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ABSTRACT 

One of the greatest impediments to the use of probabilistic 

reasoning in legal arguments is the difficulty in agreeing on an 

appropriate prior probability for the ultimate hypothesis, (in 

criminal cases this is normally “Defendant is guilty of the crime 

for which he/she is accused”). Even strong supporters of a 

Bayesian approach prefer to ignore priors and focus instead on 

considering only the likelihood ratio (LR) of the evidence. But 

the LR still requires the decision maker (be it a judge or juror 

during trial, or anybody helping to determine beforehand 

whether a case should proceed to trial) to consider their own 

prior; without it the LR has limited value. We show that, in a 

large class of cases, it is possible to arrive at a realistic prior that 

is also as consistent as possible with the legal notion of ‘innocent 

until proven guilty’. The approach can be considered as a 

formalisation of the ‘island problem’ whereby if it is known the 

crime took place on an island when n people were present, then 

each of the people on the island has an equal prior probability 

1/n of having carried out the crime. Our prior is based on simple 

location and time parameters that determine both a) the crime 

scene/time (within which it is certain the crime took place) and 

b) the extended crime scene/time which is the ‘smallest’ within 

which it is certain the suspect was known to have been ‘closest’ 

in location/time to the crime scene. The method applies to cases 

where we assume a crime has taken place and that it was 

committed by one person against one other person (e.g. murder, 

assault, robbery).  The paper considers both the practical and 

legal implications of the approach. We demonstrate how the 

opportunity prior probability is naturally incorporated into a 

generic Bayesian network model that allows us to integrate other 

evidence about the case. 
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1   INTRODUCTION 

When the police apprehend someone suspected of a crime, one 

of the first questions they ask the suspect is where he was at the 

time of the crime. This is potentially a very diagnostic question: 

if the suspect can show that he was elsewhere, then he cannot 

(except in special cases that we ignore in this paper) have 

committed the crime. If, however, it can be shown that he was at 

the crime scene at the time of the crime, then he is ruled into a 

(relatively) small subset of possible perpetrators.  In classic 

investigative terms this establishes opportunity which, along 

with motive and means, is often considered necessary for 

conviction. Thus, finding out about the suspect’s whereabouts in 

relation to the crime scene and time is a critical starting point for 

most investigations.   

In this paper we will argue that the same logic applies to later 

stages of the legal process: in particular, when the suspect is 

charged with the crime and how we evaluate the strength of 

evidence against him. Information about the suspect’s 

whereabouts in relation to the crime scene is crucial – often as a 

starting point for establishing a case for or against him, before 

other evidence is presented.  

One key point, typically neglected in formal analyses of 

evidential reasoning, is that case information often allows us to 

make reasonable judgments about the probative force of 

opportunity evidence. Indeed, such information, typically used 

to drive an investigation, is equally relevant in court when we are 

assessing the probability that a suspect is guilty. 

Why is such information often neglected in formal analyses? 

We will argue that this neglect hinges on several flawed 

assumptions, including: (i) the belief that at best opportunity 

evidence ‘fails to exclude’ a suspect, but it does not have a 

positive confirmatory value on the hypothesis that he committed 

the crime; and (ii) that placing someone at the crime scene (close 
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to time of crime) at most means he is one of N other possible 

perpetrators, and this set includes all people who could have 

committed the crime, so N is a very large number (which is also 

hard to estimate). Thus, information about opportunity at best 

gives imprecise and typically very small prior probabilities, e.g. 

1/(some large population size). 

As we shall see, both assumptions are wrong. We present a 

principled approach to quantifying information about 

opportunity evidence that corrects these misconceptions.  This 

approach maps naturally onto typical investigative practices1 and 

shows how opportunity evidence is often a key factor in 

determining a suspect’s guilt. 

Our objective is to provide a simple and realistic method for 

estimating what we call the “opportunity prior probability”; this 

is the probability that a suspect is guilty of the crime for which 

he is accused based only on evidence about his proximity (in 

space and time) to the crime scene location and time.  

The paper is structured as follows. In Section 2 we explain 

how our approach can be viewed as a natural and practical 

extension of the classic ‘Island problem’ scenario for the use of 

Bayes to assess probability of guilt given evidence and a prior 

probability of guilt. In Section 3 we provide a formal definition 

of the Crime Scene (CS) and Crime Time (CT), while in Section 

4 we define the formal notion of the extended CS and CT, which 

is necessary for establishing an opportunity prior in cases where 

the suspect has not been proven to be at the CS during the CT. 

This leads to an opportunity prior 1/N for the suspect. In Section 

5 we explain how N can be reduced in certain pathological cases. 

In Section 6 we address the concern of convicting innocent 

bystanders when N is very low. Finally, in Section 7 we describe 

a generic Bayesian Network model that enables us to incorporate 

the opportunity prior along with all other relevant evidence in 

order to compute a posterior probability of guilt. 

2  BAYES AND THE LAW: THE CLASSIC 

ISLAND PROBLEM 

To illustrate the full potential of using Bayesian probabilistic 

reasoning in legal arguments it is common to consider the classic 

‘island problem’ whereby a crime is assumed to have taken place 

on an island when it is known n people were present2–4. This set 

of people is the ‘reference class’ for the crime and the defendant 

is one of them. Before any evidence is considered each of the 

people on the island has an equal prior probability 1/n of having 

carried out the crime. The Bayesian approach for legal 

arguments, as described for example in5–8 can be summarised as 

follows: The prior odds against guilt (n-1 to 1 in this case) are 

multiplied by the likelihood ratio (LR) to arrive at the posterior 

odds of guilt. The LR is the probability of the evidence under the 

prosecution hypothesis divided by the probability of the 

evidence under the defence hypothesis. Suppose, for example, 

we discover evidence linking the defendant to the crime such as 

that he/she has a DNA profile matching a DNA trace left by the 

person who committed the crime. Suppose the LR for this 

evidence is 10,000. Then if n = 100 there is a very strong 

posterior probability that the defendant is guilty (about 99.9%), 

whereas if n = 1,000,000 the posterior probability of guilt is only 

1%. It is clear, therefore, that while the LR offers important 

information about the probative value of evidence, it is our prior 

probability of guilt that determines whether or not we believe the 

evidence is sufficient to convict. 

We now provide a formalisation of the island problem 

whereby we seek to narrow down the crime scene and time as far 

as can possibly be agreed. If, for example, the crime definitely 

took place in a particular village in the island on a particular quiet 

evening then, although all the islanders could have been present, 

we should be able to provide a good estimate of those who 

actually were there during that evening. On an island where n = 

1,000,000 this might reduce the relevant n to 100. If it is proven 

that the defendant was one of the people in the village then the 

prior probability of guilt is 1/100. If the defendant insists he/she 

was not present that evening, then the first task for the 

prosecution is to determine the ‘closest’ place/time where it is 

agreed the defendant was. If, for example, he/she was certainly 

at a garage one mile from the village two days earlier then we 

need to consider the area covering the village and a one mile 

circumference outside it, and the two days leading up the crime 

being committed. We consider this to be the ‘extended crime 

scene/time’. Let N be an estimate of the number of people who 

were in this extended crime scene and time. Then we know that 

the crime must have been committed by one of these N people 

and that the defendant is one of these. 

In the next two sections we define formally the notions of 

crime scene and crime time (section 3) and the extended versions 

of these (section 4) in order to arrive at objective values for the 

number n and N respectively. 

Note that the parameter values we set in all of the examples 

presented could easily be replaced with distributions rather than 

point values, but we have used point values for ease of 

explanation, without any loss of generality. 

3   DEFINING THE CRIME SCENE AND 

TIME 

In what follows we assume a crime has taken place and that it 

was committed by one person against one other person (e.g. 

murder, assault, robbery). 

The Crime Scene (CS): this is the smallest physical area 

within which it is certain the crime happened.  

 

Example 3.1: 

a) If a person was attacked in a 20-metre alleyway, but it 

is not certain which specific point then the CS is the 

entire alleyway. 

b) If a person was mugged while standing next to a 

particular lamppost by Piccadilly Circus tube station 

then the CS would be an area about one metre around 

the lamppost. 
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c) If the victim was shot in a theatre, then the CS is the 

area of the theatre covering any point from which a shot 

could have been fired.  

The Crime Time (CT): this is the smallest time interval (𝑡, 𝑡′) 

between which it is certain the crime took place. This interval 

could be as short as a millisecond (in cases where we have 

verified time recordings of the crime) or as long as months or 

even years for old cases. 

The above examples are typical of scenarios in which our 

proposed method is most useful since the crime scene is 

reasonably specific and any disagreements and uncertainty about 

it are tightly bounded. However, in some scenarios there may be 

fundamental disagreement about the CS.  

 

Example 3.2: Suppose the police claim the crime (a murder) 

took place in the alleyway between 01.00 and 01.30 but the 

defence shows that the body could have been dumped there 

and that the time of death could have been any time after 

midnight (when the victim was last seen alive at a night club 

one mile away) and 01.30. Then, in such a case, the crime 

scene would be an area covering not just the night club and 

alleyway, but anywhere within which it would be possible 

for the victim to have got to, such that it would also be 

possible for the victim’s body to have got back to the 

alleyway by 01.30. Even for such a relatively short period of 

time this could be a very large area since the victim could 

have been taken in a car and driven 30 miles away before 

being returned to the alleyway.  

 

The number of people, n, at CS during CT: Although we 

generally do not know who was present at CS during CT it is 

possible to estimate the number of people n (other than the 

victim) who were. For example: 

 If, in Example 3.1(a) CT is between 01.00 and 01.30 (i.e. 

early hours of the morning) n might be up to 5, whereas if 

CT is between 08.00 and 08.15 (a shorter, but much busier 

period) it could be 30.  

 If, in Example 3.1(b) CT is 17.30-17.33 on a Thursday then 

n could be as high as 200, whereas if CT is 04.00-04.15 on 

a Tuesday morning n might be closer to 5. 

 If, in Example 3.1(c) the victim was an actor on stage during 

a crowded performance then n would be the capacity of the 

theatre. If, however, the attack took place in the foyer while 

the performance was taking place then n would be a very 

low number (typically only a handful of people would be in 

the foyer at any time during the performance). 

 In Example 3.2 the CS covers an area about 30 miles around 

the area of the alleyway and night club over a period of 90 

minutes at night. If this was an urban area including a major 

city then n would be an estimate of the number of residents 

and visitors present during that period (a very large 

number).  

Whoever committed the crime must, on the above 

assumptions, be among the n people who were present at CS 

during CT. In the absence of any other evidence each such person 

has a 1/n probability of being the criminal. If it is proven that 

the defendant is one of these people, then the prior 

probability of guilt is 1/n. 

We shall deal with the case where it is not proven that the 

defendant was in the CS during CT in the next section, but it is 

important first to clear up a very important and common 

misunderstanding that applies to all of the above examples. As 

mentioned earlier what we have done is formalise the reference 

class of possible suspects. Variations of this approach have been 

considered many times and criticised on the basis that more or 

less anybody in the world could have been there and that 

therefore none of these people can be ruled out as suspects. We 

can dismiss this concern by emphasizing that the number n is an 

estimate of the actual number of people who were actually there, 

NOT the number of people who could have been there. To 

hammer this difference home consider the following: 

 

Example 3.3: From CCTV footage, two men Fred and Bill 

are known to have been in a room when a third man was 

murdered. No other people were in the room at the time and 

so one of Fred or Bill committed the murder. Fred is charged 

with the crime. In the absence of any other evidence there is 

no doubt that ½ is a reasonable prior probability for Fred’s 

guilt. Suppose, however, that the CCTV footage only shows 

that Fred plus a second man whose identity we do NOT know 

was in the room. In theory, any man in the world could have 

been there. But Fred’s prior probability of guilt must be 

unchanged at ½. It is a fallacy to claim – as some have – that 

the probability of guilt is 1/k where k is the number of all 

people who could theoretically have been at the scene. 

 

Hence, when n is small and it is proven that the defendant 

was at CS during CT the prior probability of guilt 1/n is relatively 

high.   

 

Example 3.4:  In a Dutch murder case in Simonshaven in 

20119 , the CS is known to be a very small area of a quiet 

forest and the CT is known to be a fairly short period of time 

(between 8.00pm and 8.30pm on a Saturday evening). The 

suspect X was found there close to the body of his wife. He 

claims they were both attacked by a man coming out of the 

bushes.  There is no dispute that the suspect was present at 

CS during CT. The question is: how many other people were 

in the CS during the CT. Based on local knowledge, a 

generous estimate for the defence might be n = 5.  So, the 

prior probability of guilt before considering any evidence 

may be set no lower than 1/5. 

 

 



ICAIL ’17, June 2017, London UK  N. Fenton et al. 

  

4   DEFINING THE EXTENDED CRIME 

SCENE AND TIME WHEN IT HAS NOT 

BEEN PROVEN THAT THE DEFENDANT 

WAS AT THE CRIME SCENE DURING 

THE CRIME TIME 

In general, the defendant will dispute having been present at CS 

during CT. Our task is hence to determine the extended crime 

scene and time based on the suspect’s ‘closest’ proven time and 

location to CS and CT. The notion of ‘closeness’ is derived from 

both distance from CS (i.e. location) and time from CT and 

defined by considering the most ‘recent’ known locations where 

X was either before or after CT. Specifically, we consider: 

 Case 1: Let L be any location and 𝑡1 the time where it is 

proven X certainly was before time 𝑡 (this could include 

location CS of course) such that it was physically 

possible for X to get from L to CS before time 𝑡′.  

Consider the area whose centre is CS and whose 

perimeter is d(L) where d(L) is the distance of L from 

CS. Let N be the total number of people who were in this 

area between time 𝑡1and time 𝑡′. Then exactly one of 

these people – which includes X - must have committed 

the crime. 

 Case 2: Let L be any location and 𝑡2 the time where it is 

proven X certainly was after time 𝑡 (this could include 

location CS of course) such that it was physically 

possible for X to get from CS to L between time 𝑡 and 

𝑡2. Consider the area whose centre is CS and whose 

perimeter is d(L) where d(L) is the distance of L from 

CS. Let N be the total number of people who were in this 

area between time t and t2. Then exactly one of these 

people – which includes X  – must have committed the 

crime. 

Note that, in general, there will be at least one instance of 

each of cases 1 and 2. Each instance results in a number 

𝑁1, 𝑁2, … , 𝑁𝑘. 

 

Let 𝑁 = min{𝑁1, 𝑁2, … ,𝑁𝑘} 

 

Then, by definition, X is one of exactly N people who could 

have committed the crime and, in the absence of other evidence, 

1/N is a lower bound for the probability that X committed the 

crime. This probability is also a realistic and sensible prior for 

the probability of X’s guilt. We can also conclude that a 

reasonable prior probability for X being at the crime scene is n/N. 

 

Example 4.1:  Consider the case of a murder in the foyer of 

a theatre during a performance. The murder occurred 

sometime between 21.00 and 21.10. Suppose that it is proven 

that the suspect was in the theatre that evening but the suspect 

denies being in the foyer between 21.00 and 21.10. However, 

it is proven he was in the foyer when he entered the theatre at 

19:00 and when he left at 21:50. So we calculate: 

 𝑁1: the number of people who were in the foyer 

between 19:00 and 21:10. If the performance 

started at 19:30 then this will be approximately 

the number of people who watched the 

performance plus the staff in the foyer.  

 𝑁2: the number of people who were in the foyer 

between 21:10 and 21:50. Assuming the 

performance finished at 21:45 this number will 

likely be slightly smaller than 𝑁1 since some 

people will have left before 21:10 and some will 

not yet have left the theatre. 

In this example it would be pointless considering any agreed 

time or location where X was before or after he entered and 

left the theatre since it would give rise to a number 𝑁 larger 

than 𝑁2. We conclude that 𝑁 = 𝑁2 in this case. 

 

Example 4.2: In example 3.1(a) above suppose the CS is 

an alleyway in Barking (East London) and CT is 03.00 to 

03.30, but the suspect claims he has never visited the CS 

and that he was at home H (20 miles from CS) during the 

entire CT. It is proven he was at home H at 01:00 (the last 

known time before t) and at work W (10 miles from CS) at 

06:30 (the first known time after 𝑡′).  

 

In this example we have 

 Location H: in this 𝑁1is the number of people 

who were within an area 20 miles around the 

alleyway between 01:00 and 03:30.  

 Location W:  in this case 𝑁2 is the number of 

people who were within an area 10 miles around 

the alleyway between between 01:00 and 06:30. 

It is unlikely any other known location would lead to a 

smaller number than 𝑁1or 𝑁2 so 𝑁 is the minimum of 𝑁1and 

𝑁2. In other words: the set of possible perpetrators is the 

smallest extended crime scene/time (in terms of the number 

of people who were there) of which the defendant is a 

member. 

 

Example 4.3 In example 3.1(a) above suppose the suspect 

lived 200 miles from CS and denies ever being close to CS. 

Suppose also that the crime took place several years before 

the suspect was arrested. In such a case the ‘closest’ 

known time and location could be a very long way from 

the CS and a long time before or after CT. In such a 

situation N could be very large - the number of people who 

lived and visited a very large area over a prolonged period 

of time. If, for example, the CS is somewhere in central 

London and if the ‘closest location’ we have for the 

suspect is a location 15 miles from the CS 6 months before 
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the CT, then 𝑁 would be in the order of 40 million – the 

number of people who lived in or visited an area including 

the whole of Greater London during that 6-month period.  

5   REDUCING THE NUMBERS n AND N AND 

HANDLING PATHOLOGICAL CASES 

While the above approach attempts to constrain the ‘reference 

class’ of potential suspects as much as possible in most cases, it 

should be possible to reduce n and N further.   For example, it 

seems reasonable to always exclude from n and N an estimate of 

the number of people in the area during the period that could not 

physically have carried out the crime. Depending on the type of 

crime this could mean excluding all people under a certain age, 

all people of a certain sex, all people with certain types of 

physical disabilities etc. However, this touches on the critical 

notion of ‘capability/means’ which is distinct from opportunity 

and which would normally be considered as evidence during the 

case (unlike the pure location/time based opportunity evidence 

that we have argued should determine the prior probability). In 

this case the lawyers should make it clear that, if the capability 

evidence was explicitly used to determine the prior then it should 

not be counted again as evidence against the defendant. One of 

the benefits of the BN approach that we describe in Section 7 is 

that it explicitly avoids such double-counting. 

There are also pathological cases whereby the number N (for 

the extended crime scene location) is massively inflated by the 

inclusion of people passing through the area during the extended 

time period who could not have been present at the actual CS 

during the CT. This is especially true for events that attract large 

numbers of people to an area for brief periods. 

 

Example 5.1: Suppose the crime took place on 1 October in 

a small village with 100 residents. Suppose the ‘closest’ 

location the defendant is known to have been was 10 miles 

away on 5 October. Then N is the number of people who 

were within 10 miles of the village between 1 and 5 October. 

However, suppose that this area includes a football stadium 

and that on 3 October a match took place that attracted 

20,000 fans from abroad. It is known – from airport and hotel 

records – that almost all the visitors arrived and left on the 

same day (3 October) and therefore could not physically 

have been at the CS during the CT. However, by our 

definition, N includes all 20,000 visitors. This is clearly 

inflated. Although we cannot rule out any of the 20,000 

visitors from committing the crime, there is no reason why 

we cannot reduce the number based on an estimate of the 

number who came and left on 3 October. To not do so would 

be similar to the fallacy highlighted in Example 3.3 - treating 

the unknown ‘other man’ in the room of two suspects as 

requiring a different prior from the case where we know the 

identity of both men.  

 

Another possible complication is where the defendant has – 

a priori – a lower probability of having been at the CS than 

others. 

 

Example 5.2: Suppose the CS is a town in North East 

Scotland, but the closest known location for the suspect is 

his home town Bournemouth where he is known to have 

been both the day before and the day after the CT (the 

defendant claims to have been there for the whole period but 

only the day before and after have been independently 

confirmed). Because Bournemouth and North East Scotland 

are 500 miles apart the extended area includes the whole of 

the UK. Now, while it is certainly possible for the suspect to 

have got to North East Scotland in the time interval, in the 

absence of any other evidence it is surely reasonable to 

assume that the prior probability he did so is much less than 

people living closer to the town in North East Scotland.  This 

suggests that we might need to consider a distance-weighted 

computation when calculating priors. 

6  THE RISK OF CONVICTING INNOCENT 

BYSTANDERS 

The solution presented above works well when it is known that 

the defendant was in the vicinity of the CS fairly close to the CT, 

but it may be problematic when it is proven that the defendant 

was very close to the CS and very close to the CT. In such cases 

N will be a very small number, and the prior probability, 1/N, 

will, consequently, be high. 

 

Example 6.1: Suppose that a man Y, living alone, has been 

murdered in his house. This is in a very quiet district with no 

previously reported crimes, and with just one neighbouring 

house 20 metres away.  The neighbour X, also a man living 

alone, was known to have been at home on the night of the 

murder, although it is not known if he visited Y. The CS is 

Y’s living room and the CT is 9.00-11.00pm.  By considering 

an extended CS to be a 20-metre perimeter around the CS, it 

is accepted that X was in the extended CS during CT. In such 

a situation N will be extremely low, typically N = 2, allowing 

for the possibility of a rare visitor to Y (invited or uninvited).  

As X is one of the N, his prior probability of guilt is 50%.    

 

In Example 6.1, X may well become a suspect simply based 

on this 50% prior. The danger is that, with a prior probability of 

50%, little additional evidence may be needed to meet the 

standard of proof. If the standard of proof requires a posterior 

probability of 95%, it is sufficient for conviction that the 

evidence presented by the prosecution has a likelihood ratio of 

19 (0.50/0.50 × 19 = 0.95/0.05). This is problematic since some 

of the cases that start with a high prior, because it is known that 

the defendant was very close to the CS very close to the CT, are 

cases where the defendant is innocent, and just happened to be 

nearby. The proposed solution for determining the prior 
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probability makes it very easy for innocent bystanders to be 

wrongfully convicted. 

One way to handle this problem is to add a strong requirement 

of robustness to the standard of proof, so that a defendant can 

only be convicted on evidence with a low likelihood ratio if other 

hypotheses have been investigated so thoroughly that it is highly 

unlikely that evidence could be produced against someone else. 

7   INCORPORATING THE PRIORS INTO A 

BN MODEL THAT ALSO HANDLES 

UNCERTAINTY ABOUT N AND n 

In order to properly incorporate the prior opportunity probability 

with other potentially complex and related evidence (as well as 

unknown hypotheses) to compute a rational posterior probability 

of guilt, it has been widely acknowledged that a Bayesian 

Network (BN) model is an ideal formalism10–12.   

A BN is a directed graph, together with an associated set of 

probability tables. The graph consists of nodes and arcs as shown 

in Figure 1.  

The nodes represent variables – some of which are discrete 

and non-numeric, such as the Boolean variable ‘Suspect 

committed the crime’ which has two states “True” and “False”; 

and some of which, like N as described above, are numeric and 

may be discrete or continuous. The arcs represent causal or 

influential relationships between variables, and so enable us to 

represent dependencies between different pieces of evidence. 

Associated with each node is a Node Probability Table (NPT). 

For a discrete node with discrete parents the NPT captures the 

relationship between the node and it parents by specifying the 

probability of each of its states given every combination of 

parent states. For a numeric node with parents the NPT is 

generally specified as a conditional probability distribution.  For 

a discrete non-numeric node without parents, the NPT simply 

specifies the prior probability associated with each state. For a 

numeric node without parents the NPT is normally specified as 

a probability distribution.  

Once a BN has been constructed we can enter observations 

(evidence) on any node and perform Bayesian inference to 

update the probability of each unobserved node – here we are, of 

course, especially interested in the updated probability of the 

node ‘Suspect committed the crime’. This process (called 

Bayesian propagation) is complex for all but the smallest models 

but widely available BN tools (that implement standard 

propagation algorithms) enable us to easily build and run the 

computations automatically13.   

Figure 1 presents a generic BN model for incorporating the 

values n and N described above in such a way that – before any 

other evidence is presented – the prior probability of guilt is n/N 

as demanded of our method.  Some intermediate nodes primarily 

used to enable us to transform continuous probability values into 

Boolean nodes according to the ‘Binomial trick’14 are hidden 

(this trick simply inserts a hidden  integer node of  two values 

{0,1} as a child of the continuous node c and defines its 

probability as a Binomial(1, c) distribution); dotted edges signify 

that there is at least one such hidden node on the path. The full 

model is available for download15 and may be run in the freely 

available version of AgenRisk16. In addition to the nodes n and 

N we have nodes: 

 “Suspect at CS” is a Boolean node for which the 

probability of True is equal to n/N  

 “Suspect committed the crime” is a Boolean node for 

which the probability of True is equal to: 

o 1/n when “Suspect at CS” is True;   

o 0 when “Suspect at CS” is False;   

 “Other committed the crime” is a Boolean node which 

is True when “Suspect committed the crime” is False, 

and False when “Suspect committed the crime” is True 

 Various Evidence nodes (shaded) that are defined 

according to the evidence accuracy idiom17 and whose 

NPTs encapsulate the Likelihood Ratio of the 

evidence,  and are dependent on the particular type of 

evidence.  

When we enter exact values for n (e.g. n = 10) and N (e.g. N 

= 100) and execute the model we get the expected prior 

probability values for both suspect at CS and suspect committed 

the crime (see Figure 2). 

We can also enter uncertain evidence about n and N in the 

form of probability distributions as shows in Figure 3. In Figure 

4 we have entered some evidence that the suspect was at the CS.  

This could be, for example, forensic evidence found at the 

scene that matches the suspect or a credible eye witness - the 

NPT for the latter is defined in Table 1, which takes accounts of 

reasonable errors in such identifications. 

 

Table 1 NPT for node "Evidence suspect at CS" 

Suspect at CS False True 

False 0.999 0.1 

True 0.001 0.9 

 

It should be noted that the BN propagation also provides us 

with the likelihood ratio for any Boolean hypothesis node H 

(such as ‘Suspect at crime scene’ or ‘Suspect committed the 

crime’) with respect to any evidence observed E (such as the eye 

witness evidence). This is because the BN provides us with the 

values of P(H) and P(not H) before the evidence is entered and 

the values of P(H | E) and P(not H | E) after the evidence is 

entered. By Bayes theorem the likelihood ratio is: 

 

𝑃(𝐻|𝐸)

𝑃(𝑛𝑜𝑡𝐻|𝐸)
×
𝑃(𝑛𝑜𝑡𝐻)

𝑃(𝐻)
 

  

In this example, reading off the relevant probabilities from 

Figures 3 and 4 we get a likelihood ratio of approximately 898 

for the eye witness evidence with respect to the ‘Suspect at crime 
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scene’ hypothesis, but a lower likelihood ratio of approximately 

8.5 for the same evidence with respect to the ‘suspect committed 

crime’ hypothesis. Note that the BN calculations take account of 

all of the other dependencies and prior information in these 

computations.  

Finally, suppose we also have evidence supporting the 

hypothesis that the suspect committed the crime (where the 

evidence has a likelihood ratio of 50 that is encoded into its NPT) 

then the posterior probability that the suspect committed the 

crime increases to nearly 98% as shown in Figure 5.  However, 

any contrary evidence supporting the hypothesis that somebody 

else committed the crime would, of course, reduce this 

probability. 

8   CONCLUSIONS AND 

RECOMMENDATIONS 

We have presented a novel approach to modelling opportunity 

information in a legal context. It clarifies several misconceptions 

about the question of prior probability, thus avoiding some of the 

key objections to using Bayesian approaches to evaluate 

evidence. It also unifies good inferential practices, used during 

police investigations to identify the whereabouts of a suspect at 

the time of the crime, with the corresponding application of 

opportunity information in the evidence evaluation phase. This 

has implications both pre-trial and in the courtroom. 

As it allows for a systematic treatment of opportunity 

information our approach should be of use pre-trial to help 

investigators and prosecutors assess the evidential case against a 

suspect and thus inform subsequent decisions about whether 

there is sufficient evidence to prosecute. It should also be 

relevant to how prosecution or defence teams formulate their 

arguments, allowing them to incorporate opportunity evidence in 

a principled manner. We also believe that it has relevance for 

how evidence is presented in court. One common criticism 

levelled against Bayesian approaches is that prior probabilities 

are solely the province of the trier of fact (which in UK and USA 

might be a jury of laypeople). A critical problem here is that if 

the jury is presented with statistical evidence (such as DNA 

evidence) they are left with the difficult task of combining this 

quantitative information with their prior beliefs. By showing the 

jury how to factor in opportunity evidence along with other key 

evidence in the case our proposed approach could help alleviate 

some of these difficulties. 

Another common objection to the use of prior probabilities 

is that it seems to conflict with the legal presumption of 

innocence. Our approach addresses this objection since our 

account interprets the presumption of innocence to say that the 

defendant should be treated no differently from any other person 

who also had the opportunity to commit the crime. In other words 

the defendant is as probable to be the perpetrator as anyone else 

with the same opportunity, absent other evidence in the case.  

Finally, we acknowledge that our proposal only applies to 

cases where it is known that a crime has been committed, but 

there is uncertainty as to the identity of the perpetrator. But in 

some cases we are uncertain as to whether a crime has been 

committed at all, for example in cases where a mother is accused 

of killing her baby, or someone is charged with dangerous 

driving. In such cases identity is not an issue, and so the prior 

must be calculated differently. A solution for this problem is a 

question for future research. 
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FIGURES 

 
Figure 1 Generic BN model structure 

 

 

 
Figure 2 State of model when n = 10 and N = 100 
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Figure 3 State of model when n and N are distributions rather than point values 

 

 
Figure 4 State of model after some evidence is entered 
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Figure 5 Evidence suspect committed crime (with LR = 50) entered 


