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Abstract 
A 2010 UK Court of Appeal Ruling (known as “R v T”) asserted that Bayes theorem and 

likelihood ratios should not be used in evaluating forensic evidence, except for DNA and 

‘possibly other areas where there is a firm statistical base’. The potential impact of this 

ruling is enormous and it has drawn fierce criticism from expert witnesses, academics and 

lawyers, who have identified various weaknesses and fallacies in the ruling. This paper 

focuses on the strategic and cultural challenges that the ruling raises to ensure that the role of 

Bayes is better understood and exploited in the presentation of forensic evidence. We 

provide a simple unifying way of describing all probabilistic forensic ‘match’ evidence; this 

enables us to easily identify and avoid the kind of common misunderstandings and fallacies 

that have afflicted probabilistic reasoning about evidence, including especially why it is 

irrational to assume that some forensic evidence is ‘statistically sound’ whereas other less 

established forensic evidence is not. But these misunderstandings are not restricted to 

lawyers, since we show that both forensic scientists and even Bayesian experts have 

consistently failed to include all relevant information in their evidence, such as error 

probabilities, and this applies to DNA as much as any other forensic science.  We also show 

that there are severe limits of the extent to which the results of Bayes can be presented in 

purely intuitive terms; we show that the scope in forensics is even narrower than previously 

assumed. Hence, there are two major challenges facing the opponents of the R v T ruling: 

First, there must be much greater awareness of the need to improve Bayesian forensic 

arguments (before they are even presented in court) in order to avoid the common errors and 

omissions that are made. Second, there must be a radical rethink on the strategy for 

presenting the results of Bayesian arguments in court. Resorting to the formulas and 

calculations in court is a dead end strategy since these will never be understood by most 

lawyers, judges and juries, but the intuitive presentations simply do not scale up. Ultimately 

this means getting the lay observers to ‘accept’ that they need only question the prior 

assumptions that go into the Bayesian calculations and not the accuracy or validity of the 

calculations given those assumptions. Bayesian networks may provide a suitable mechanism 

for performing these calculations. 
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1. Introduction 
Proper use of probabilistic reasoning has the potential to improve dramatically the 

efficiency and quality of the entire criminal justice system. Bayes theorem is a basic 

rule, akin to any other proven maths theorem, for updating the probability of a 

hypothesis given evidence.  Probabilities are either combined by this rule, or they are 

combined wrongly. Yet, the Court of Appeal in the case of R v T [1] ruled that the use 

of formulas to calculate probabilities and reason about the value of evidence was 

inappropriate in the area of footwear evidence. It regarded the forensics of footwear 

matching as ‘unscientific’ and not having a sufficiently ‘firm statistical base’ in 

contrast to DNA forensics. Specifically, Points 86 and 90 of the ruling respectively 

assert: 

 

“..We are satisfied that in the area of footwear evidence, no attempt can 

realistically be made in the generality of cases to use a formula to calculate the 

probabilities. The practice has no sound basis”. 

 

“ It is quite clear that outside the field of DNA (and possibly other areas where 

there is a firm statistical base) this court
3
 has made it clear that  Bayes theorem 

and likelihood ratios should not be used”   

 

Given its potential to change the way forensic experts analyse and present evidence in 

court, experts have been understandably quick to publish articles criticising the ruling. 

At the time of writing there have already been at least four such excellent articles 

[12],[29],[31],[32] that provide a detailed analysis of the case and ruling. These 

papers recognise that there were weaknesses in the way the expert presented the 

probabilistic evidence (in particular not making clear that likelihood ratios for 

different aspects of the evidence were multiplied together to arrive at a composite 

likelihood ratio), but nevertheless express deep concern about the implications for the 

future presentation by experts of forensic evidence. The papers recognise positive 

features in the ruling (notably that experts should provide full transparency in their 

reports and calculations) but they provide compelling arguments as to why the main 

recommendations stated above are problematic. For example, [32] uses the following 

analogy of likelihood ratio calculations with area calculations: 

 

Saying the expert should not use this ‘mathematical formula’ to assess the 

composite likelihood ratio is like saying that if one is just estimating by eye 

the area of a field, one is not allowed to multiply estimates of its width and 

length together. Clearly it is the correct procedure: there is no uncertainty in 

the relationship between length, width, and area, only in their values. If the 

Court were to say that the expert was not to use a logical procedure, rather 

than a ‘mathematical formula’, the flaw in its reasoning would be obvious. 

 

The authors in [32] also conclude that: 

 

..the Court has not understood the difference between assessments of the 

probability of a proposition and of the strength of evidence for the proposition; 

                                                 
3
 The judge is actually referring to the Court of Appeal ruling in the case of Adams, which is 

mentioned in Point 89.  
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the second is a confusion between uncertainty in the values of the variables 

and uncertainty in their relationship in a mathematical formula. The fact that 

variables cannot be precisely expressed does not affect the validity of the 

relationships described by the formula. 

 

The authors in [31] highlighted the inconsistency in the ruling which, on the one hand 

rejects the use of Bayes and likelihood ratio calculations, while on the other hand 

insists on full transparency of all calculations. They ask: 

 

..how could such an injunction ever be enforced on forensic scientists … The 

best that might be imagined would be a policy of “don’t ask, don’t tell”, 

whereby experts formulated their conclusions according to their good faith 

understanding of scientific protocol but carefully concealed their “deviant” 

probabilistic reasoning from legal scrutiny. 

 

On a similar theme the authors in [11] assert that: 

 

…the evaluation of evidence for a court of law is not just a matter of “using 

likelihood ratios” but one of working to a set of principles that are founded on 

logic. To deny scientists the contemplation of the likelihood ratio – whether 

quantitative or qualitative – is to deny the central element of this logical 

structure 

 

Clearly, as pointed out in [32], the ruling in [1] exhibits misunderstandings of some 

fundamental ideas of probabilistic reasoning and even includes instances of the 

fallacy of the transposed conditional, despite the dozens of papers and even rulings 

about it over many years. That such errors should continue to be made routinely by 

members of the legal profession (see also [19] for other recent examples) indicates 

that we (meaning the community of experts in probabilistic reasoning) have failed to 

communicate our arguments effectively where it matters most. In Section 2 we 

explain the challenges that this failing poses for expert witnesses and Bayesians. The 

rest of the paper addresses the challenge and is structured as follows: 

 

 In Section 3 we introduce a hypothetical forensic ‘science’ in order to present 

the core ideas of forensic match evidence in a simple unifying way.   This 

enables us to explain in very simple terms the Bayesian approach and to 

expose not just the fundamental misunderstandings in the R v T ruling, but 

also a number of key issues that have been missed in previous discussions.  

 In Section 4 we use the generic example to highlight the irrationality of the 

core message in the R v T ruling (namely that there can be a clear distinction 

between forensic methods that are or are not ‘statistically sound’ and different 

allowed reasoning applied).   

 While Sections 3 and 4 expose the weaknesses in the R v T ruling, Section 5 

explains why, in many ways, the ruling is perfectly understandable, since we 

show that forensic probabilistic evidence is usually presented in a confusing -, 

and often incorrect - way. In particular, forensic scientists and even Bayesian 

experts typically ignore (or do not properly articulate) the potential for testing 

errors (false positives and false negatives).   

 Hence in Section 6 we show that, when the potential for testing errors is 

included (as it should be) this introduces significant complexity even in very 

simple cases.  The key point is that, even in the simplest case, it is unrealistic 
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ever to expect the associated Bayesian argument to be understood by lay 

people.  We explain how the use of Bayesian network models may potentially 

address this problem.  

 Finally, in Section 7 we present the grand challenge that Bayesians need to 

address before Bayes can ever take (what Bayesians feel should be) its rightful 

central position in legal reasoning. 

 

 

2. The main challenges for expert witnesses and 
Bayesians 
 

While the various papers on the ruling in [1] have done a fine job analysing in depth 

the weaknesses contained therein, there should be no doubt that the ruling is a 

damning indictment of the community of experts and academics who recognise the 

central importance of Bayesian reasoning for evidence evaluation. Despite some 

twenty-five years of work explaining the power and relevance of Bayes to the law, 

(resulting in several hundred academic publications and dozens of textbooks) the 

actual impact on legal practice has been minimal.  

 

This failure must be attributed to our inability to communicate the core ideas in such 

way that they are accepted as a standard tool of the trade rather than as they are 

perceived now by much of the legal profession:  an exotic, somewhat eccentric 

method to be wheeled out for occasional specialist appearances whereupon a judge or 

lawyer will cast doubts on, and even ridicule, its integrity (hence ensuring it is kept 

firmly locked in the cupboard for more years to come). 

 

To address the problem we need to communicate the core ideas more effectively to 

both forensic scientists and lawyers. Specifically, we need to ensure that: 

 

a. both the forensic scientists and lawyers know when Bayesian reasoning should 

be used.   

b. the forensic scientists are able to properly articulate the assumptions required 

for a Bayesian analysis. 

c. both the forensic scientists and lawyers know the difference between the 

assumptions required for the analysis (which will generally be disputed) and 

the Bayesian calculations that determine the conclusions based on the 

assumptions (which must not be disputed). 

d. before evidence is used, the forensic scientists are able to perform the 

Bayesian calculations correctly and efficiently. The scale of this problem has 

been massively underestimated, and as we shall explain in this paper, can only 

be resolved by more widespread acceptance of the use of tools.  

e. the forensic scientists (and ultimately the lawyers themselves) are able to 

present the results of Bayesian reasoning about evidence in a way that is 

understandable to jurors and other lawyers. This is the most difficult challenge 

of all since, ultimately it will only be achieved once it is accepted that we do 

not actually have to reason in court about the results of the Bayesian 

calculations themselves (i.e. the calculations are accepted in the same way as 

we might accept the results of using a calculator for long division [19]).  



5 

 

f. likelihood ratios (or some suitable graphical/verbal equivalent representation) 

are used as a standard means for stating the value of evidence (individually 

and in combination).  

 

To see the extent of how and why we have failed to meet the above objectives we 

need only look at the range of relevant textbooks: 

 

 There are two standard textbooks, [24]  and [27], for forensic science training.  

Despite its apparently encyclopaedic coverage, [27] contains nothing at all on 

Bayes and only some basic high school material on statistics such as graphs 

and bar charts. The book [24] does contain a very brief introduction to Bayes 

and the likelihood ratio right at the end, but without attempting to link it in any 

way to the core material of the book (so that it appears as an afterthought, out 

of context). 

 There is one standard book, [37], aimed at forensic scientists presenting 

evidence in court. Until its latest 2010 edition, this book did not contain any 

mention of Bayes, likelihood ratios, or even probability, and so failed to 

consider such basic issues as random match probability and the probability 

that tests may have less than perfect accuracy (more encouragingly, the new 

2010 edition does contain a chapter on trace and contact evidence [14] that 

includes a discussion of the Bayesian approach).  

 There are several excellent books that focus on the statistical and probabilistic 

aspects of forensic evidence. These include [8] , [10] , [11], [13], [18],[21], 

[28], [29].  These books cover exactly the right material in depth, and they 

also include introductory material on Bayes. However, they are most suited for 

people with a statistical or mathematical background (who wish to find out in 

detail how to properly reason with forensic evidence) rather than practicing 

forensic scientists lawyers. So, for example, even those that are considered the 

most accessible to non-experts, namely [8] [18] [29], make extensive use of 

formulas and hence require a significant level of mathematical sophistication. 

The books also tend to focus on the details of specific types of forensics 

(especially DNA). 

 There are no suitable relevant books we are aware of that are specifically 

targeted at lawyers. The closest would be populist books on probability and 

risk, such as [22] and [23], but these do not address the issue of evidence 

presentation. 

. 

In [19][20] we argued that it was a mistake to assume that any kind of Bayesian 

formulas - such as those used in the case of R v Adams (and shown in Figure 1) could 

be presented to lawyers and juries no matter how ‘simple’ they appeared to 

statisticians.  

 

 

 

Figure 1 Typical Bayesian likelihood ratio calculation. Far too complex for lay people to understand 
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In the relevant text books and papers discussed above the best approaches start with 

visual explanations of a very simply instance of Bayes (using, for example, tree 

diagrams with frequentist versions of the probabilities). However, for reasons we will 

explain in Section 3 below, these visual approaches do not scale up meaningfully in 

any realistic situation. It is at this point that the various authors normally resort to the 

formulas instead; hence, this is the point that most forensic scientists and lawyers 

never get beyond.  

 

  

3. Clarifying the notions of ‘forensic  match’ and common 
fallacies  
 

To help readers understand that there is a simple unifying way to present any kind of 

forensic ‘match’ evidence we use a hypothetical (but not unreasonable) example of a 

completely new forensic science, which we call ‘stature matching’.  This avoids the 

problem of getting distracted by the details and biases of specific areas (such as shoe-

print matching or DNA matching).  This approach will enable us to expose numerous 

common misunderstandings about the meaning of match evidence and that, contrary 

to what the judge ruled in [1] (and indeed what forensic many experts assume), it is 

inappropriate to assume that certain methods are inherently ‘scientifically sound’ and 

others are not.  

 

3.1 A new, but typical, forensic science: Stature matching 
 

Our ‘new’ forensic science is called “stature matching”. Stature matching assumes 

that, for any person, we can measure the following features: 

 

 Sex (male, female) 

 Height (in centimetres) 

 Waistline ((in centimetres) 

 

So each person has their own stature profile such as: 

 

(male, 131, 65) 

 

The ‘science’ of stature matching is the ability to determine a person’s stature profile 

accurately. They can do this either directly by observing and measuring the person or 

indirectly from an image of the person.  If, for example, CCTV captures the image of 

a man at the scene of a crime (we can think of the image as a ‘trace’ left by the man) 

then stature matching scientists might determine that the trace has the following 

stature profile: 

  

(male, 132, 64) 
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A real person is said to be a ‘match’ to the stature profile of the trace if the following 

criteria are satisfied: 

 

 Sex of the person = sex of the trace stature profile 

 Height of the person differs from height of the trace stature profile by less than 

2 centimetres 

 Waistline of the person differs from waistline of the trace stature profile by 

less than 2 centimetres 

 

So, for example, four different people with respective stature profiles 

 

 (male, 132, 64) 

 (male, 132, 64) 

 (male, 131, 65) 

 (male, 132, 65)  

 

would all be considered to be a ‘match’ to the stature profile (male, 132, 64), whereas 

people with the following stature profiles would not be considered a match: 

 

 (male, 135, 65)  - this ‘fails’ on height 

 (female, 132, 65) – this ‘fails’ on sex 

 

Every branch of forensic matching that is based on some properties of people
4
 (be it 

DNA, fingerprint, blood type, shoe-print, earprint, Gait, voice, ….and any other type 

not yet invented) is based on the same underlying principles as stature matching: 

Specifically: 

 

 Every person has a ‘profile’ (defined by the area of forensics) that can be 

measured by some defined procedure.  

 In certain circumstances a person leaves a ‘trace’ (or ‘print’) of this profile 

 In certain circumstances we can measure the profile of the trace that was left. 

 There is a criterion for determining whether a trace profile matches the profile 

of a person. 

 

The first simple (but extremely) important observation to make about forensic 

matching is that (in contrast to widely held assumptions) there is no definitive means 

for considering a forensic matching method to be ‘scientific’ or not.  Most people 

assume that DNA is ‘scientific’ because the measurement and matching criteria and 

protocols are objective and reasonably standardised (in contrast to those that are 

widely assumed to be ‘non-scientific’ like gait analysis, face mapping, and 

fingerprinting). Yet, our new stature matching method is at least as scientific as DNA 

in this respect. For example, in stature matching we insist on always measuring the 

three specific values (sex, height, and waistline) and never any others; we can always 

assume that the height and waistlines are measured without clothes or shoes, and we 

always include the 2cm error margins for the match. There is no fundamental reason 

why any forensic method cannot in principle be made ‘scientific’.   

 

                                                 
4
 Other types of forensic match analysis, such as glass, fibres, pollen etc, are not concerned with 

attributes of people and do not exactly fit the same framework 
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The second extremely important observation to make about forensic matching is the 

following (see [14], [26], [34] for a comprehensive discussion of this issue): 

 

A ‘match’ never means a unique identification of a person. 

 

This is important because the assumption of uniqueness is a common fallacy arising 

in DNA, fingerprint, and many other areas of forensics. For example, in R v 

Kempster,  EWCA Crim 975 [3] the ruling includes the following assertion about 

earprint evidence: 

 

It is clear … that ear-print comparison is capable of providing information 

which could identify the person who has left an ear-print on a surface. 

 

This assertion is highly misleading. In fact, when we find a ‘match’ (be it for stature 

matching, earprint matching, DNA or any of the areas of forensics discussed above) 

all we can conclude is that within the agreed criteria, the person’s profile is the same 

as the profile of the trace. To equate this notion with ‘identification’ is always 

flawed. 

 

An expert in stature matching could, in court, present the information about a match 

as follows: 

 

 “I am absolutely certain that the stature profile of the trace found at the scene 

is a match of the defendant’s stature profile.” 

 

Instead, the common error made by experts is to assert the following: 

  

 “I am absolutely certain the stature profile trace found at the scene is that of 

the defendant”  

 

Indeed, this was exactly the error made by the expert witness on earprint evidence in 

R -v- Dallagher, EWCA Crim 1903 [4]. The judge consequently rejected the entire 

earprint evidence as inadmissible. While the judge’s ruling was understandable in this 

particular case it would be extremely dangerous to interpret this as meaning that, 

unless a ‘match’ is the same as an ‘identification’, then match evidence can never be 

admissible. For not only would this rule all future earprint evidence as inadmissible, it 

would also rule as inadmissible every area of forensic match evidence. 
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3.2 Understanding the Bayesian approach to match evidence 
 

In the simplest use of forensic match evidence in legal cases we assume that a person 

has left a trace at a particular location. Then we have the following (continuing with 

the stature matching example): 

 

 Source profile: This is the stature profile of the trace found at the location. 

 Target profile:  This is the stature profile of a particular person believed 

(normally called the defendant) who some believe may have been the one who 

left the trace. 

 

Let us, for the time being, make a massive simplification (it turns out that it is ONLY 

for this restrictive case that a simple explanation of Bayes is possible). We will 

assume that our stature testing is perfect. So, someone with type (male, 131, 65)  will 

always be tested to be of type (male, 131, 65)   and someone who is not type (male, 

131, 65)   will never be tested to be of type (male, 131, 65) .  

 

With the above assumptions our typical simple forensic case amounts to the 

following: 

 

 Prosecution hypothesis (H): “The target is the source” (i.e. the defendant is 

the person who left the trace at the scene). 

 Defence hypothesis (not H): “The target is not the source” (i.e. a person other 

than the defendant left the trace at the scene). 

 Evidence E1: The source profile type is known, say to be of type (male, 132, 

64). For simplicity and generality we shall refer to a particular profile as type 

X.   

 Evidence E2: Target profile matches the source profile (i.e. both have type X). 

 

From an evidential perspective, the ‘value’ of the evidence is therefore completely 

determined by the following two pieces of (probabilistic) information: 

 

 

1. ‘Defence likelihood’: How likely are we to see the evidence if the defence 

hypothesis is true. In other words how likely is it that the source and target 

(defendant) are both of type X, if the target was not the source.  

 

With the above simplistic assumptions, the defence likelihood is represented 

by the single branch (H false, E1 true, E2 true) in  Figure 2. Suppose m is the 

proportion of people in the population who have type X. This is sometimes 

called the frequency (of the particular type) or the random match probability 

(of the particular type). So, the defence likelihood is equal to m
2
.  

 

2. ‘Prosecution likelihood’: How likely are we to see the evidence if the 

prosecution hypothesis is true. In other words how likely is it that the source 

and target are both of type X if the target is the source.   

 

With the above simplistic assumptions, the prosecution likelihood is 

represented by the single branch (H true, E1 true, E2 true) in  Figure 2. Hence, 
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the prosecution likelihood is simply equal to m (because our testing is perfect 

the target is certain to be of type X if the target is the source). 

 

H

Probability =m

Probability =1-m

true

false

H: target = source E1: source is type X

E1

E1

true

false

Probability =m

Probability =1-m

true

false

(Not considered)

(Not considered)

Probability = 1

Probability =0

true

false

(Not considered)

E2: target is type X

E2

E2
Probability =m

Probability =1-m

true

false

(Not considered)

Probability =m

Here m is the proportion of 

people who have type X
Prosecution likelihood

Defence likelihood

Probability = m

Probability = m2

 

Figure 2  Determining the possible scenarios and likelihoods in simple case 

 

 

So, if the random match probability m is equal to 1 in a 100, then the prosecution 

likelihood is 100 times greater than the defence likelihood. In fact, we are 100 times 

more likely to observe the evidence if the prosecution hypothesis is true than if 

the defence hypothesis is true.  

 

The likelihood ratio (the prosecution likelihood divided by the defence likelihood) is 

simply the mathematical formalism that expresses exactly this intuitive information.  

 

The likelihood ratio is very well-suited to the legal context because it enables us to 

evaluate the impact of the evidence without having to specify what our prior belief is 

in the prosecution or defence hypothesis. What Bayes theorem additionally tells us 

is that, whatever our prior odds were for the prosecution hypothesis, the result of 

seeing the evidence is such that those odds are multiplied by the likelihood ratio
5
: 

 

 Posterior odds  Likelihood ratio  Prior odds   

 

So, according to Bayes, if we started off assuming that the odds in favour of the 

defence hypothesis were 1000 to 1, then the ‘correct’  revised belief  once we see the 

evidence is  that the odds still favour the defence, but only by a factor of 10 to 1: 

 

 

 Prior odds  

 

Likelihood ratio  

= 
Posterior odds 

Prosecutor 1 100 1 

Defence 1000 1 10 

                                                 
5
 Note the following (which we will assume later): If we assume that the prior odds are ‘evens’ i.e. 

50:50 then the posterior odds will be the same as the likelihood ratio. Also odds can easily be 

transformed into probabilities: specifically, if the odd are x to y for hypothesis H over not H then the 

probability of  H is x/(x+y) and the probability of not H is y/(x+y). So odds of 100 to 1 in favour of H 

means the probability of H is 100/101 and the probability of not H is 1/101. 



11 

 

  
And if we started off assuming that the odds in favour of the defence hypothesis were 

4  to 1, then the ‘correct’  revised belief  once we see the evidence is  that the odds 

now favour the prosecution by a factor of 25 to 1: 

 

 

 Prior odds  

 

Likelihood ratio  

= 
Posterior odds 

Prosecutor 1 100 25 

Defence 4 1 1 

  
But why should we accept that Bayes is the ‘correct’ interpretation?  The standard 

way to convince lay people that Bayes is correct is to consider examples (often called 

the ‘Island’ example) like the following: 

 

Example 1: Suppose that, in addition to the defendant, it is known that 

another 1,000 other people were in the vicinity of the crime scene
6
 – see 

Figure 3. Then our prior assumption, i.e. what we should assume before any 

evidence has been presented, is that any one of these other people is just as 

likely to be the person who left the trace as the defendant. So the prior odds 

are 1000 to 1 in favour of the defence hypothesis (or equivalently the 

probability that the defence hypothesis is true is 1000/1001). Since the random 

match probability is 1/100, we expect about 10 of the other 1000 people to 

have the type X. So, once we observe the evidence (defendant is type X) we 

can rule out all other people, except those 10, as having possibly left the trace. 

So, after observing the evidence the defendant and 10 others remain as 

possibilities. So the revised odds are now 10 to 1 in favour of the defendant (or 

equivalently the probability that the defence hypothesis is true is now 10/11).   

So, although the odds still favour the defence hypothesis the odds have swung 

by a factor of 100 (the likelihood ratio)  towards the prosecution hypothesis.  

 

1001 People at scene

defendant others
1

1000

Type X

10

People who have type X are ringed (total 11)

Type X

1 0

Not Type X
Not Type X

990

 

Figure 3 Bayes calculation explained visually 

 

 

If we change the number of people we start with the odds still always swing 

by a factor of 100 (the likelihood ratio) towards the prosecution hypothesis.  

So, if there were 500 other people then we expect about 5 to have the same 

                                                 
6
 In the standard ‘Island problem’ presentation it is assumed that the crime was committed on an island 

and that, in the absence of evidence, all residents are equally likely suspects. 
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stature type. So the prior odds, which in the case are 500 to 1 in favour of the 

defence, drop to 5 to 1 after observing the evidence  

 

If there were just 10 other people then the use of population diagrams such as in 

Figure 3 to represent Bayes becomes difficult because, in this case, the expected 

number of people who match is a fraction (one tenth) of a person. From a 

mathematical perspective this is not a problem: the prior odds are 10 to 1 in favour of 

the defence. After the evidence there is just 1/10 of another person other than the 

defendant. So the odds are now 10 to 1 in favour of the prosecution hypothesis. The 

swing is still a factor of 100 toward the prosecution. But this example shows that, 

even with the most simplistic assumptions we have made the standard explanation of 

Bayes and likelihood ratios may not be easily understandable to lay people.  Because 

many types of forensic science (such as DNA) have very low match probabilities, it is 

inevitable that we have to consider ‘fractions’ of people if we adopt this approach. 

The trick to gaining acceptance from lay people is therefore to use hypothetical 

examples that do not involve fractions, and then explain that exactly the same method 

works no matter what the actual match probabilities are.  

 

3.3 Exposing some common misunderstandings  
Before tackling the core problem of what constitutes ‘statistically sound’ evidence it 

worth noting that the framework we have provided makes it easy to expose three 

common misunderstandings in probabilistic reasoning about evidence: 

 

When likelihood ratios can and cannot be multiplied 

 

The practice of multiplying likelihood ratios was explicitly criticised in [1]. The error 

in the ruling was the failure to understand and distinguish between the circumstances 

when multiplying likelihood ratios was and was not the correct thing to do.  

 

When there are two pieces of independent evidence then multiplying likelihood ratios 

is the only correct way to reason about the impact of the combined evidence. To see 

why, suppose, that in addition to a match of the defendant’s stature profile, we also 

discover a match of hair colour; the defendant and the person at the scene have brown 

hair. Suppose that the random match probability for brown hair is 1 in 5. Then the 

evidence in this case is that the stature profile and the hair profile of the defendant 

both match that of the person who left the trace (in the form of a CCTV image) at the 

scene. Since stature and hair colour can be considered independent, the probability of 

seeing both matches given that the defendant was not the person who left the print is 

the product of the two random match probabilities, i.e. 1/500. Hence the likelihood 

ratio is now 500. Assuming there are 1000 other people who were at the scene, it 

follows that 10 of these is likely to have the same stature profile as the defendant and 

of those 10 two are likely to have the same hair colour as the defendant.  This means 

the odds in favour of the defence hypothesis have come down from 1000 to 1 to 2 to 

1. That is a factor of 500, which is equal to the product of the two likelihood ratios 

(100 times 5). 

 

So, when two pieces of evidence are genuinely independent it would, contrary to the 

ruling in [1], be irrational not to multiply the likelihoods - even for such ‘unscientific’ 

forensics as stature matching and hair colour.   
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However, the ruling against multiplying likelihood ratios is perfectly justified if the 

defence was unable to demonstrate that the underlying pieces of evidence were 

independent. If, for example, instead of hair colour we chose ‘weight’ it would 

certainly be wrong to conclude that weight was independent of stature. In such 

circumstances there are standard, but different, Bayesian calculations that need to be 

used (we have to consider explicitly the probability of one piece of evidence given the 

other). But such a scenario already puts us into the realms of problem complexity 

beyond which it is reasonable – or even possible – to perform manual calculations that 

lay people would be able to understand intuitively.  

 

 

Fallacy of the transposed conditional. 

 

This occurs when the defence likelihood, i.e. the probability of seeing the evidence 

given the defence hypothesis, is wrongly assumed to be equivalent to the probability 

of the hypothesis given the evidence.
7
 

 

So, suppose we know that the defence likelihood is 1/100. By wrongly assuming this 

is the same as the probability of the hypothesis given the evidence, a prosecutor might 

state  

 

“The probability the defendant was not at the scene given this match evidence is 1 

in 100” 

 

In fact, if our prior was 1000 to 1 in favour of the defence hypothesis (as in Example 

1 above) it turns out that what should have been stated was: 

 

“The probability the defendant was not at the scene given this match evidence is 

10 in 11” 

 

The danger of reading too much into very low match probabilities  

 

For DNA the probability is normally presented as being so low (for example, 1 in 2 

billion) that is it as ‘good as’ equal to zero
8
 and hence a match is (wrongly) 

considered as a unique identification. In the case of fingerprints the situation is even 

worse, since there is still a strong assumption by many that a match is, by definition, a 

unique identification (i.e. the random match probability is assumed to be equal to 

zero).  

 

Recent research, such as [16], has exposed this fallacy for fingerprint evidence and 

this was best exemplified by the dramatic Mayfield case [6] where a fingerprint match 

was subsequently discovered not to be that of the defendant. Primarily on the basis of 

this instance of a known match ‘error’, a State of Maryland Court subsequently ruled 

that fingerprint evidence was not admissible in a totally unrelated murder case [7]. If 

that way of thinking was applied to DNA or any other type of forensic evidence, then 

any example of a  ‘match’ in which the person deemed matching was NOT the one 

                                                 
7
 So, using the language of statisticians P(H | E)  is wrongly assumed to be equal to P(E | H) hence why 

it is referred to as transposing the conditional.  
8
 This is especially true of the FBI in the US. In the UK the Forensic Science Service no longer 

assumes this, although lay people and many lawyers do. 
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who left the ‘print’, would be justification for rejecting as inadmissible the whole of 

that field of forensic evidence.  

4. The irrational notion of  ‘statistically sound’ evidence 
 

Having dealt with some of the misunderstandings and fallacies in rulings such as [1] 

we now turn to the most critical and challenging misunderstanding that lies at the 

heart of the ruling: the assumption that the random match probability is ‘statistically 

sound’ for some areas of forensic science and not others. We again expose the 

weakness of this assumption by using our hypothetical stature matching example. 

 

For any forensic science the match probability is based on some database of profiles. 

For our new science of stature matching we therefore need a database of people’s 

stature profiles. For a  particular profile, say (male, 132, 64), we simply count the 

frequency of profiles in the database that would be classified as a match to this 

profile. So this would include profiles like: (male, 132, 64), (male, 131, 65), (male, 

132, 65), etc.  If there are 1000 such matches in a database of 100,000 then we can say 

that the random match probability is 1 in a hundred, or equivalently 0.01.  

 

The ‘reliability’ of the database could, of course, be questioned on numerous grounds 

such as the following: 

 

 If the crime happened in the UK and the database comes from the USA then it 

may not be representative; perhaps people in the UK are smaller 

 If it is known that the person who left the print was definitely a man then perhaps 

we should we consider only a database containing stature profiles of men. 

 If it is known that the person who left the print was definitely Caucasian, then 

perhaps we should consider only a database containing stature profiles of 

Caucasians. 

 If we are ‘90%’ sure that the person who left the print walked with a limp, then 

perhaps we should consider only a database in which 90% of the stature profiles 

belong to people who walk with a limp 

 Etc. 

 

Clearly even if we were able to change to a more ‘representative’ database or restrict 

the existing database to people with the relevant criteria (and normally this is not 

possible because the database will only contain the stature profiles and few other 

details) the random match probability will also change. Hence it is impossible to 

assume that there is a truly objective random match probability (what makes a 

measurement objective or subjective is the supposed level of rigour of the 

measurement instrument). But, all of these issues are inevitable for any database for 

any area of forensic science. In other words there are no objective criteria by which 

our stature matching database could be ruled as any less ‘reliable’ than the most 

sophisticated DNA database
9
. This fictional example exposes exactly the kind of 

questions that need to be asked about any forensic database (including DNA 

                                                 
9
 It is, of course, important to note that the databases that provide a basis for the frequency statistics for 

DNA cases are far more comprehensive than for most other areas of forensic science, and this is 

presumably what the Judge in R v T was recognising. However, that does not alter the fact that DNA is 

not inherently more or less scientific than other areas of forensics currently lacking extensive 

databases.  
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databases), but which rarely are.  Indeed, as described in [13] and [17], because of 

very different databases and different assumptions about how to use them, DNA 

experts in the UK and the USA report very different random match probabilities for 

the same person (often many orders of magnitude different such as one in a billion 

compared to one in a trillion). These differences, even when the probabilities are so 

low, matter greatly as we have already shown (and matter even more when we factor 

in the possibility of testing errors as we show in the next section).   

 

Contrary to what was argued in [1] the ‘statistical base’ for determining the defence 

likelihood in stature matching is no less well defined than it is it for DNA. In fact it is 

actually much easier to get a relevant database, easier to do the matching, and easier 

to explain to a jury precisely what the match probability means. The match 

probabilities are as well defined (in fact less subjective) than those in the ‘mature’ 

science of DNA. 

 

The ‘scientific’ quality or maturity of the type of forensic science being considered is 

therefore irrelevant as far as the statistical argument is concerned. The level of 

‘scientific’ or ‘statistical’ quality is certainly not synonymous with very low defence 

likelihood figures. This point is important because there is a misconception that DNA 

evidence is scientific because it produces very low defence likelihood figures, while 

earprint or footprint evidence is less scientific because it rarely produces very low 

defence likelihoods. The value for the defence likelihood actually has nothing to do 

with the reliability of the data. 

 

What matters is that in all cases of a match (whether it be DNA, fingerprinting, 

footprints, earprints, stature matching or anything else) the expert should be obliged to 

present the random match probability (possibly as a range) along with a statement 

about the limitations of the underlying data. For example,  

 

“The probability of finding this match in a person who was NOT the one who 

left their stature print at the scene is between one in a thousand and one in two 

thousand. This figure is arrived at from a database of 100,000 stature profiles 

of which 150 match the print at the scene.”  

 

The defence likelihood is inevitably a statement of subjective probability, as is any 

statement involving uncertainty. 

 

So, given that there is no rational basis for declaring DNA ‘statistics’ as more 

‘scientific’ than any other type of forensic match evidence, the prohibition from using 

likelihood ratios and Bayes on all but “DNA (and possibly other areas where there is a 

firm statistical base)” [1] makes no sense. The only consistent strategy would be to 

either allow its use for all forensic match evidence or to ban it for all (including 

DNA).  

 

Clearly our argument is that the former should apply. To support this we can point to 

the examples we have already provided where Bayes provided the correct results that 

match our intuition.  But an even more convincing argument is to show that banning it 

for all arguments would mean that we would have to reject all statistical analysis as 

the following example should make clear: 
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Example Case 1:  A man is charged with a gaming offence, specifically that 

he was using a rigged coin when taking bets on whether the coin he was 

tossing comes up Tails. The defence hypothesis is that it was a fair coin. The 

prosecution hypothesis is that the coin was double-headed (so the punters were 

always sure to lose). The evidence E is that the coin landed as Heads on 9 out 

of 9 plays.   

 

The point about this example is that the evidence is not only purely statistical, but that 

the statistics involved – coin tossing – allow us to use classic frequentist analysis and 

hence avoid any debates between Bayesian and non-Bayesian statisticians. Thus, 

everybody will certainly agree on the following: 

 

 The defence likelihood is 1/512 (a half to the power of 9) because that is the 

probability of seeing 9 out 9 Heads given that the coin is fair.  This is 

analogous to the random match probability in a forensic case. 

 

 The prosecution likelihood is is equal to 1, because that is the probability of 

seeing 9 out 9 Heads given that the coin is double-headed.  

 

It is clear that the evidence favours the prosecution hypothesis more than the defence 

hypothesis. Moreover, the likelihood ratio of 512 can be proved to be the ‘correct’ 

factor in favour of the prosecution hypothesis.  For, suppose that before the game was 

played a double-headed coin was added to a bag of 1000 coins that were known to be 

fair. Suppose also that the coin played in the game was selected randomly from this 

bag. Then before we see the evidence the odds must favour the defence hypothesis by 

a factor of 1000 to 1 (these are just the odds of selecting the double-headed coin). We 

know that there is a 1 in 512 chance of tossing 9 out of 9 heads in a fair coin. So, 

having seen the evidence the odds are 1000 to 512 (i.e. about 2 to 1) that the coin 

chosen was a fair coin. So, the evidence increases the odds in favour of the 

prosecution hypothesis by a factor of 512, but the defence hypothesis is still more 

likely.  Hence, any rational juror should not convict the defendant on the basis of this 

evidence alone. Think of it this way: The chance of getting 9 Heads in 9 tosses of a 

fair coin (defence hypothesis) is still higher than the chance of selecting the one 

double headed coin from a bag of 1001 coins (prosecution hypothesis).  

 

There is no dispute, therefore, that in the above hypothetical legal case the use of 

likelihood ratios and Bayes leads to the undisputedly correct conclusion. There is no 

‘statistical doubt’ at all. Why is this important if the case is purely hypothetical? The 

answer can be gleaned by changing the assumptions very slightly. The assumption 

that a ‘fair’ coin has a probability of ½ of landing on Heads is a simplification. Even 

if we have no reason to believe there are double-headed coins in circulation the actual 

frequency of heads tossed in all coins in circulation is not a number that can be 

practically determined, and even if we had a very large datatabase of coins and toss 

results on them, it would certainly not be exactly equal to ½. These minor additional 

assumptions of reality, already shift us out of the ‘purely statistical’ scenario. Do 

these changes mean that our approach to evaluating evidence using likelihood ratios is 

no longer valid? Of course not. The exact same methods apply. All that has changed 

is our confidence in the original assumptions. We counter this uncertainty not by 

declaring the calculus of probability as invalid but by either stating our uncertainty 

clearly up front or using ranges instead of exact values.  
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All evidence in any case ultimately has a ‘statistical basis’. The ‘soundness’ of the 

statistical basis is a spectrum where examples like that of case 1 above just happen to 

sit firmly at the ‘soundest’ end. The rationale for the ruling in [1] is not just that that 

there is some point at the opposite end of the spectrum at which the use of likelihood 

ratios become inappropriate, but that most types of forensic match evidence are even 

further beyond this point of the spectrum.   Readers may yet be unconvinced that the 

minor change in the example already discussed is insufficient to push the example 

beyond this point, but surely the following leaves no doubt. 

 

Example Case 2: This case is the same as case 1, except for the fact there is no 

possibility that the coin was double-headed because the defendant clearly 

showed the coin to have a head and tail before tossing it. The prosecution 

hypothesis here is simply that the coin is ‘biased’ – i.e. will in the long run 

produce a greater ratio of Heads than Tails. It is still an offence to knowingly 

use such a coin. It is not known exactly what this bias is, but it is known that a 

magic shop in the area was selling special coins that looked real but were 

biased. These coins were all made with a different weighting and all that can 

be said with reasonable certainty was that the range of Heads ‘bias’ in these 

coins was between 0.6 and 0.7. The prosecution hypothesis is that the 

defendant used one of the coins from this magic shop.    

 

The evidence of 9 Tails in this example case has less ‘statistical soundness’ than the 

evidence of a stature match (or indeed any type of forensic match) in the previous 

section. Yet, it is easy to see that the use of likelihood ratios can be applied just as 

rationally in this example as in example case 1. Specifically: 

 

The defence likelihood is the probability of seeing 9 Heads in 9 tosses given that the 

coin is fair. We cannot assume that the probability of tossing a Head on a fair coin is 

exactly ½. If we have a database of what are believed to be fair coins in which the 

lowest frequency of heads is 0.495 and the highest frequency is 0.505 then we could 

consider a range for the defence likelihoods  using these as assumptions that are  

respectively least and most favourable to the defence hypothesis. So the least 

favourable is 0.00178 (that is 0.495 to the power of 9) and the most favourable is 

0.002136 ((that is 0.505 to the power of 9). 

 

The prosecution likelihood is the probability of seeing 9 out of 9 Heads given that the 

coin is biased. Here we have an infinite number of different prosecution hypotheses 

corresponding to every potential number between 0.6 and 0.7. Taking just the two 

extremes as those being respectively least and most supportive of the prosecution 

hypothesis we end up with respective prosecution likelihoods of  0.01 (that is 0.6 to 

the power of 9) and 0.04 (that is 0.7 to the power of 9) . 

 

Despite the ‘unscientific’ nature of the evidence, we can conclude that, with the 

assumptions that most favour the prosecution, the likelihood ratio is  22.5 (0.04 

divided by 0.00178), while with the assumptions that most favour the defence the 

likelihood ratio is  4.7 (0.04 divided by 0.00178).  So, despite the clear lack of 

‘statistically’ sound evidence, we can rationally conclude that the odds in favour of 

the prosecution hypothesis have increased by a factor of between 4.7 to 22.5. Indeed 

that is the only rational conclusion to make.  
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If the evidence made by either an expert or a member of the jury does not lead to the 

conclusion that the evidence supports the prosecution hypothesis by a factor of at least 

4.7 to 1, assuming the most optimistic defence assumptions, then such a conclusion is 

irrational. If, as the ruling in [1]  suggests, the use of likelihood ratios to explain the 

impact of this kind of evidence was not allowed in court, then the jury would be 

expected to do their own reasoning. This would mean, for example, that it would be 

acceptable to conclude that the evidence actually supported the defence by a factor of 

100 to 1 if that is what their own ‘method’ led them to conclude.   

 

Having, hopefully, countered the argument against using Bayes for ‘non-scientific’ 

statistical evidence, we next return to the crucial issue of why Bayesian reasoning has 

failed to make an impact on ‘non-scientific’ forensic match evidence. 

 

5. Moving to more realistic assumptions: why the R v T 
ruling was understandable 
 

Recall that the assumption of perfect testing accuracy, used so far in our forensic 

match evidence examples, means that: 

 

 Someone with type X will always be tested to be of type X. This means that 

there is zero probability of false negatives:  

 Someone who is not type X will never be determined to be of type X. This 

means that there is zero probability of false positives:  

 

In the case of stature matching neither of these assumptions is at all realistic, as they 

would require all of the following to hold: 

 

 Stature traces (taken either from the crime scene or taken directly from the 

defendant) are always ‘perfect’ (so, for example, there is no possibility that 

distortion of the photographic/video evidence is such that the person’s height 

could be determined to be 136 centimetres as opposed to 132 centimetres).   

 The process of analysing the stature trace is infallible (so, for example, it is 

impossible for one stature expert to determine from a photo that the person is a 

man and for a different stature expert to determine from the same photo that 

the person has is a woman. 

 Stature prints can never be tampered with before they are examined by the 

expert. 

 A person’s stature profile can never change (so, for example, if their waistline 

was 65 centimetres at the time they made the print, then when they are 

subsequently tested their waistline will inevitably be within 2 centimetres of 

65 centimetres). 

 

But these assumptions (especially the first three) are even more dubious in the case of 

DNA evidence than in the case of stature matching. If any of these statements is not 

true then neither the false negative probability nor false positive probability will be 

zero.  

 

Yet, while it is accepted that random match probabilities need to be ‘statistically 

sound’ the same is never demanded of the probabilities of false positives and false 



19 

 

negatives. Indeed, in many analyses they are simply (but wrongly) assumed to be 

zero, while in others (including DNA analyses) they are simply stated as subjective 

estimates. This prompted the authors in [36] to ask pointedly: 

 

“Why are the two possible sources of error in DNA testing treated so 

differently? In particular, why is it considered essential to have valid, 

scientifically accepted estimates of the random match probability but not 

essential to have valid, scientifically accepted estimates of the false positive 

probability?” 

 

The authors in [36] provide a strong argument on why it is just as critical to include 

the false positive probability as the random match probability. However, their 

omission of the case for the false negative probability (presumably because they only 

consider the scenario where there have been positive tests for both the source and 

target) is itself an oversight.  Even assuming that both tests are positive, the Bayesian 

reasoning still requires us to know the probability of a true positive (which is equal to 

one minus the probability of a false negative, as shown in Table 1). The calculations 

in [36] assume that the true positive probability is 1 (and hence the false negative is 

0). This is unrealistic. By assuming the more realistic assumption of non-zero false 

negative probability we allow for the scenario in which it is possible that some other 

suspect with profile type X was never considered because they were wrongly tested as 

not being type X.  

 

Table 1 Error probabilities 

Actual Type Not X Not X X X 

Test result Not X X X Not X 

 (True negative) (False positive) (True positive) (False negative) 

Probability 1-u u 1-v v 

 

 

It follows that, as soon as we drop our assumption about ‘perfect testing’ (as in 

practice we surely must), then the notion of a sound ‘statistical base’ for DNA 

compared with other types of forensic evidence becomes even more blurred than we 

previously explained, since there is no ‘statistically sound’ base for determining the 

error probabilities in DNA testing. If anything it will surely be easier and more 

objective to determine the values and exact causes of false positive and false negative 

errors for stature matching than it would be for DNA. It would also be easier to 

explain to a jury precisely what these errors are. 

 

It should be clear now, conceptually, that there is no more justification for using the 

probabilities that arise from DNA as there is in using the probabilities that arise from 

just about any other type of forensic match evidence.   

 

However, it turns out as we show in the next section, that as soon as we incorporate 

the potential for testing error in a Bayesian argument things become complex. It is not 

clear, for example, that these issues were properly addressed for the footwear 

evidence that was the subject of the R v T ruling, and this possibly makes the judge’s 

lack of trust in the transparency and accuracy of the results of the Bayesian analysis 

more understandable.  
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6. The problem with scaling up Bayesian arguments 
 

In [35] the authors state: 

 

“The best argument for the application of Bayesian theory in forensic science is to 

show that the theory agrees with personal intuitions, when inference problems are 

simple and intuitions are reliable, and that it helps to go beyond them, when 

problems become more complicated and intuitions are not so reliable.” 

 

This is exactly the strategy we have suggested. The problem with this strategy is that 

as soon as we recognise that the false positive and false negative probabilities may not 

be zero, the ‘simple’ problem actually becomes very difficult to explain using the 

intuitive, tree-diagram approach. In fact, although several authors have tried it, we are 

not aware of the problem being presented correctly in any way other than by using the 

formulaic approach. And, even then, the presentations fail to include the false 

negative probability. The net effect is that, unless people are prepared to understand 

the formulas they will not be able to see that the theory agrees with personal intuitions 

even in the ‘simple’ problem case. This goes some way to explaining why the basic 

misunderstandings discussed in Section 3 persist in the law.    

 

To explain what the problem really is and how we might solve it, let us review the 

relevant information we have to consider for any forensic match case when the testing 

cannot be assumed to be perfect: 

 

 Prosecution hypothesis (H1): “The target is the source” (unchanged) 

 Defence hypothesis (not H1): “The target is not the source” (unchanged) 

 Evidence E1: “The source profile is tested to be of type X”  (note: we can no 

longer assume the source profile actually is type X) 

 Evidence E2: ”The target profile is tested to be of type X (note: we can no 

longer assume the target profile actually is type X) 

 

Because of the probability of false positives we cannot assume from the above 

evidence that either the source or the target have type X. Instead these assertions are 

also unknown hypotheses: 

 

 Source type hypothesis (H2): “The source profile really is type X” (true or 

false) 

 Target type hypothesis (H3): “The target profile really is type X” (true or 

false) 

 

What we have, therefore, is a problem involving five ‘variables’ H1, H2, H3, E1, E2 

which can all be true or false (in order to do the necessary Bayesian reasoning). But 

this means there are 32 different scenarios representing the different possible 

true/false combinations (although some are ‘impossible’ and some are not observed, 

such as false values for the evidence). We can show this in a tree diagram -  Figure 4 - 

but of course it is now far more complex than before; possibly too complex for lay 

people to understand. 
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Figure 4 Bayes calculation explained visually (but this time possibly too complex to understand) 

Even when we ignore the impossible branches and all the scenarios in which the 

evidence E1 and E2 is false, we are left with six scenarios that need to be incorporated 

in the likelihood calculations: 

 

 Scenario 1 (this is the ‘normal’ prosecution scenario) in which H1, H2, H3, 

E1 and E2 are all true. This scenario has probability m(1v)
2
 

 Scenario 2 (this is an often ignored prosecution scenario) in which H1 is true 

(the target is the source) but the target is not actually type X. Both the test of 

the target and source, however, incorrectly result in an X. This scenario has 

probability (1m) u
 2

. 

 Scenario 3 (this is the ‘normal’ defence scenario) in which the tests are 

correct but the match is coincidental. This scenario has probability m
2
 (1v)

2
. 

 Scenario 4 this is the defence scenario in which the target is incorrectly tested 

to be type X. This scenario has probability m(1-m) (1v) u. 

 Scenario 5 this is the defence scenario in which the source is incorrectly 

tested as type X. This scenario has probability (1-m) mu(1v). 

 Scenario 6 this is an often ignored defence scenario in which both the source 

and target are wrongly tested to be X. This scenario has probability (1m)
 2

 u
2
.  

 

The prosecution likelihood is the sum of the probabilities for scenarios 1 and 2, while 

the defence likelihood is the sum of the probabilities for scenarios 3, 4, 5, and 6. 



22 

 

 

The problem is that the likelihoods, and hence also the resulting likelihood ratio, are 

not sufficiently ‘simple and intuitive’ to ensure that people can check they ‘agree with 

personal intuition’ (which is why it is not even worth the effort here of going through 

the motions). Resorting to the Bayes formulas, of course, only makes things much 

worse. 

 

The example also shows that, even for experienced Bayesians, it can be difficult to 

model the problem in this way and difficult to perform the calculations (as we argued 

earlier, we have not previously seen a full solution of this problem taking into account 

both error probabilities). And this example still has many simplifications:  it assumes 

that all three probabilities (random match, false positive, false negative) are all ‘point’ 

values, whereas in practice they would be uncertain distributions [11]; it assumes that 

all variables have just two possible values (true and false); it assumes that there is just 

one print; and it assumes the only evidence is the match evidence. When we include 

further aspects of reality (especially including multiple, related pieces of evidence) the 

possibility for producing the correct Bayesian calculations manually (with or without 

formulas)  – let alone being able to explain them to a lay person – are non-existent.  

 

In our view the best way to minimise this problem is to use Bayesian networks (as 

explained in [19][25][35]). By exploiting assumptions of independence between 

variables, a Bayesian network (BN) model is typically compact and efficient, since it 

avoids the problem we saw above whereby we had to consider all possible 

combinations of variable values (statisticians express this formally by saying that ‘it is 

not necessary to consider the full joint probability distribution’). 

 

A BN (see Figure 5) is a graphical model that shows the dependency relationships 

between the unknown variables of interest (each variable is represented by a node in 

the graph). 

 

The defendant Joe Bloggs 

was the person who left 

the trace at the scene. This 

is the prosecution 

hypothesis: (true or false)

The defendant Joe Bloggs 

actually has stature profile 

(male, 132. 64). This is a 

hypothesis (true or false)

The stature profile of the 

trace left at the scene 

actually is (male, 132. 64). 

This is a hypothesis (true 

or false)
The stature test result on Joe 

Bloggs shows a  stature 

profile of (male, 132. 64). 

This is an observation The stature test result on 

the trace left at the scene 

shows a  stature profile of 

(male, 132. 64). This is an 

observation

 

Figure 5 Bayesian network solution to the problem (with an example showing what the nodes 

would mean for a specific stature matching case) 
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In addition to the graphical structure we define, for each node, a probability table that 

defines the probability values for the node given the different combinations of parent 

states. For example, the probability table for node “target tested as X” simply encodes 

the error rates as shown in Table 2.: 

 

Table 2 Probability table for node "target tested as X" 

Target is type X False True 

Target tested as X (False) 1-u v 

Target tested as X (True) u 1-v 

 

It is much easier to build and run this model with the relevant information than it is to 

either construct a tree as before or to produce the necessary formulas. Once built we 

can enter evidence and get the calculations immediately as shown in Figure 6 (this 

shows the results using a standard BN tool). Here we actually compare the results 

under two different sets of assumptions: 

 

 In a) we encoded the assumption of perfect testing accuracy (i.e. u and v are 

both set to zero).  

 In b) we encoded the assumption that u (false positive) is 0.1 and v (false 

negative) is 0.01.  

 

Although in both cases we assume the same match probability (1/100) and the same 

prior (50:50)
10

 for the prosecution hypothesis (“target is source”) the difference is 

quite dramatic.  Although the evidence is identical in both cases, in the former the 

posterior odds
11

 are 100 to 1 in favour of the prosecution hypothesis, whereas in the 

latter the posterior odds
12

 are only 65 to 35 (i.e. about 2 to 1) in favour of the 

prosecution hypothesis.   

 

 

 

 

 

                                                 
10

 Recall that, by assuming a 50:50 prior, we know that the posterior odds are equal to the likelihood 

ratio. 
11

 The likelihood ratio is 100, meaning equivalently the probability the prosecution hypothesis is true is 

100/101 = 99.01%) 
12

 The likelihood ratio is 65/35, meaning equivalently the probability the prosecution hypothesis is true 

is 65%). 
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a) Impact of evidence when error probabilities are 

assumed to be zero 

 b) Impact of evidence when false positive rate is 

0.1 and false negative is 0.01  

Figure 6 Comparing the different impact of the evidence when we assume different error rates 

(in both cases the match probability is 1/100 and the prior probability for “target is source” is ½) 

 

Not only does the BN remove the need for performing the difficult Bayesian 

calculations manually, but its graphical representation is easy for a lay person to 

understand. We are not, however, suggesting that the BN model is what should be 

presented court. It should be used for pre-trial analysis of the evidence by forensic 

experts, preferably using different scenarios for the different ranges of match 

probabilities and error probabilities. The model structure should be agreed between 

legal teams and forensic experts on both sides. All that should be presented in court 

are clear statements of the prior assumptions being used (the match probabilitity, and 

error probabilities) and the results of the calculations under the different assumptions.  

 

A detailed history of BNs in legal reasoning, along with proposed mechanisms for 

using them in practice can be found in [19] and [20]. 

 

 

7. Conclusions and recommendations 
 

The ruling in R v T displayed some fundamental misunderstandings, including 

assertions that can be shown to be either illogical or irrational. However, the 

presentation of the Bayesian argument and likelihood ratios in the original case was 

both inadequate and inaccurate, as it has been in many similar cases. We have argued 

that this may be, in large part, due to the continued failure of the statistical community 

to provide the necessary support to forensic scientists and lawyers. That fundamental 

probabilistic reasoning should have therefore been discredited in the R v T ruling is 

hard for statisticians to take but, even in our view as Bayesians, was totally 

understandable. 

 

If statisticians continue to believe that the way to explain their arguments in legal 

reasoning is by using first principle calculations and formulas, then the future for 

Bayes in the law is doomed. 

 

The challenge over the next few years is to get to the situation whereby everybody in 

the legal system understands the difference between 

  

a. the genuinely disputable assumptions that go into a probabilistic argument; 

and 

b. the Bayesian calculations required to compute  the conclusions based on the 

different disputed assumptions. 

 

Crucially, there should be no more need to explain the Bayesian calculations in a 

complex argument than there should be any need to explain the thousands of circuit 

level calculations used by a calculator to compute a long division. Lay people do not 

need to understand how the calculator works in order to accept the results of the 

calculations as being correct to a sufficient level of accuracy. The same must 

eventually apply to the results of calculations from a Bayesian analysis. The more 

widespread use of tools such as Bayesian networks makes this a feasible target.  
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However, ensuring that the distinction between a) and b) is firmly understood by 

lawyers is only a necessary requirement for the more widespread takeup of Bayes. 

There is, as yet, no significant understanding among lawyers that any legal argument 

can ever be couched in Bayesian terms. The challenge for statisticians is to break 

down this significant cultural barrier. In this challenge we also propose that the use of 

Bayesian network models will be useful, but any progress requires a major 

educational effort aimed at all levels of the criminal justice system. It requires ‘buy-

in’ from senior members of the legal profession and politicians, as well as a united 

front presented by the community of statisticians. 

 

If we can meet these challenges then there is no reason why Bayes should not become 

a standard  (possibly even the central) method for evaluating evidence in every aspect 

of legal reasoning.  
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