way to do this is to 
use the correlation between the cause and the effect as the 
appropriate measure. 

Rather than the Normal distribution commonly as-
sumed in linear regression for ranked causal nodes, we 
use the doubly truncated Normal distribution (denoted 
TNormal hereafter) as defined, for example, in [2], where 
all nodes are truncated in the [0, 1] region. Unlike the 
regular Normal distribution (which must be in the range 
–infinity to +infinity) the TNormal has finite end points. 
We denote the TNormal by TNormal(μ,σ2, 0, 1) where μ is 
the mean and σ2 is the variance. In the TNormal we start 
with a regular Normal distribution but ‘ignore’ the prob-
ability mass to the left and right of the finite endpoints 
and then normalise the resulting distribution over the 
finite range [0, 1]. This enables us to model a variety of 
shapes including a uniform distribution, achieved when 
the variance σ2 → ∞, and highly skewed distributions, 
achieved when σ2 → 0. 

We use a simple weighted sum model to measure the 
contribution of each Xi to explaining Y as a “credibility 
weight”, wi (it can also be elicited from an expert in this 
way) expressed as real values, wi ≥ 0. The higher the 
credibility index the greater the correlation between Xi 
and Y. Thus, in our method the equivalent to the error 
variance, σY2, in the linear regression model is simply the 
inverse of the sum of the weights: 

2

1
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Given that Y lies within [0, 1] we must normalise the 

regression equation, 
1
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n
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Suppose, for example, that n = 3 and that the allocation 
of weights, wi, for each Xi’s contribution to explaining Y is 
in the ratio 2:3:5 with a variance, σY2=0.001. Then the joint 
distribution generated will be: 

1 2 3

1 2 3

200 300 500 1( | ) , ,0,1
200 300 500 200 300 500

2 3 5( | ) ,0.001,0,1
10

X X Xp Y X TNormal

X X Xp Y X TNormal

+ +⎡ ⎤= ⎢ ⎥+ + + +⎣ ⎦
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The resulting distribution, and BN model is shown in 
Figure 2. 

 

Figure 2: WMEAN function for Y given X1,X2 X3 

The resulting distribution for p(Y) will not produce 
summary statistics exactly matching the function because 
we are using coarse discretisations in arriving at the re-
sult. Given this, the mean values will tend to differ within 
the bin range specified; specifically for five ranks defined 
on [0-1] the mean value may be out by up to 0.1. Also, the 
variance values observed will be considerably higher be-
cause of the coarse discretisation. However, neither of 
these are major problems since the aim is to produce a 
good fit to the expert’s distribution rather than a good 
approximation to a TNormal distribution. 

Our approach is only designed to cover unimodal 
probability distributions. If p(Y |X) is bi or multi modal 
the simplest solution involves mapping each of the un-
ranked states in X that provide a causally equivalent, and 
exchangeable, ranked response on Y to a single new state 
in a new ranked node. For example, if we have a model of 
the effect of workload on human concentration such that 
p(Y=concentration | X = {overload, normal, underload}) 

and 
p(Y | X = overload) = p(Y | X = underload}) 

then we can simply insert a new node Z whose states 
are ranked in terms of their effect on Y:  
p(Y=concentration | Z = {normal, abnormal}) 

and  
p(Z=normal | X = {normal} = 1) 

and  
p(Z= abnormal | X = overload OR X = underload) = 1 

 

5 MODELLING RANKED CAUSES USING WEIGHTED 
MIN AND MAX 

The weighted average is not the only natural function 
that could be used as the measure of central tendency in 
the ranked cause model. Suppose, for example, that in 
Figure 1, we replace the node “Quality of testing process” 
with the node “Testing effort” as shown in Figure 3.  

 
Figure 3: Revised BN fragment 

In this case (which was exactly the scenario in the com-
mercial project described in [8]) we elicited the following 
information: 

• When X1 and X2 are both ‘very high’ the distribu-
tion of Y is heavily skewed toward ‘very high’. 

• When X1 and X2 are both ‘very low’ the distribution 
of Y is heavily skewed toward ‘very low’. 

• When X1 is ‘very low’ and X2 is ‘very high’ the dis-
tribution of Y is centred toward 'very low'. 

• When X1 is ‘very high’ and X2 is ‘very low’ the dis-
tribution of Y is centred toward ‘low'. 

Intuitively, the expert was saying here that for testing 
to be effective you need not just to have good people, but 
also to put in the effort. If either the people or the effort is 
insufficient then the result will be poor. However, really 
good people can compensate, to a small extent, for lack of 
effort.  

A weighted sum for Y will not produce an NPT to sat-
isfy these elicited requirements. Formally, Y's mean is 
something like the minimum of the parent values, but with 
a small weighting in favour of X1. The necessary function, 
which we call the weighted min function, WMIN, has the 
following general form: 

1.. ( 1)min

n

i i j
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w
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where wi ≥ 0 and n is the number of parent nodes, with 
a suitable variance σY2 that quantifies our uncertainty 
about the result, thus giving: 
p(Y | X) = TNormal[WMIN(X), σ2, 0, 1] 

The WMIN function can be viewed as a generalised 
version of the normal MIN function. In fact, if all of the 
weights wi are large then WMIN is close to MIN. At the 
other extreme, if all the weights wi=1 then WMIN is sim-
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ply the average of the Xis. Mixing the magnitude of the 
weights gives a result between a MIN and an AVERAGE. 
In the above example, taking w1=3 and w2=1 (with a vari-
ance σY2=0.01) yields the results shown in Figures 4 and 5. 

 

Figure 4: WMIN function for Y. Quality of Testing Staff = “Very Low”, 
with w1 =3, Testing Effort = “Very High”, with w2 =1 

 

Figure 5: WMIN function for Y. Quality of Testing Staff = “Very High”, 
with w1 =3, Testing Effort = “Very Low”, with w2 =1 

We can also use an analogous WMAX function: 

1..

where 0
( 1)

WMAX
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Finally, we use a function MIXMINMAX which is a 
mixture of the classic MIN and MAX functions. 

min max

min max

( )  ( )MIXMINMAX= w MIN X w MAX X
w w

+
+

 

where wmin, wmax>0.  
In each case the experts need only supply the parame-

ters to generate the NPT. We found that this set of func-
tions has been sufficient to generate almost all of the 
ranked node NPTs elicited in practice. The efficiency sav-
ings are considerable: If there are m ranked cause nodes 
each with n states the expert need only supply m+1 pa-
rameter values, compared requires (m+1)n values for full 
elicitation. 

It should be noted that ranked nodes can be further 
partitioned by declaring additional labelled, Boolean or 
numeric parents that can be used to condition the type of 
weighted expression one might wish on the child node. 

6 RANKED INDICATORS 
In addition to their occurrence as described in Section 4, 
ranked nodes occur frequently as indicators of other 
ranked nodes, such as shown in Figure 6.  

 
Figure 6: Ranked indicator examples (single indicator on LHS; multi-
ple indicator on RHS) 

Here we can see a simple single ranked indicator model-
ling the relationship between “staff quality” and “staff 
motivation” and another supplementing the first by add-
ing an additional two indicators: “staff training” and 
“staff experience”. In this section we describe the notion 
of indicator nodes formally and explain how to define the 
necessary NPTs. 

Indicator nodes operate in a similar way to “filter” 
nodes in a Kalman filter. Here we can think of the indica-
tors as providing noisy or imperfect observations and the 
parent node as the true (but possibly unobservable or not 
economically measurable) value awaiting estimation [19]. 
In a Kalman filter we wish to condition our estimate for 
the “true” value on the data on hand from each of our 
“indicator” nodes assuming each indicator is Gaussian 
distributed.  

Formally, the joint distribution for a set, X, containing 
i=1,…,n ranked indicators, X1, of a single causal parent 
node, Y is: 

1

( , ) ( ) ( | )
n

i
i

p X Y p Y p X Y
=

= ∏  

We model the NPT for each indicator node using the 
doubly truncated TNormal distribution: 
p(Xi|Y) = TNormal(Y,σ2, 0, 1) 

This assumes that the nodes Y and Xi are on the same 
scale. The expert simply has to specify the variance pa-
rameter, σi2, whose inverse acts as a “credibility index” — 
the higher the credibility index the greater the correlation 
between the indicator and the parent cause node. 

Indicator nodes are correlated with each other by vir-
tue of the structure of the Bayesian net. This correlation is 
desirable given that indicators reflect the true state of the 
underlying, unknown, cause. Only when the cause itself 
is instantiated with hard evidence are the indicators un-
correlated. However, given that the causal nodes are usu-
ally unobservable (this is after all why we will use an in-
dicator) the indicator nodes are generally not independ-
ent in practice. 

Unlike in Kalman filters our indicator nodes are 
bounded on [0, 1] so we cannot use Normal distributions 
and instead we must use doubly truncated Normal dis-
tributions, solved numerically (there is no analytical solu-



6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,  TKDE-0095-0206.R2 

 

tion to Π p(Xi| Y) when the indicators are doubly trun-
cated Normal). Given this, we should not necessarily ex-
pect the results achieved using a ranked node formula-
tion to give the same results as the Kalman filter. It is, 
however, helpful to know where the differences lie. 

The general properties and behaviour are similar inso-
far as our approach very closely approximates a Kalman 
filter in the region where μY =0.5. However, when an ob-
servation is made on an indicator node near its truncation 
boundary, [0, 1], its actual variance is less because of the 
effects of truncation and this lower variance obviously 
translates into a stronger influence on Y.  Note also that as 
the variance values allocated to indicator nodes get very 
large, the resulting NPT approximates a conditional uni-
form distribution. Therefore  μY → 0.5 and as a result the 
correlation between the indicators, X,  and Y approaches 
zero. Practically speaking, for 5 and 7 point scaled rank 
nodes, setting σi2 > 0.1 indicates a very poor correlation. 
This also means that the actual mean value induced on Y 
for an indicator with high variance will not be μY → xi but 
rather μY → 0.5. 

In practice small variance values tend to be selected 
and this means our rank node solution approximates the 
analytical Kalman filter nicely. For example, if we had 
two rank nodes with σ12 = σ12 = 0.01 and X1 = 0.05 and X2 
= 0.15 the difference between the analytical, Kalman filter 
result, Y, and the rank node approximation, Y’, is:  
Y  ~ N(0.1, 0.005) 
Y’ ~ N(0.0909, 0.0037, 0, 1) 

We believe that this level of error is acceptable given 
the unavoidably crude nature of the rank scales we are 
using. 

Another perspective on the use of indicator nodes is 
that each can be treated either as a different sub-attribute 
of the parent node or as a different measure of that sub-
attribute from a different source. This second view has 
proven helpful where there were multiple experts, each 
with a different credibility, producing different observa-
tions. Also, using indicator nodes is simply a form of ob-
ject classification and traditionally classification is done 
using naive Bayesian methods where a hidden “un-
known” node, Y, is classified from a set X containing n 
ranked indicators or classifiers.  

In [21] we described a common idiom called the meas-
urement idiom where the credibility of an indicator is itself 
contingent on some other factor. This is easily modelled 
in practice by setting up an additional parent node for 
one or more indictors with parameterised values for σi2.  

Suppose we have three indicators of Y, such as that 
presented in Figure 7 where X= {X1, X2, X3}. In this exam-
ple we assume that 1X  is a reasonably accurate indicator 
of Y, while X2 is much less so and X3 even worse. We 
could capture this information by specifying the variance 
values as follows 
p(X1|Y) = TNormal(Y,0.001, 0, 1) 
p(X2|Y) = TNormal(Y,0.008, 0, 1) 
 

p(X3|Y) = TNormal(Y, 0.02, 0, 1) 

 
Figure 7: Marginal distributions for indicators, p(Xi), given causal 
node Y = medium  

Figure 7 shows the marginal probability distribution 
on the indicator nodes X= {X1, X2, X3} given an observa-
tion on the parent, Y =medium. Clearly X1 is more highly 
correlated with Y than either X2, or X3 

 
Figure 8: Inferring p(Y) from X2 = medium and X3 = low  observations 

Figure 8 shows how we can use the indicator nodes to 
infer the true state of the parent node, Y, from the obser-
vations X2=medium, X3=low. Note also that the unob-
served indicators, such as 1X , are correlated with ob-
served indicators because of the shared parent node, Y. 
Compare this to Figure 9 where we invert the observation 
values such that X2=low, X3=medium and notice how the 
distribution on Y is influenced more highly by indicator 
X2 in both figures. 

 
Figure 9: Inferring p(Y) from X2 = low  and X3 = medium observations 

If there are m ranked indicator nodes each with n states 
full elicitation requires n2m values to be provided by the 
expert. Each of the rank node functions only requires m 
parameter values by comparison. 

Note that the credibility indices, σi2, for each indicator 
can be estimated by simple trial and error or, if the data is 
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available, the parameters estimated using standard Bayes-
ian parameter learning techniques. 

 

7 CREATING RANKED NODES USING THE 
AGENARISK SOFTWARE 

For the purpose of building realistic NPTs that ade-
quately capture expert judgement, the existence of a good 
theoretical approach is insufficient. Good tool support is 
also needed, and successful use of ranked nodes must be 
supported by a reliable tool that: 

• Enables domain experts without any statistical 
knowledge to quickly and easily generate distribu-
tions  

• Provides instant visual feedback to check that the 
NPT is working as expected. 

The AgenaRisk software [1] satisfies these require-
ments and implements the approach described in Sections 
4-6. Constructing the necessary NPT requires experts only 
to go through the following simple steps in AgenaRisk 
(supported by the Dialog shown in Figure 10):  

1) Select the Node Probability Table property for a 
given node and declare that the NPT is defined by 
an Expression.  The TNormal distribution is auto-
matically selected.  

2) Either type in the full weighted expression or access 
the Dialog by a simple right mouse click as shown 
in Figure 10.  

3) Complete the appropriate weights via the dialog 
presented by selecting the parent nodes, using a 
slider bar to define the weight values and the “cer-
tainty” or variance value. The user can also over-
write these by simply entering in values for all nec-
essary parameters.  

 

 
Figure 10: Declaring a rank weight expression for a node in Age-
naRisk 

It is also worth noting that users can change the scale 
(from say a 5-point scale to a 7-point scale as was required 
for a number of the nodes in our commercial case studies) 
with the click of a single button and without having to 

redefine the weighted function. They can also, if they 
wish, edit individual NPT entries by hand in rare cases 
where certain combinations of parent values result in a 
probability value not properly captured by the generic 
function. 

8 CASE STUDY VALIDATION 
The approach described in the paper to constructing large 
NPTs for ranked nodes was used extensively in the real 
world cases described in [7],[8],[23],[25] as well as in 
many other commercially confidential applications. Here 
we will highlight the difficulties, the process and the re-
sults (including comparison with manually constructed 
NPTs) on one specific case study. The goal of this case 
study, which was undertaken with a multinational tele-
coms company, was to produce a BN model for the pur-
pose of reliability evaluation of electronic components. 
The company’s domain experts constructed a model 
comprising 50 nodes in total that allowed the model’s 
users to perform a qualitative adjustment of reliability 
given information about the component manufacturer’s 
development and test processes. The experts involved in 
the study were professional engineers who had some sta-
tistical training in Six Sigma concepts but were not prac-
tising statisticians. 

This case study reports “research in action” and, as 
such, does not give a full and rigorous validation of rank 
nodes versus other elicitation techniques. Nor does it, 
because of confidentiality issues, reproduce the validation 
results achieved with other commercial research partners 
in practice. We would therefore like to encourage other 
researchers to experiment with, test the approach and 
publish the resulting data. 

Here we will focus on a single fragment of the overall 
model that is the same as Figure 1. In this example we 
have two cause nodes:  
X ={X1: Quality of Testing Staff, ,X2: Quality of Testing 
Process}  

and we are interested in using these to estimate  
p(Y| X1, X2). 

The first attempt to estimate the NPT for p(Y | X1, X2) 
relied wholly on manual methods whereby each of the 
125 cells in the NPT was discussed and a value entered. 
The resulting NPT is shown in Figure 11 (the number of 
decimal places is the result of the tool’s automatic nor-
malisation process that ensures all column probabilities 
sum to one, irrespective of how the user’s chose to enter 
the values). During this process it became apparent that 
one of the parent nodes was much more important than 
the other in terms of its effects on the child and this was 
“kept in mind” when the NPT was produced. Some im-
pediments to producing this NPT (consistent with evi-
dence from the psychology literature, such as [12]) are 
worth mentioning:  

• The experts were continually backtracking between 
previously estimated values and current values be-
cause cases were felt to be similar and so the NPT 
values, and in particular whole columns in the NPT, 
could be reused. 
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• It was very difficult to apply the weighting heuristic 
the experts wished to apply given the very large 
number of values being considered. 

• In an attempt to maintain consistency previously 
elicited parts of the NPT were revisited and 
amended. Frequently this led to degradation rather 
than improvement and consequential rework, 
which itself was error prone. 

 
Figure 11: Manually declared table for p(Y1| X1 X2) (values normal-
ised) 

Once the NPT was completed the experts could exam-
ine the sensitivity of results by running the model. Their 
expectation was that the resulting marginal distribution 
for Y would be monotonic and smooth given supplied 
test values for the parent nodes, X1, X2 and that progres-
sive increasing values of the parents would have a com-
mensurate increase in the child value. Our test clearly 
shows that the rank order of results is not obtained: 
Mode (Y | X1 = Medium, X2 = Very Low) = Medium 
Mode (Y | X1 = Medium, X2 = Low) = High 
Mode (Y | X1 = Medium, X2 = High) = Medium 
Mode (Y | X1 = Medium, X2 = Very High) = Medium 

Likewise, when a value for Y =Very High was instanti-
ated in the model it was expected, and hoped, the re-
sponse on nodes X1, X2, by back propagation, would re-
sult in marginal distributions of monotonic character. 
Figure 12 shows that monotonicity is not achieved on the 
distribution of node X2. 

Given these problems ranked nodes were used as an 
alternative to manual derivation of the NPT. As a precur-
sor to the definition of parameter values and weights in 
the ranked nodes a simple “truth” table was used to de-
termine what type of ranked node function would be best 
for each BN fragment. This simply involved taking com-
binations of values at the extreme of each parent node 
state range, such as “Very High”, “Very Low” etc, and 
asking the experts to estimate the mean response of the 
child node conditioned on these values. An example of 
part of such a table is shown in Table 1.  

 

 
Figure 12: Results from sensitivity testing of the manual NPT 

TABLE 1 PART OF 'TRUTH TABLE'  USED TO HELP ELICIT RANKED 
NODE FUNCTION 

Quality of testing 
staff 

Quality of testing 
processes 

Test effective-
ness 

very high very high very high 
very low very low very low 
very low very high low 
very high very low high 

 
This helped reveal a possible heuristic that could then 

be used to generate and test the generated NPT in Age-
naRisk. For example, by mapping the scale ‘very low’, …, 
‘very high’ to a 0-1 scale the table often quickly revealed 
that the mean response of the child node was a simple 
weighted sum of the parents (such as in Table 1, where 
the weighting was heavily in favour of ‘Quality of testing 
staff’). This weighted sum would then be used as the 
mean of the TNormal distribution, with experts happy to 
try different variance values until they were satisfied with 
the results. Once the experts became familiar with the 
approach they often identified the appropriate expression 
and selected parameter values without the use of the 
“truth” table. Note that our use of a truth table is not 
unique to rank nodes and is only one way of helping ex-
perts’ double-check their thinking. It is also worth noting 
that the way we used a truth table is similar to the way 
[30] aligned different verbal-numerical response scales for 
a single NPT along side each other for quick comparison 
by the expert. 

The weights the experts associated with the cause 
nodes were respectively 3, 1, for a weighted mean and the 
variance is 0.01. Hence, the rank node expression is: 

1 23( | ) ,0.01,0,1
4

X Xp Y X TNormal +⎡ ⎤= ⎢ ⎥⎣ ⎦
 

Empirical validation of this rank node function is diffi-
cult in practice given the qualitative reasoning being cap-
tured and the fact that observable data is predicted by a 
set of BN fragments working together. In any case our 
aim in the case study was simply to determine whether 
the ranked node solution offered practical advantages 
and insights over the manual approach. In terms of re-
ducing the numerical load on the experts the approach 
has clear benefits, as has been pointed out. Table 2 dem-
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onstrates the effort savings achieved in building the NPTs 
in two BN models (in both these cases the NPTs were 
originally elicited manually). 

 

TABLE 2: EFFORT SAVINGS (IN TWO MODELS) FOR NEW AP-
PROACH TO ELICITING NPTS 

 BN Model: Safety as-
sessment (28 nodes) 

[17]  

BN Model: Software 
defect prediction (31 

nodes) [6]  
Size of most 

complex 
NPT 

A node with 5 parents 
had an NPT with 324 

entries. The size of the 
NPT was already artifi-

cially reduced by making 
two of the parent nodes a 

2-point rather than 3-
point scale. Moreover, 
ideally a 5-point scale 
would have been pre-
ferred for all nodes. 

14 nodes each having 
an NPT with 125 en-
tries. This was be-

cause each node was 
on a 5-point scale and, 

because of previous 
experience, all nodes 

were limited to two 
parents. 

Total effort 
to elicit most 

complex 
NPT manu-

ally 

72 hours (6 experts in 
sessions totalling 12 

hours). This effort only 
elicited 81 entries manu-
ally; the rest were com-

pleted using interpolation 
techniques. 

24 hours (3 experts for 
a full day) 

Total effort 
to elicit 

same NPT 
using new 
approach 

6 hours (experts need 
only agree on 7 parame-

ters – the 5 parent 
weights, the variance, 
and the function type). 
Note also that with this 
approach a full 5-point 
scale for all nodes is 
possible without any 

extra effort. 

1.5 hours (3 experts 
for 30 minutes to 

agree 4 parameters). 

Effort saved 
for single 

NPT 

66 hours. 22.5 hours 

Potential 
effort saved 
in building 
full model 

143 hours (total of 28 
hours compared with 171 

hours) 
There were 11 other less 

complex NPTs that re-
quired an average of 9 

hours to build compared 
with 2 hours using the 

new approach.  

Minimum of 315 hours 
(total of 21 hours com-
pared with 336 hours) 
There were 14 similar 
nodes. The saving is a 
minimum because with 
new approach would 

have avoided introduc-
ing 5 ‘dummy’ nodes 
simply to ensure no 
more than 2 parents 

for each node.  
Percentage 
saving of 
effort on 

manual ap-
proach 

84% 93% (minimum) 

 
However, whether or not the rank node formulation is 

better is reliant on the judgement of the expert, in that it 
should capture the judgement he/she wishes to articu-
late. This is not easy to formalise statistically since the 
original manual table is in no sense “correct” and in any 
case, for pragmatic reasons, many experts, not being stat-
isticians, may wish to construct the model to represent 
their judgments without validating every fragment con-
tained therein. 

We do, however, use a simple scoring aid for experts 
to compare different NPTs that they might wish to gener-

ate using different rules and schemes. This simply per-
forms a pairwise comparison for each hypothetical mar-
ginal distribution created by each NPT approach 
(“model”), whether it be manual or done by ranked nodes 
(or indeed by some other scheme, such as by multiple 
experts). There are more obviously sophisticated schemes 
for performing sensitivity analysis, such as [14], but given 
our intended audience is primarily non-statisticians we 
prefer a more qualitative aid, which has the aim of identi-
fying difference and magnitude of difference only. 

Our aid involves pairwise comparisons of each candi-
date model by calculating the distance, Z, between the 
predicted state given by one model, Y 1, and the estimated 
state provided by another, Y 2, where both are conditioned 
on the same causal nodes, p(Y 1| X1 X2), p(Y 2| X1 X2): 
Z= Y1–Y2  
where the ranked state values for Y1 and Y2 are replaced by 
integer values 1, 2, 3,… 

 

 
Figure 13: Results from sensitivity testing of the manual NPT 

This score can be easily embedded in the BN itself as a 
child node of the candidate models. Figure 13 shows the 
resulting distribution of p(Z) for our case study example 
(the model used here is the manually generated model, 
that best matches expert’s expectations, used to bench-
mark the goodness of the model constructed using the 
proposed method). Notice that the difference centres are 
zero but there is a slight positive bias, thus showing that 
the manual NPT, Y 2, and the ranked NPT, Y 1, are rela-
tively close matches of each other — on average. Clearly 
if there were large differences between the models a non 
symmetric marginal distribution for p(Z) would highlight 
it instantly (a lack of symmetry would indicate a system-
atic bias in one direction). This approach can be extended 
to become a formal hypothesis test involving the null hy-
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pothesis, H0: Y 1= Y 2. 
To determine whether there are case-by-case differ-

ences between the models the expert can instantiate the 
causal factors, in this case assigning values to X1 X2, and 
examining the effects on p(Z). This is easily done in Age-
naRisk. 

Additional means of validation would involve carry-
ing out sensitivity analysis on the parent nodes and their 
effects on the child nodes. At present we follow this ap-
proach in an ad-hoc manner, as do others, but recognise 
this as an area ripe for improvement. 

9 CONCLUSIONS 
One of the most important challenges in building effec-
tive BN models to solve real-world risk assessment prob-
lems is that of constructing the NPTs. Because of the need 
to involve busy domain experts (who do not necessarily 
understand probability theory in detail) we have to con-
struct NPTs using the minimal amount of expert elicita-
tion, recognising that it is rarely cost-effective or feasible 
to elicit complete sets of probability values. We have 
identified a large class of BN nodes (the ranked nodes) for 
which we have provided a semi-automated method of 
NPT construction.  There is obviously a trade-off between 
the benefits a general method, like ours, can provide and 
the costs of developing a bespoke modelling approach for 
each and every specific situation. In the many real appli-
cations we have developed we have found bespoke mod-
elling to be too costly and demanding to be feasible. Our 
general approach offers a marked improvement over cur-
rent practice and has proven to be acceptable to practitio-
ners. 

The approach presented here has evolved over a 
number of years from the process of engaging with 
domain experts in real commercial situations. We have 
found that this approach makes the difference between 
being able to build realistic BN models and not. The 
BN solutions to real-world problems described in 
[6],[22],[23] used early versions of the approach de-
scribed in this paper. Moreover, the work in those pro-
jects was crucial in informing the automated version of 
the method that has recently been implemented com-
pletely in the AgenaRisk software [1]. An earlier proto-
type of the automated version was used extensively to 
build the models described in [7],[8] and has been 
validated by partners such as Philips, Israel Aircraft 
Industries, and QinetiQ in that project. Validation was 
on two levels. On the first level the domain experts we 
worked with, who were not statisticians, were able to 
build and tailor serious models that captured their be-
liefs well. On the second level, our research partners 
reported that the models produced predictions and 
decision support insights that were demonstrably bet-
ter than the results from methods that they had previ-
ously used.  Also, since then the approach has been 
used in a number of application areas such as for op-

erational risk assessment [25] and for augmenting reli-
ability prediction methods for electronic components 
(which was used as a validation case study in this pa-
per). The results show that the elicitation burden is 
much reduced by using rank nodes by simply eliciting 
a small number of parameters from experts. This does 
not, however, mean to say that using rank nodes guar-
antees better results in all cases and this is why we 
supplement the approach with extensions to cope with 
multimodality and conditioned switching behaviour. 
Likewise, we use a simple scoring approach to com-
pare and highlight the differences between NPTs gen-
erated by different approaches. 
We believe that future work in this area should con-
centrate on three challenges:  

• Eliciting NPTs for complex temporal models involv-
ing evolving processes such as. rapidly changing 
design processes;  

• “Expert mediated” semi-automatic learning of pa-
rameters from data; and  

• comparing data mining methods against BNs de-
rived from expert opinions. 
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