
1002 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

A Strategy for Improving Safety Related
Software Engineering Standards

Norman E. Fenton, Member, IEEE Computer Society
and Martin Neil, Member, IEEE Computer Society

Abstract—There are many standards which are relevant for building safety or mission critical software systems. An effective standard is
one that should help developers, assessors, and users of such systems. For developers the standard should help them build the system
cost-effectively, and it should be clear what is required in order to conform to the standard. For assessors it should be possible to
determine, objectively, compliance to the standard. Users and society at large should have some assurance that a system developed to
the standard has quantified risks and benefits. Unfortunately, the existing standards do not adequately fulfill any of these varied
requirements. We explain why standards are the way they are and then provide a strategy for improving them. Our approach is to
evaluate standards on a number of key criteria that enable us to interpret the standard, identify its scope, and check the ease with which
it can be applied and checked. We also need to demonstrate that the use of a standard is likely either to deliver reliable and safe
systems at an acceptable cost or help predict reliability and safety accurately. Throughout the paper we examine, by example, a specific
standard for safety critical systems (namely IEC 1508) and show how it can be improved by applying our strategy.

Index Terms—Standards, IEC1508, safety-critical, measurement, prediction, assessment.

——————————���F���——————————

1 INTRODUCTION AND BACKGROUND

OFTWARE standards exist to protect customers and the
public from poor quality products and shoddy design

practices. They should encourage developers to produce
systems of acceptable reliability and safety. As well as
helping users and developers of software systems, stan-
dards aim to help assessors by encoding those rules by
which “quality” can be defined and evaluated. However,
given the important role that standards play in systems
engineering we must strive to continually improve them for
the benefit of the user, developer, and assessor.

The goal of this paper is to describe a strategy to evalu-
ate current standards and make recommendations for im-
proving standards in the short and long term. The im-
provement strategy is based on the simple principle that a
software standard is effective if, when used properly, it im-
proves the quality of the resulting software products cost-
effectively. The strategy is applicable to any software stan-
dards, but is especially pertinent to the safety critical ones.
The latter can be viewed as simply the most demanding of
the software standards; if you remove the safety integrity
requirements material from such standards then they can
be applied to any software system with high quality re-
quirements. We considered evidence from the literature and
also conducted a small number of empirical studies of spe-
cific company standards [17]. We found no evidence that
any of the existing standards are effective according to the
criteria that we will describe in this paper. This will come
as no surprise to anybody who has sought quantitative

evidence about the effectiveness of any software engineer-
ing method or tool. However, what concerned us more was
that, in general, software standards are written in such a
way that we could never determine whether they were ef-
fective or not.

There was certainly no shortage of standards to review.
We came across over 250 standards (from various interna-
tional and national bodies) that we considered to fall within
the remit of software engineering. The common feature of all
of them was that they defined some aspect of perceived “best
practice” relevant for developing or assuring high quality
software systems or systems with software components. Un-
fortunately, there is no consensus about what constitutes best
practice, and it follows that there is no consensus about how
to distinguish those best practice techniques that should al-
ways be applied. Thus, for standards of similar names and
objectives we came across very different models of software
quality and the software development process.

We discovered the following general problems in the
standards we reviewed:

1)�Heavy overemphasis on process rather than product. Tra-
ditional engineering standards assure product quality
by specifying properties that the product itself must
satisfy. This includes the specification of extensive
product testing. Software engineering standards al-
most entirely neglect the product and concentrate on
the development process. Unfortunately, there is no
guarantee that a “good” process will lead to a good
product, and there is no consensus that the processes
mandated in many of the standards are even “good.”

2)� Imprecise requirements. The traditional notion of a
standard is of a set of mandatory requirements. Such
requirements must be sufficiently precise in definition
so that conformance can be determined objectively by
appropriate tests. Where no such precision is possible,

0098-5589/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� N.E. Fenton and M. Neil are with the Centre for Software Reliability,
City University, Northhampton Square, London EC1V 0HB UK.
�E-mail: {nf, martin}@csr.city.ac.uk.

Manuscript received 3 Apr. 1997; revised 21 Apr. 1998.
Recommended for acceptance by J. Rushby.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 104809.

S

FENTON AND NEIL: A STRATEGY FOR IMPROVING SAFETY RELATED SOFTWARE ENGINEERING STANDARDS 1003

and hence where mandatory enforcement is impossi-
ble, standards bodies traditionally defined documents
as “codes of practice” or “guidelines.” In this respect
software engineering is subjected to a proliferation of
“standards” which are at best guidelines that could
never be mandated realistically.

3)�Non-consensus recommendations. Many of the standards
proscribe, recommend, or mandate the use of various
technologies which have not themselves been vali-
dated (in the sense of having been shown to be practi-
cally useful and effective). The standards may, there-
fore, be mandating methods which are not effective
for achieving the aim of high quality systems.

4)�Unclear about risks and benefits. It is not clear from
standards how to predict the risks and benefits pre-
sented by the system. The language in standards stu-
diously avoids and discourages any assertions of this
kind and thus leaves the user unsure about whether
the standard indicates a system’s fitness for purpose
or otherwise.

5)�Standards too big and poorly organized. Most standards
attempt to address the complete system development
life-cycle. This results in extremely large documents
containing sets of unrelated requirements, of which
many will be irrelevant in a given application. Such
standards are almost impossible to apply, and gener-
ally stay “left-on-the-shelf.”

In Section 2 we define the scope of the paper, including a
background of the key standards, and the scope of what we
mean by assessment. In Section 3 we explain why standards
are the way they are by describing the different philoso-
phies underlying their construction. Section 4 summarizes
our framework for evaluating standards, the steps of which
are detailed in the five subsequent section. Thus, in Section
5 we discuss the notion of clarity and objectivity in respect
to conformance assessment; our objective is to provide rec-
ommendations on how to rationalize and refine standards
in such a way that we move toward the scenario where at
least the obligations for the assessor are clear and objective.
In Section 6 we explain how to classify requirements ac-
cording to whether they focus primarily on one of three
categories: process, product, or resource. Using this classifi-
cation, we show how the safety critical standards concen-
trate on process and resource requirements at the expense
of clear product requirements. We explain how to shift the
focus towards the product requirements. In Section 7 we
clarify the differing roles played by prediction and meas-
urement in standards and touch on how subjective judg-
ment informs risk assessment. Section 8 addresses the need
for balance between differing types of requirements, while
Section 9 explains how conformance assessment to a stan-
dard could involve greater objectivity, especially for the
assessor.

Our emphasis is on how we can interpret and use stan-
dards despite their current weaknesses. We do not question
the importance of standards to safety critical systems de-
velopment, and a lot of very good work has gone into the
existing standards. Thus, in Section 10 we make concrete
recommendations on how standards could be improved in
the short-term, and in Section 11 we address more difficult

problems that relate to creating domain specific standards
in the longer-term.

2 SCOPE: STANDARDS AND ASSESSMENT

In this section we define first the scope of the standards
covered by the paper and then provide a brief background
to the key standards. We finally define the scope of what we
mean by assessment.

2.1 Scope of Standards Covered by This Paper
The scope of our work is the large set of standards which
come under the umbrella of software engineering. This in-
cludes the set of IEEE/ANSI standards that are contained in
the collection [10], such as IEEE/ANSI 983-1986 “Guide for
Software Quality Assurance Planning,” IEEE/ANSI 1008-
1987 “Standard Software Unit Testing,” and IEEE/ANSI
1012-1986 “Standard Software Verification and Validation
Plans.” Excluded from our scope are the standards for pro-
gramming languages (such as the ANSI C standard) or stan-
dards for interfacing to programming languages or operating
systems (such as the POSIX family of standards [11]). Of spe-
cial relevance, however, are the standards which have been
proposed for developing safety-critical software applications.
The need for, and hence prevalence of, such standards has
been more widely recognized in Europe than in the United
States. Hence, the specific standards that we will refer to in
depth in this paper originate in Europe.

2.2 Background to IEC 1508 and Other Safety
Related Standards

The most important relevant standard is the generic IEC1508
“Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems” [8]. This standard is pro-
duced by the International Electrotechnical Commission,
(IEC) a world wide organization promoting international
standardization and cooperation in the electrical and elec-
tronic fields. In the 1980s the IEC recognized that computer-
related systems were being used widely to perform safety
functions. They decided that, if computer system technol-
ogy was to be effectively and safely exploited, it was essen-
tial that those responsible for making decisions had suffi-
cient guidance for the safety aspects. The standard IEC1508
was developed to set out a generic approach for ensuring
the safety of programmable systems. It proposes an overall
safety lifecycle for both hardware and software—address-
ing all stages from initial concept, through design, imple-
mentation, operation and maintenance to decommission-
ing, of a programmable electronic system used to achieve
safety. A risk-based approach is adopted to determine the
required “safety integrity,” and numerical targets are set for
safety performance. The standard adopts a broad range of
approaches intended to achieve safety. The standard
IEC1508 was the result of an extensive period of consulta-
tion lasting many years, and which included publication of
an interim version IEC 65A [9] that was widely reviewed.

The standard IEC 1508 has created intense interest in
Europe and is likely to be adopted widely in diverse in-
dustries. It is, therefore, timely to both publicze and scruti-
nise the standard. Hence, throughout this paper we use IEC
1508 as an example of applying our method. Needless to

1004 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

say there are potential improvements to be found in all
software standards but since IEC1508 is not yet widely in
use our suggestions may prove helpful to those involved in
its future development and application.

By way of comparison, the most closely related standard
to IEC 1508 of United States origin is DO-178B [18] which
was produced especially for software in avionics systems.
The major similarities in the standards are general assump-
tions about best practice software development and testing
which evolve from the traditional software engineering life-
cycle. In this respect both standards differ from the highly
contentious United Kingdom draft defence standard for
safety critical software systems Def-Stan 00-55 [14]. The latter
assumes that the traditional software engineering life-cycle is
inadequate for critical applications, and mandates the use of
formal methods instead. Such methods are mentioned in
both IEC 1508 and DO-178B only as possible approaches for
the most critical components. The key difference between
IEC 1508 and DO-178B is that most of the requirements are
mandatory in IEC 1508 rather than guidelines as in DO-178B.

2.3 The Notion of Assessment
The word assessment is given many different interpretations
in the standards community. Typically, in relation to safety
critical software, there are three broad categories to consider:

1)�Assessment in the sense of testing, reviewing, or
proving a product;

2)�Assessment in the sense of determining the integrity
requirements to place on a software component based
on system level hazards;

3)�Assessment in the sense of comparing actual quality
delivered against quality requirements.

We believe that standards already address the first two
types of assessment adequately. However, it is the third,
assessing against requirements (whether conformance or
predictions), where most improvements can be made. Con-
sequently, in this paper we concentrate on the third type of
assessment.

3 WHY STANDARDS ARE THE WAY THEY ARE

It is important to understand why software engineering
standards are the way they are before we attempt to evalu-
ate them. In this section, we examine the standards-making
process and describe the conflicts that lead to standards
which are a confusing mix of different philosophies.

Creating a standard is a lengthy collaborative effort be-
tween industry, users, consultants, and academia, all with
different and potentially conflicting ideas. This process can
take many years and the eventual procedures and require-
ments have to be widely agreed upon before a standard is
released. Each of the different parties to this process brings
particular commercial and engineering perspectives, inter-
ests and experience. From an engineering perspective we
can identify different, and sometimes opposing, forces at
work on standards:

1)�Prescriptive vs. nonprescriptive regulation. The majority
of traditional engineering standards are highly pre-
scriptive in the sense that they dictate the what’s and

how’s of the product or the process used to develop
and test that product. This can breed inflexibility and
may present an unwelcome constraint on innovation.
On the other hand, nonprescriptive approaches place
appropriately wide bounds on what products should
do and what test and development processes should
be used and so allow the product developer a freer
hand. Of course the ultimate form of nonprescription
is where no standards exist to govern system devel-
opment. Essentially prescriptive regulation may be
more effective in areas which are technologically
mature or where products or processes may be fairly
uniform and already well understood.

2)�Conformance vs. risk-based assessment. Conformance as-
sessment involves asking to what extent developers
have adhered to the requirements placed upon them by
the standard. We can think of this act as primarily in-
volving measurement of either the developed product
against what the standard says the product should look
like, or the development process against a set of proc-
ess requirements given by the standard. Risk-based as-
sessment involves predicting the possible future risks
incurred by users of the system. Put simply, under a
risk-based regime1 the developer or assessor will assess
the likelihood and severity of the hazards, or failures,
presented by the system and compare them against
what society considers acceptable. Conformance as-
sessment approaches work well when we know what
product forms or process approaches work well and
provide adequate safety or quality. Risk-based ap-
proaches identify unknown risks and demonstrate how
far the system can be trusted and are especially rele-
vant to novel situations and unusual designs.

3)�Product vs. process assessment. Product assessment in-
volves measuring and evaluating the properties a
product possesses against what is required. Some-
times such assessment is called “type” assessment be-
cause we are assessing a product against a generic
type of product. For example, in shipping we might
assess an oil tanker against a standard specifically
targeted at oil tankers rather than one relevant to all
ships. There are two levels of product assessment;
functional and nonfunctional. Functional assessment
involves examining what the system actually does.
For example, evaluating a word processor might in-
volve determining whether it allows text editing, file
storage, and font selection. Nonfunctional assessment
addresses properties such as safety, reliability, and
maintainability. Obviously the nonfunctional proper-
ties are predicated on the functional properties—it
only makes sense to evaluate reliability once you have
some idea of what the system’s functional properties
are. Process assessment rests on the assertion that “a
good process produces a good product.” Attention is
therefore given to the relevant facets of the software
process and the resources used during the process.
Process oriented standards will describe essential
features of these processes such as configuration

1. The terms goal-setting or safety-case are equivalent to a risk-based
approach.

FENTON AND NEIL: A STRATEGY FOR IMPROVING SAFETY RELATED SOFTWARE ENGINEERING STANDARDS 1005

management, quality policies and testing and the re-
sources used during these processes such as staff ef-
fort, development tools and budgets. Process oriented
standards have shown themselves to be effective in
industries like car manufacturing, where the products
are standardized and the production repeatable. If the
process produces identical products of required qual-
ity it is claimed there is little need to assess product
quality directly. Total Quality Management (TQM)
and Statistical Process Control (SPC) partly rest upon
this assumption but can only succeed where the
products are well defined and standardized.

Of course, the above three classifications are mutually
dependent in many ways. Standards will vary in their mix
of emphases. For example, as a result of the Piper Alpha
accident Lord Cullen recommended a nonprescriptive, risk-
based product approach be applied to health and safety
matters in North sea oil and gas platforms [13]. This has
been encapsulated in the idea of a safety case, defined by
Shaw as:

“a clear, defensible, comprehensive, and convincing argument,
developed by an operator, aimed at identifying the risks inher-
ent in operating a system, demonstrating that the operating
risks are fully understood, that they have been reduced to an
acceptable level and are properly managed” [19]

Central to all of the above issues are the roles played by
novelty and technological change. Where we have mature
well understood designs, such as in traditional hardware
artifacts, we encode this understanding in prescriptive,
product-oriented standards. The risks of using such prod-
ucts are known, so the assessment process simply involves
evaluating conformance against the standard. If we know a
product conforms we may trust that the product presents
an acceptable risk. However, for novel systems, such as the
majority of software systems, our experience is much
smaller and assessment much more difficult. Even where
we have mature, well-understood product designs of
known quality, such as in word processing systems, the IT
industry forces rapid technological change. This rate of
change produces an explosion of variety of system types
needing to be assessed. For regulators, assessors, and users
as well as developers, this presents a challenging situation
and has had a profound influence on the software stan-
dards we have.

Software engineering and safety critical system stan-
dards have failed to meet the challenge presented by sys-
tem novelty and change. The prevailing attitude is that
software engineering should at least present itself as being
as mature as manufacturing and traditional engineering.
Therefore, software standards typically pretend to be tradi-
tional and conformance oriented because this is what peo-
ple expect. However, software standards can only be as
prescriptive as traditional product engineering standards if
we understand the properties of software products suffi-
ciently well. This understanding is clearly not currently
available even for the most common application domain
products such as databases, real-time control systems, and
word processors. Furthermore, the problem presented by
system novelty dictate that a very large number of product
specific software standards would need to be developed.

As a reaction to the problem of novelty some standards
have embraced the risk-based approach where a system is
assessed against its specific mode of use rather than against
a generic product type. Under a risk-based approach the
developer and user must analyse the system in its intended
environment, identify the practical potential hazards pre-
sented by the system, predict their consequences and take
action to reduce risk to an acceptable level with respect to
the costs involved [7]. In this way the risk presented by
novelty and complexity can be analyzed and accounted for,
but at an expense felt appropriate for safety-critical systems
only. The act of assessment in a risk-based approach moves
from compliance against the standard (although this re-
mains to some extent) to assessment of the system itself. In
this way an assessment becomes a meaningful measure of
trust for the eventual user of the system.

This is clearly a positive development but has led to the
danger that some standards may present a confusing mix-
ture of different philosophies. By attempting to combine
conformance and risk-based clauses, prescriptive require-
ments, and nonprescriptive guidelines software standards
may be in danger of losing their authority and the support
of the developers it is trying to enlighten.

4 FRAMEWORK FOR EVALUATING STANDARDS

In order to interpret and evaluate standards we consider a
number of steps that must reflect the various requirements
placed upon a standard by system developers, assessors,
and users. These steps are:

1)�Determine the clarity of requirements in standards. De-
velopers are obliged to comply to the requirements
set forth in a standard if they wish to claim confor-
mance to it. Clear requirements make the system con-
struction task easier and the evaluation of confor-
mance more straightforward.

2)�Classify the requirements in standards. We can classify
requirements in a standard according to whether they
are process, resource or product oriented. Require-
ments can also be separated into those that focus on
compliance and those that are risk-based.

3)� Identify the role of measurement and prediction. Assessing
processes and products is more meaningful and use-
ful where concrete measurements and sensible pre-
diction models are required by the standard when as-
sessing compliance and predicting risk

4)�Determine the balance of requirements. Having classified
requirements as product, process, or resource, it is
important to consider the overall balance between
these classes. For example, a standard whose aim is to
improve product safety should not be made up pri-
marily of just process and/or resource requirements.

5)�The need for objectivity in conformance assessment. The
extent to which an assessor can determine whether
the standard has genuinely been followed will de-
pend on whether the requirements, definitions and
descriptions listed in the standard are observable and
verifiable.

1006 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

Each of these criteria will be separately addressed in Sec-
tions 5, 6, 7, 8, and 9.

5 CLARITY OF REQUIREMENTS IN STANDARDS

A standard is a collection of individual requirements. Our
main concern is to consider the clarity of each mandatory
requirement in the following two key respects:

1)�The developer’s obligations for compliance. Is it clear what
is required in order to conform to the requirement? If
not then the standard cannot be used in a consistent
and repeatable way.

2)�An assessor’s obligation for determining conformance. Is it
possible to determine conformance to a requirement
reasonably objectively? If not then we may not be able
to trust the assessor’s results.

Generally, obligation 2) will follow from 1). For example,
in IEC 1508,2 Part 1, there are a number of requirements
concerning the Safety Plan. Of these 6.2.2e asserts that the
Safety Plan shall include a “description of the safety lifecy-
cle phases to be applied and the dependence between
them.” The developer knows that certain specific informa-
tion must appear in the document. To evaluate confor-
mance the assessor only has to check that this information
is there.

Conversely, however, it is not necessarily true that 1) will
follow from 2). For example, for the software safety lifecycle
we have:

Requirement 7.1.6. “Each phase shall be terminated by a
verification report.”

Obligation 2) is clear. The assessor has, strictly speaking,
only to check the existence of a specific report for each
specified phase. However, the developer’s obligations for
the requirement is unclear; a subsequent requirement (in
the software verification section) sheds little light on what
constitutes an acceptable verification report:

Requirement 7.9.2.4. “A Software Verification report shall
contain the evidence to show that the phase being veri-
fied has, in all respects, been satisfactorily completed.”

Unfortunately, in a key standard like IEC 1508 most re-
quirements are unclear in both respects. For example, re-
quirement 7.4.6.1a asserts that:

“The source code shall be readable, understandable, and
testable.”

It is unclear what is expected of developers, while an
assessor could only give a purely subjective view about
conformance.

In traditional engineering standards it is widely accepted
that the necessary clarity for both obligations 1) and 2) have
to be achieved for all requirements [5]. Partly because of the
immaturity of the discipline, software engineering stan-
dards do not have this clarity. Our objective here is to pro-
vide recommendations on how to rationalize and refine
standards in such a way that we move toward the scenario
where we can make the obligations for the assessor clear
and objective where it is possible to do so.

2. Unless otherwise stated all examples are taken from IEC 1508 Part 3.

6 CLASSIFYING REQUIREMENTS IN STANDARDS

6.1 Processes, Products, and Resources
Our approach to interpreting standards begins by classify-
ing individual requirements according to whether they fo-
cus primarily on processes, products, or resources:

A Process is any specific activity, set of activities, or time
period within the manufacturing or development project.
Examples of process requirements are:

7.1.4. “Quality and safety assurance procedures shall run
in parallel with lifecycle activities” (process here is Qual-
ity and Safety Assurance).

7.9.2.12. “The source code shall be verified by static meth-
ods to ensure conformance to the Software Module De-
sign Specification, the Coding Manual, and the require-
ments of the Safety Plan (process here is Static Analysis).

A Product is any new artifact, deliverable or document
arising out of a process. Examples of product requirements
are:

7.2.2.5a. “The Software Requirements Specification
shall be expressed and structured in such a way that it is
as clear, unequivocal, verifiable, testable, maintainable
and feasible as far as possible commensurate with the
safety integrity level” (product here is Requirements
Specification Document) 7.4.6.1b. “The source code shall
satisfy the Software Module Design Specification”
(product here is Source Code).

A Resource is any item forming, or providing input to, a
process. Examples include a person, a compiler, and a soft-
ware test tool. Examples of resource requirements are:

Part 1, 5.2.1. “All persons involved in any life-cycle ac-
tivity, including management activities, shall have the
appropriate training, technical knowledge, experience
and qualifications relevant to the specific duties they
have to perform.” (resource here is People)

7.4.4.3a. “The programming language selected shall have
a translator/compiler which has either a “Certificate of
Validation” to a recognized National/International stan-
dard or an assessment report which details its fitness for
purpose.” (resource here is the Programming Language
Compiler)

7.4.4.3b. “The programming language selected shall be
completely and unambiguously defined or restricted to
unambiguously designed features.” (resource here is the
Programming Language)

Ideally, it should be absolutely clear for each requirement
which process, product, or resource is being referred to and
which property or attribute of that process, product, or re-
source is being specified. The example requirements above
are reasonably satisfactory in this respect (even though they
do not all have the desired clarity discussed in Section 5).
However, in many requirements, it is necessary to “tease
out” this information. Consider the following examples,

7.4.5.3. “The software should be produced to achieve
modularity, testability, and maintainability.”

FENTON AND NEIL: A STRATEGY FOR IMPROVING SAFETY RELATED SOFTWARE ENGINEERING STANDARDS 1007

Although this refers explicitly to the software production
process, this requirement really only has meaning for the
resulting product, namely the source code. Moreover, the
three specified product attributes are quite different and
should be stated as separate requirements (preferably in
measurable form as discussed below in Section 5.3).

7.4.2.5. “The design method chosen shall possess features
that facilitate software modification. Such features include
modularity, information hiding and encapsulation.”
Although this requirement refers to two processes (design

and modification) its primary focus is a resource, namely the
design method. Three very different attributes of the method
are specified.

7.4.7.1. “Each module shall be tested against its Test
Specification.”
This is, strictly speaking, a combination of two separate

requirements (and should be treated as such). One is a
product requirement: the existence of a document (Software
Module Test Specification) to accompany each module. The
other is a process requirement that specifies that a certain
type of testing activity has to be carried out.

The above classification of standards’ requirements rep-
resents only the first stage in our proposed means of inter-
preting standards. It is important because it forces us to
identify the specific object of the requirement, and to seek
clarification where this is unclear. As a final example, con-
sider the following requirement:

7.4.2.8. “Where the software is to implement both safety
and nonsafety functions then all of the software shall be
treated as safety-related unless adequate independence
between the functions can be demonstrated in the de-
sign.”
By thinking about our classification we can interpret this

rather vague and confusing requirement. First of all we
tease out the fact that this is a product requirement, but that
there are two levels of product being considered: the soft-
ware as a whole; and the set of individual functions which
are being implemented. We need to break up the require-
ment into the following subrequirements:

1)�The individual functions in the software shall be
identified and listed in the Software Architecture
Specification; safety-related functions shall be marked
as such. (This is a product requirement; the product is the
Software Architecture Specification.)

2)�An independence check will be performed on each
<safety, nonsafety> pair of functions identified in 1).
(This is a process requirement: how the check is to be per-
formed needs to be further expanded.)

3)�A <safety, nonsafety> pair of functions are defined to
be independent provided that... (needs to be further
expanded). Two functions that are not independent
are defined to be dependent. (Product requirement)

4)�The whole system shall be partitioned into two
groups of functions: Group A will contain all safety-
related functions together with all nonsafety related
functions which are dependent on at least one safety
related function. Group B will contain all remaining
nonsafety-related functions. The whole software sys-
tem shall be classified as safety-related if Group B is
empty. (Product requirement)

7 THE ROLE OF MEASUREMENT AND PREDICTION

For product requirements, we make a distinction between
attributes which are internal and those which are external.
An internal attribute of product X is one that is dependent
only on product X itself (and hence not on any other entity,
be it another product, process or resource). For example,
where X is source code, size is an internal attribute. An ex-
ternal attribute of a product X is one that is dependent on
some entities other than just product X itself. For example,
if product X is source code then the reliability of X is an ex-
ternal attribute. Reliability of X cannot be determined by
looking only at X; it is dependent on the machine running
X, the person using X, and the mode of use. If any of these
are changed then the reliability of X can change. We have
already seen numerous examples of external attributes in
the above requirements (testability, maintainability, read-
ability). Attributes like modularity (in 7.4.5.3) can, with spe-
cific definitions, be regarded as internal [4].

We have already mentioned that standards are influ-
enced by two forces; the requirement to assess conformance
objectively and the need to anticipate risks presented by
novel systems. The act of determining conformance objec-
tively is a form of measurement, where the assessor is at-
tempting to find the “distance” between actual practice, as
performed by the developer or evident in the product, and
expected practice as embodied in the standard. For internal
attributes, whether they are of process, resources or prod-
ucts, improving conformance assessment means that we
must make their definitions and descriptions more rigorous
and precise. However, anticipation of future risks and fail-
ures involves prediction, and is markedly different from
conformance assessment. Prediction of the future depend-
ability of software-based systems is an uncertain business
requiring considerable human judgment and skill [15]. As-
sessors have little concrete evidence of the historical de-
pendability of similar systems to base predictions on and
even were this to exist the novelty of many systems may
make this evidence necessarily weak [12]. Thus, the asses-
sor is forced to make predictions conditional on the par-
ticularities of the system’s design, the competence of the
developers, and the methods and processes deployed. The
weight that can be assigned to each of these differing
sources of evidence is unknown and highly uncertain.
Likewise, how we combine this evidence is an open re-
search issue.

The distinction between internal and external attributes
is now a widely accepted basis for software evaluation.
Clearly, external attributes are the ones of primary concern,
especially as, from a user’s perspective, the ultimate goal is
to determine acceptance criteria for safety critical systems.
This means that we have to determine whether the system’s
external attributes like safety, reliability, and maintainability
are acceptable for the system’s purpose. In practice, these
attributes cannot be measured directly until the system is
being used so we are forced to make a decision about the
acceptability of these attributes before the system is even
extensively tested. This means that we are forced to look for
evidence in terms of internal product attributes, or process
and resource attributes.

1008 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

In IEC1508 the role of the assessor is explicitly to address
conformance to the standard. As a measurement task this
has its problems as described in Sections 5 and 6. However,
where the assessor must address safety, the need to perform
prediction emerges. Central to this is the notion of a SIL
(Safety Integrity Level), which is a probability of failure
interval. IEC1508 recommends the use of particular meth-
ods, techniques and measures3 to developers if they want to
increase the likelihood of achieving a particular SIL. For
higher SIL levels supposedly more rigorous methods are
recommended.

Table 1 shows the recommendations made for independ-
ent validation in Section 7.7.2.8 of IEC1508:

TABLE 1:
RECOMMENDATIONS FOR INDEPENDENT VALIDATION IN IEC1508

SIL 1 2 3 4

Independent Person HR HR(1) NR NR
Independent Department – HR(1) HR(2) NR
Independent Organization – – HR(2) HR

 HR highly recommended
 R recommended
 – neither recommended or not recommended
 NR not recommended HR(1), HR(2): whether
 HR(1) or HR(2) is selected will depend on higher complexity,
 similar design, novelty of design etc.

If a developer wants to achieve a higher level of safety,
say SIL 4, then it is highly recommended that an independ-
ent organization performs validation. For SIL 1 only an in-
dependent person is recommended and they are not re-
quired to be from another organization or department.
IEC1508 is careful to state that these recommendations are
guidelines only but expects deviation from them to be re-
corded and justified to the assessor.

We can make two important points about IEC1508 based
on this example:

1)� It uses deterministic recommendations as surrogates for
what are really predictions. Rationally we would only
recommend one act over another if we believed that it
increased the likelihood of achieving a particular SIL.
Furthermore, we would want these likelihoods ide-
ally to be based on real experience and observation.

2)�These recommendations are conditional on the situa-
tion to hand. The standard recognizes that factors
such as the design novelty, complexity and poor expe-
rience of similar products should be accounted for
when determining whether a recommendation should
be followed. This is equivalent to determining
whether these factors will affect detrimentally the
likelihood of achieving the desired SIL.

From these points we can see that the important role
played by prediction is left unclear and implicit because the
language does not appear to admit uncertainty. IEC1508 at-
tempts to force prediction into the straightjacket of confor-
mance assessment where evidence is black and white rather
than in shades of grey.

3. The word “measures” is used in IEC1508 to mean tasks or actions
rather than the act of measuring something.

In IEC1508 it is left up to the assessor to determine subjec-
tively whether a SIL target will be achieved and with what
likelihood. To do this assessors must combine mentally the
various recommendations, uncover their complex interrela-
tions and use this evidence to inform their prediction. How,
for example, is an assessor to determine the effects of novelty
on whether the developer should employ an independent
validation team from within or outside the organization?
Should an organization be able to claim SIL 3 when they
have no experience of similar products and the system re-
quirements are complex? This will always be an uncertain
task requiring considerable judgment but it is clearly difficult
and one where the standards offers no guidance on how this
should or could be done. Furthermore the assessor is given
significant responsibility, beyond mere conformance evalua-
tion, in the ultimately important process of predicting risk
without the need to document or justify it.

We believe that those standards which set out to embrace
a risk-based approach to assessment of complex systems
should make explicit either the prediction systems to be used
or the prediction calculus to be applied by the assessor. Do-
ing this should make standards more relevant to the users of
systems since assessment would be more solidly related to
prediction of the risks and failures that they might face. The
ESPRIT funded SERENE project [3] is using Bayesian Belief
Networks to model the safety assessment procedures in vari-
ous industrial settings as a way of making predictions about
safety using diverse sources of evidence [16].

8 BALANCE BETWEEN TYPES OF REQUIREMENTS

The Oxford Encyclopedia English Dictionary defines a
standard as:

“an object or quality of measure derived as a basis or example or prin-
ciple to which others conform or should conform or by which the accu-
racy or quality of others is judged.”

This definition conforms to the widely held intuitive
view that standards should focus on specifying measurable
quality requirements of products. Indeed, this is the em-
phasis in traditional engineering standards. This point was
discussed in depth in [5] which looked at specific safety
standards for products (such as pushchairs). These explic-
itly specify tests for assessing the safety of the products.
That is, they provide requirements for an external attribute
of the final product. The measurable criteria for the testing
process are also specified. There is, therefore, a direct link
between conformance to the standard and the notions of
quality and safety in the final product. Standards such as
BS4792, the safety of pushchairs [2]4 also specify a number
of requirements for internal attributes of the final product,
but only where there is a clearly understood relationship
between these and the external attribute of safety.

We contrast this approach with software safety stan-
dards. Very few requirements in these standards are well-
defined product requirements. For example, [5] provided a
detailed comparison of the requirements in BS 4792 with
those of the software safety standard DEF-STAN 00-55. The
latter consists primarily of process requirements (88 out of a

4. Commonly called a “baby stroller” in the United States.

FENTON AND NEIL: A STRATEGY FOR IMPROVING SAFETY RELATED SOFTWARE ENGINEERING STANDARDS 1009

total 115 with 14 internal product and 13 resource require-
ments). There is not a single external product requirement.
In contrast, BS 4792 consists entirely of product require-
ments (28 in total) of which 11 are external.

The distribution of requirements in DEF-STAN 00-55
seems fairly typical of software standards studied. The stan-
dard IEC 1508 is slightly different in that there is a very large
number of resource requirements, but again we find far more
process than product requirements. The problem with most
of these requirements is that they are not demonstrated to be
fit for purpose because, unlike BS 4792, there is no evidence
that they enhance safety. For example, the following are typi-
cal internal product requirements from IEC 1508:

7.4.4.6. “The coding standards shall specify good pro-
gramming practice, proscribe unsafe language features,
and describe procedures for source code documentation.”

7.4.2.11. “The software design shall include, commensu-
rate with the required safety integrity level, self-
monitoring of control flow and data movements.”

7.4.5.3. “The software should be produced to achieve
modularity, testability, and maintainability.”

Each of these requirements (which would need further
clarification to be usable anyway) represent particular
viewpoints about internal structural properties that may
impact on system safety. Unfortunately, there is no clear
evidence that any of them really does [6]. The many process
and resource requirements in standards such as IEC 1508
have an even more tenuous link with final system safety.

9 THE NEED FOR OBJECTIVITY IN CONFORMANCE
ASSESSMENT

The classification of standards” requirements into process,
product, or resource represents a small step in clarifying
standards. We need to classify further the requirements ac-
cording to the ease with which we can assess conformance.
Our objective is to identify the “rogue” requirements by
making definitions and descriptions more precise. Rogue
requirements are those for which the assessor’s obligation (as
discussed in Section 2) is unclear; that is, where an assess-
ment of conformance has to be purely subjective. Note that
we are only considering the objectivity of the act of confor-
mance assessment, not the objectivity of predictions.

Assuming that a requirement refers to some specific,
well-defined process, product or resource, we distinguish
four degrees of clarity for each requirement (as shown in
Table 2):

TABLE 2
CODES FOR DEGREE OF DETAIL GVEN IN ANY REQUIREMENT

Code Interpretation

R A reference only with no indication of any particular
attribute(s) which that entity should possess

* A reference for which only a subjective measure of
conformance is possible

** A reference for which a partially subjective and par-
tially objective measure of conformance is possible

*** A reference for which a totally objective measure of
conformance is possible

Ideally, the vast majority of requirements should be in
categories ‘**’ and ‘***’ (with a small number of necessary
“R’s for definition). In the IEE pushchair safety standard
BS4792 every one of the 28 requirements is in category ‘***’
Although IEC 1508 is more objective than the vast majority
of software standards reviewed (and is indeed a significant
improvement on its earlier draft IEC SC65A), many re-
quirements (including most of the examples presented so
far) still fall into the “R” and ‘*’ category. This means that
conformance to such requirements can only be assessed
purely subjectively. For example, it would be near impossi-
ble to assess conformance to the following requirement:

7.4.6.1a. “The source code shall be readable, understand-
able, and testable.”

Here the requirement is effectively redundant unless we
can achieve consensus amongst a large number of experts
(which would be uneconomic). Alternatively, we could at-
tempt to re-write it in a form which enables us to check con-
formance objectively. If there is mutual agreement (between
developer and assessor) in the overall value of a requirement
(however vague) then this is the option we propose. How-
ever, we stress that there is a considerable difference between

1)�making a requirement objective, and
2)�being able to assess conformance to a requirement

objectively.

Option 1) is generally very difficult and often impossi-
ble; in an immature discipline there is even some justifica-
tion for allowing a level of subjectivity in the requirements.
It is only option 2) that is being specifically recommended.
The following example explains the key difference between
1) and 2) and shows the different ways we might interpret
requirements to achieve 2). There are generally many ways
in which this can be done:

EXAMPLE 1. We consider how we might interpret require-
ment 7.4.6.1a above in order that we can assess con-
formance objectively. First of all we note that there are
actually three separate product requirements, namely:

1)�Each software module shall be readable;
2)�Each software module shall be understandable;
3)�Each software module shall be testable.

We concentrate on just 1) here. Consider the following
alternative versions:

1)�To accompany each software module a report justify-
ing readability will be produced.

2)�To accompany each software module a report justify-
ing readability will be produced. This report will in-
clude a section that explains how each variable in the
module is named after the real-world entity that it
represents.

3)�The ratio of commented to noncommented code in
each software module shall be at least 1 to 4, and the
total size shall not exceed 1000 LOC.

4)�An independent reviewer, with a degree in Computer
Science and 5 years experience of technical editing,
shall devote a minimum of 3 hr to reviewing the code
in each software module. The reviewer shall then rate
the module for readability on the following 5-point
ordinal scale:

1010 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

•� 0 (totally unreadable)
•� 1 (some serious readability problems detected, re-

quiring significant rewrite);
•� 2 (only minor readability problems detected, re-

quiring rewrite);
•� 3 (only trivial readability problems detected);
•� 4 (acceptable).

The module must achieve a rating of 3 or higher.

Each of the above versions can be checked for confor-
mance in a purely objective manner even though a large
amount of subjectivity is still implicit in each of the re-
quirements. In the case of 1) we have only to check the ex-
istence of a specific document. This is a trivial change to the
original requirement since we have still said nothing about
how to assess whether the document adequately justifies if
the module is readable. Nevertheless, we have pushed this
responsibility firmly onto the developers and not the asses-
sors. Alternative 2) is a refinement of 1) in which we iden-
tify some specific criteria that must be present in the docu-
ment (and which might increase our confidence in the
readability argument). For alternative 3) we have only to
check that the module has the right “measures.” A simple
static analysis tool can do this. In alternative 4) we have
only to check that the rating given by the independent re-
viewer is a 3 or 4 and check that this person does indeed
have the specified qualifications and experience.

In each of the alternative versions measurement plays a
key, but very simple role. In the case of version 4) the re-
quirement is based on a very subjective rating measure.
Nevertheless, we can determine conformance to this re-
quirement purely objectively. None of the alternative re-
quirements except 3) is a requirement for which the module
itself (a product) is the focus. Alternatives 1) and 2) are both
requirements of a different product, while Alternative 4)
concentrates on the results of a reviewing process.

Example 1 confirms that being able to assess confor-
mance to a requirement objectively does not mean that the
requirement itself is objective. Nor, unfortunately, does it
always mean that assessment will be easy. The approach
that we are proposing is to move toward identifying meas-
urable criteria to replace ill-defined or subjective criteria.
This is consistent with the traditional measurement-based
approach of classical engineering disciplines. Texts such as
[4] explain how to move toward quantification of many of
the subjective criteria appearing in a standard such as IEC
1508. The following example further illustrates the method:

EXAMPLE 2. Requirement 7.2.2.5a asserts “To the extent re-
quired by the integrity level the Software Safety Re-
quirements Specification (SSRS) shall be expressed
and structured in such a way that it is as clear, precise,
unequivocal, verifiable, testable, maintainable and
feasible as possible commensurate with the safety in-
tegrity level.” Each of the required attributes here
(which need to be treated as separate requirements)
are ill-defined or subjective. In the case of “maintain-
able” there are a number of ways we could interpret
this so that we could assess conformance objectively.
The most direct way is to specify a mean or maximum
time in which a change to the SSRS can be made.

Since such measures are hard to obtain it may be pref-
erable to specify certain internal attributes of the
SSRS, such as: the electronic medium in which it must
be represented; the language in which it has to be
written; that it has to be broken up into separately
identifiable functions specified using less than 1000
words each; etc. Specification measures such as Al-
brecht’s Function Points [1] might even be used. A
radically different approach is that of alternative 4) in
Example 1 where we simply specify what expert’s
rating of maintainability has to be achieved.

10 A STRATEGY FOR IMPROVING STANDARDS

So far we have concentrated on how we can interpret and
use standards despite their many weaknesses. We do not
question the general importance and value of standards to
safety critical systems development. Nevertheless, there are
very wide differences of emphasis in specific safety-critical
standards. For example, DEF-STAN 00-55 and IEC1508 are
totally different in their underlying assumptions about
what constitutes a good software process; DEF-STAN 00-55
mandates the use of formal specification (and is structured
around the assumption that formal methods are used),
while IEC1508 mentions it only as a technique which is
“highly recommended” at the highest safety integrity level
(level 4). Clearly the standards cannot all be equally effec-
tive. They are certainly not equally easy to apply or assess.

It follows that there is a need for evaluating the effective-
ness of standards, especially when we consider the massive
technological investments which may be necessary to im-
plement them. What we have described so far may be
viewed as a “front-end” procedure for standards evaluation.
This is like an intuitive quality audit, necessary to establish
whether a given standard satisfies some basic criteria. It also
enables us to interpret the standard, identify its scope, and
check the ease with which it can really be applied and
checked. However, for proper evaluation we need to demon-
strate that, when strictly adhered to, the use of a standard is
likely either to deliver reliable and safe systems at an accept-
able cost, or help predict reliability and safety accurately.

We looked at how to assess standards in some of these
respects [17]. The basic impediment to proper evaluation is
the sheer flabbiness of the relevant standards. Many of the
standards address the entire development and testing life-
cycle, containing massive (and extremely diverse) sets of
requirements. It makes no scientific sense, and is in any
case impractical, to assess the effectiveness of such large
objects. Thus we use the notion of a ministandard. Any set of
requirements, all of which relate to the same specific entity
or have the same specific objective, can be thought of as a
standard in its own right, or a ministandard. Rather than
assess an entire set of possibly disparate requirements, we
instead concentrate on ministandards.

From our discussion on the forces at work during the
creation of standards there emerged three clear ministan-
dard types:

FENTON AND NEIL: A STRATEGY FOR IMPROVING SAFETY RELATED SOFTWARE ENGINEERING STANDARDS 1011

•� Product ministandards. A product ministandard would
cover a specific product entity, such as a test plan or a
software module, describe and define its desirable at-
tributes and specify a measurement procedure
whereby conformance could be assessed.

•� Process ministandards. A process ministandard would
cover similar ground to the product ministandard ex-
cept it would address process and resource entities
rather than product entities. For example we could
imagine ministandards for the requirements specifi-
cation phase, the maintenance process or the design
method.

•� Risk-based ministandards. A risk-based ministandard
would act as the glue to combine the product and
process ministandards together. The risk-based min-
istandard would combine the differing evidence from
both process and product ministandards to make a
prediction about another product or process attribute,
which might have its own ministandard. For example,
we might take evidence about conformance to a re-
quirements specification phase ministandard to pre-
dict whether conformance to a requirements docu-
ment ministandard is likely to be achieved as a result
of following the specification process. In this way we
can invoke complex cause-effect chains of inference
between standards and evaluate one standard’s use-
fulness in terms of its effects on others.

The need to decompose standards into manageable min-
istandards is a key stage in the evaluation strategy described
in [17]. Many software-related standards are written in a way
which makes this decomposition extremely difficult. Any
system developer or user would select those ministandards
relevant to the systems development and use.

However, the parts of IEC 1508 relevant to software are
structured in a naturally decomposable way. We can identify
seven key ministandards in the relevant parts of IEC 1508:

Process Ministandards

•� Process of Specifying Safety Integrity Levels (Part 1,
Section 8)

•� The Safety Plan (Part 1, Sections 6 and 7, and Part 3,
Sections 7.1 and 7.2)

•� Resources (Part 1, Section 5 and Part 3, Section 5
which concentrate on people; and those requirements
in Part 3 which describe the requirements of the de-
sign method, programming language and other tools)

•� The Design Process (Part 3, Section 7.4)
•� The validation and verification and testing process

(Part 3, Sections 7.3, 7.7, and 7.9)
•� The maintenance process (Part 3, Sections 7.6 and 7.8)

Product Ministandards

•� The Software Requirements Specification (Part 3, Sec-
tion 7.2)

Risk-Based Ministandards

•� Methods for Determining Safety Integrity Levels
(Annexes C to E)

Developers and assessors would require a road-map and
guidelines on how to select ministandards on the basis of

relevance. We can think of this road-map as forming an
argument for the dependability of the system and a justifi-
cation of why particular ministandards were selected [15].

The formal obligations for evaluating the efficacy of pro-
cess and product ministandards reduce to evaluating the
following criteria in a given application of the standard:

•� Benefits. What observable benefits are supposed to re-
sult from the application of the ministandard? Specifi-
cally, which external attributes of which products,
processes or resources are to be improved? For exam-
ple, is it reliability of code, maintainability of code or
designs, productivity of personnel? We would also
ask whether those benefits were actually achieved.
Was the system safe to an acceptable degree? What
was its reliability?

•� Degree of conformance. To what extent have the re-
quirements been conformed to (note that to measure
this properly we need to be able to assess confor-
mance objectively)?

•� Cost. What is the extra cost of following the ministan-
dard for the expected benefits to be achieved?

For a risk-based ministandard the evaluation will focus
on the extent to which it helps risk-based prediction of
some attribute based on evidence from others. The relevant
criteria here would be:

•� Predictive Accuracy. Are the event likelihoods and
predictions realistic and trustworthy?

•� Informativeness: Is the chain of argument meaningful
and useful to assessor, developer and user?

•� Representativeness. Does it employ a realistic and
meaningful way of representing and manipulating
uncertain evidence and the predictions made using
this evidence?

Essentially, a successful product or process ministandard
is one where, for a given environment, it has been demon-
strated that the greater the degree of conformance to the
standard, the greater are the benefits, providing that such
improvements merit the costs of applying the standard. The
costs and benefits of a risk-based standard on the other
hand can only be evaluated by its second-order effects on
other standards.

11 IMPROVING STANDARDS IN THE LONG-TERM

The recommendations we have made in this paper have
covered the need to evaluate standards using a formal
strategy. In particular we have focused on:

•� making requirements more objective for conformance
assessment

•� classifying requirements according to the entities they
are addressing (process, product, resource)

•� balancing the requirements in standards according to
their intended purpose

•� recognizing the differing roles played by measure-
ment and prediction in conformance and risk-based
assessment

•� reorganizing standards into more meaningful min-
istandards with clearer goals

1012 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 11, NOVEMBER 1998

All of the above goals are achievable in the short-term
given appropriate resources and commitment from either
the standards making bodies or organizations actually us-
ing standards. However, improvement in the long-term will
require a greater understanding of software systems and
the potential risks they present.

The recommendations we have made here have concen-
trated largely on tightening up and clarifying definitions of
systems entities and their attributes. For example, by fol-
lowing our recommendations standards would have to list
objective definitions of reliability, testability, structure,
quality etc. In traditional engineering such abstract attrib-
utes are typically only standardized for products where
concrete descriptions of purpose, functionality, and struc-
ture already exist. Inclusion of measures such as reliability
and safety in a software standard will only make sense
when purpose, functionality and structure have been
clearly defined for a specific software product. Database
systems, expert systems and real-time control systems are
all solving different problems yet are covered by the same
standards. A user would not choose a database system over
an expert system simply because the expert system has a
higher reliability. The users first wants functionality and
then reliability.

If we were to take the model of current software engi-
neering and systems safety standards and apply it to tradi-
tional engineering products we would end up with bizarre
results. For example, we would not want to develop a single
product standard for “transportation systems” in the same
way we do for software systems. To do so would mean ef-
fectively amalgamating standards for trains, cars, aeroplanes,
bicycles, boats and ships and generalizing reliability and
safety targets to apply to abstract “generic mode of trans-
port.” It would not make sense to describe known designs
and safety features of ships alongside those of cars. The reli-
ability targets for cars would not be the same as it is for aero-
planes. A generic “transportation system” standard is clearly
absurd because we lose the whole notion of a standard as a
benchmark to compare similar artifacts. Yet software stan-
dards treat all software as belonging to the same generic do-
main regardless of the purpose behind its use.

The community needs standards that mandate minimum
desirable functionality for specific types of products. Only
in novel or complex situations should the user have to rely
on developers applying “best practice” and expensive risk
assessments. Where we do have such product standards
they are largely informal, as in the case of Commercial Off-
The-Shelf (COTS) products like word-processors, databases
and spreadsheets. The functionality of each of these is fairly
well understood and accepted, but they often fall down on
their unknown or low reliability. We should be identifying
such product types and standardizing them to ensure
minimum levels of functionality and reliability. Of course
standardizing the wide variety of different software sys-
tems will not be easy but should be more relevant to the
majority of users’ needs.

The appeal of software is often its capacity for novelty;
that ability to do something new. Indeed it could be
claimed that it is questionable to apply product standards
to systems that are hybrids of various product types. For

instance, a pharmaceutical system may contain databases,
neural nets, and real-time control modules all of which
work together to form the system. It is for situations such as
these that process oriented and risk-based standards would
still be needed to help predict the consequences of novelty
and unknown complexity. However, where knowledge
about particular product types has been accumulated it
should be encoded in product ministandards which would
in turn act as valuable inputs to a risk-based assessment
exercise for any hybrid system formed from their union.

12 SUMMARY AND CONCLUSIONS

For software standards to be usable we expect the individ-
ual requirements to be clear to:

•� Users so that they know what benefits the standards
deliver;

•� Developers so that they know what they are required
to do and

•� Assessors so that they know how to determine con-
formance and predict risk.

Unfortunately, many requirements in the relevant stan-
dards are not clear in any of these three respects. This was
partly explained by the different philosophies acting upon
standards development.

We have shown how to interpret unclear requirements in
both respects, but with special emphasis on the assessors’
needs. There is a significant difference between:

1)�making a requirement objective,
2)�being able to assess conformance to a requirement

objectively, and
3)�whether conformance implies that the product will be

fit for purpose.

While 1) is generally very difficult, we have shown how
to achieve 2) in a rigorous manner. We have also stated how
conformance assessment is no substitute for risk assessment
when addressing 3). Evaluating fitness for purpose of novel
and complex software systems makes extensive use of hu-
man expertise. However, existing standards cannot easily
accommodate human judgment and have ignored the
dominant role it plays.

The vast majority of all requirements in existing systems
standards are unnecessarily unclear. Our approach to inter-
preting such requirements begins by teasing out the rele-
vant process, product or resource that is the primary focus.
In many cases this means breaking down the requirement
into a number of parts. This technique alone can often
achieve greatly improved clarity. This strategy also helps
isolate the differing roles played by risk prediction and con-
formance assessment. We provided some examples drawn
from IEC 1508 on how to do this.

When the requirements in standards are classified ac-
cording to products, processes and resources, we found a
dearth of external product requirements (in stark compari-
son with safety-related standards in traditional engineering
disciplines). The emphasis was on process and resource
requirements with a smaller number of internal product
requirements. This balance seems inappropriate for stan-
dards whose primary objectives are to deliver products

FENTON AND NEIL: A STRATEGY FOR IMPROVING SAFETY RELATED SOFTWARE ENGINEERING STANDARDS 1013

with specific external attributes, namely safety and reliabil-
ity. Moreover we suggest that the long-term development
of standards should attempt to overcome this process bias
by constructing domain specific standards for products.

Finally, we discussed the need for assessing the effec-
tiveness of standards. The sheer size of existing standards
makes them too large to assess as coherent objects. Thus,
we used the notion of ministandards, whereby coherent
subsets of requirements all relating to the same specific pro-
cess, product, or resource. The identification of ministan-
dards helps us not only in assessment but also in rational-
ising and interpreting standards. We proposed a decompo-
sition of IEC 1508 into ministandards.

We have presented some simple practical advice on how
to improve software standards. Unfortunately, the stan-
dards-making process is long and tortuous. In many cases
this process itself contributes to some of the problems high-
lighted earlier. Perhaps, in addition to the consensus ap-
proach, it is time that the software industry validated its
own standards against a universal set of objective criteria
before releasing them for general use.

ACKNOWLEDGMENTS

The contents of this report have been influenced by mate-
rial from the SMARTIE project (funded by EPSRC and DTI)
in which the authors was involved, and also by an earlier
assessment of IEC SC65A that the authors performed as
part of the ESPRIT project CASCADE project (funded by
the CEC). The new work carried out here was partly
funded by the ESPRIT projects SERENE, DeVa, and the
EPSRC project IMPRESS. The authors are indebted to Co-
lum Devine, Miloudi El Koursi, Simon Hughes, Heinrich
Krebs, Bev Littlewood, Stella Page, Armstrong Takang,
Shari Lawrence Pfleeger, Linda Shackleton, Roger Shaw,
Jenny Thornton and the IEEE Transactions on Software Engi-
neering reviewers and editor for comments that have influ-
enced this work.

REFERENCES

[1]� A.J. Albrecht, “Measuring Application Development,” Proc. IBM
Applications Development Joint SHARE/GUIDE Symp., Monterey
Calif., pp. 83–92, 1979.

[2]� British Standards Institute, Specification for Safety Requirements for
Pushchairs, BS 4792, British Standards Inst. 1984.

[3]� ESPRIT Project 22187 SafEty and Risk Evaluation Using Bayesian
Nets, 1996. http://www.hugin.dk/serene/

[4]� N.E. Fenton and S. Lawrence Pfleeger, “Software Metrics: A Rig-
orous and Practical Approach, second edition. Int’l Thomson
Computer Press, 1996.

[5]� N.E. Fenton, B. Littlewood, and S. Page, “Evaluating Software
Engineering Standards and Methods, in Software Engineering: A
European Perspective, T.R. McGettrick AD, ed., IEEE CS Press,
pp. 463–470, 1993.

[6]� N.E. Fenton, S. Lawrence Pfleeger, and R. Glass, “Science and
Substance: A Challenge to Software Engineers,” IEEE Software,
vol. 11, 4, pp. 86–95, July, 1994.

[7]� Health and Safety Executive, UK, “The Tolerability of Risk from
Nuclear Power Stations,” HMSO, 1992.

[8]� International Electrotechnical Commission (IEC), “Functional
Safety of Electrical/Electronic/Programmable Systems: Generic
Aspects, IEC 1508, 1996.

[9]� International Electrotechnical Commission (IEC), “Software for
Computers in the Application of Industrial Safety Related Sys-
tems,” IEC 65A, 1992.

[10]� IEEE ed., “Software Engineering Standards (third edition),” New
York: Institute of Electrical and Electronics Engineers, 1991.

[11]� IEEE, “Standard 1003.1: Portable Operating System Interface (PO-
SIX)-Part 1: System Application: Program Interface (API) [C Lan-
guage],” (1-55937-061-0), IEEE Computer Society, 1990.

[12]� B. Littlewood, M. Neil, and G. Ostrolenk, “Uncertainty in Soft-
ware-Intensive Systems,” High Integrity Systems J., vol. 1 no. 5, pp.
407–413, 1996.

[13]� L. Cullen, “The Public Inquiry into the Piper Alpha Disaster,
HMSO, 1990.

[14]� Ministry of Defence Directorate of Standardisation, “Interim De-
fence Standard 00-55: The Procurement of Safety Critical Software
in Defence Equipment; Parts 1-2,” Kentigern House, Glasgow,
1991.

[15]� M. Neil and N.E. Fenton, “Predicting Software Quality Using
Bayesian Belief Networks,” Proc 21st Ann. Software Eng. Workshop,
NASA Goddard Space Flight Centre, pp. 217–230, Dec 1996.

[16]� M. Neil, B. Littlewood, and N.E. Fenton, “Applying Bayesian
Belief Networks to Systems Dependability Assessment,” Proc.
Safety Critical Systems Club Symp., Leeds, pp. 71–93, Springer-
Verlag, Feb. 1996.

[17]� S. Lawrence Pfleeger, N.E. Fenton, and P. Page, “Evaluating Soft-
ware Engineering Standards,” Computer, vol. 27, no. 9, pp. 71–79,
Sept. 1994.

[18]� Requirements and Technical Concepts for Aviation, Inc. (RTCA),
“Software Considerations in Airborne Systems and Equipment
Certification,” DO-178B, Washington DC, 1992.

[19]� R. Shaw, “Safety Cases: How Did We Get Here?” Safety and Reli-
ability of Software Based Systems, 12th Ann. CSR Workshop, R. Shaw,
ed., London: Springer-Verlag, pp. 43–95, 1995.

Norman E. Fenton has worked for 16 years in
the software engineering profession. He has
been involved in research, development, and
teaching. His text books and many research
papers on software metrics and formal methods
are well known internationally. He has held
academic posts at the University College Dub-
lin, Oxford University and South Bank University
where he was director of the Centre for Sys-
tems and Software Engineering. He is currently
professor of computing science at the Centre for

Software Reliability, City University. He is a chartered engineer (mem-
ber of the IEE) and an associate fellow of the IMA. He is one of the
founder members of the EPSRC Computing College. He has managed
many major collaborative projects. His current research projects are
concerned with applications of Bayesian nets, software measurement,
and safety critical systems. Professor Fenton is secretary to the (na-
tional) Centre for Software Reliability and managing director of Agena
Ltd. a consulting company specializing in decision support and risk
assessment of safety and business critical systems. URL:
http://www.agena.co.uk

Martin Neil holds a first degree in ‘mathematics
for business analysis’ from Glasgow Caledonian
University and has achieved a PhD degree in
‘Statistical Analysis of Software Metrics’ jointly
from South Bank University and Strathclyde
University. Dr. Neil is a lecturer in computing at
the Centre for Software Reliability (CSR) City
University, London. Before joining CSR, Neil
spent three years with Lloyd’s Register as a
consultant and researcher and a year at South
Bank University. He has also worked with J.P.

Morgan as a software quality consultant. His research interests cover
software metrics, Bayesian probability and the software process. Dr.
Neil is a member of the CSR Council, the IEEE Computer Society, and
the ACM. Dr. Neil is also a director of Agena, a consulting company
specializing in decision support and risk assessment of safety and
business critical systems. http:/www.agena.co.uk

