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Abstract 

The most sophisticated commonly used methods of risk assessment (used especially in 

the financial sector) involve building statistical models from historical data. Yet such 

approaches are inadequate when risks are rare or novel because there is insufficient 

relevant data. Less sophisticated commonly used methods of risk assessment, such as risk 

registers, make better use of expert judgement but fail to provide adequate quantification 

of risk. Neither the data-driven nor the risk register approaches are able to model 

dependencies between different risk factors. Causal probabilistic models (called Bayesian 

networks) that are based on Bayesian inference provide a potential solution to all of these 

problems. Such models can capture the complex interdependencies between risk factors 

and can effectively combine data with expert judgement. The resulting models provide 

rigorous risk quantification as well as genuine decision support for risk management. 

1. Introduction 
 
The 2008-10 credit crisis brought misery to millions around the world, but it at least raised 

awareness of the need for improved methods of risk assessment. The armies of analysts and 

statisticians employed by banks and government agencies had failed to predict either the 

event or its scale until far too late. Yet the methods that could have worked – and which are 

the subject of this paper – were largely ignored. Moreover, the same methods have the 

potential to transform risk analysis and decision making in all walks of life. For example:  

 

 Medical: Imagine you are responsible for diagnosing a condition and for prescribing 

one of a number of possible treatments. You have some background information 

about the patient (some of which is objective like age and number of previous 

operations, but some is subjective, like „overweight‟ and „prone to stress‟); you also 

have some prior information about the prevalence of different possible conditions (for 

example, bronchitis may be ten times more likely than cancer). You run some 

diagnostic tests about which you have some information of the accuracy (such as the 
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chances of false negative and false positive outcomes). You also have various bits of 

information about the success rates of the different possible treatments and their side 

effects. On the basis of all this information how do you arrive at a decision of which 

treatment pathway to take? And how would you justify that decision if something 

went wrong? 

 Legal: Anybody involved in a legal case (before or during a trial) will see many 

pieces of evidence. Some of the evidence favours the prosecution hypothesis of guilty 

and some of the evidence favours the defence hypothesis of innocence. Some of the 

evidence is statistical (such as the match probability of a DNA sample) and some is 

purely subjective, such as a character witness statement. It is your duty to combine the 

value of all of this evidence either to determine if the case should proceed to trial or to 

arrive at a probability („beyond reasonable doubt‟) of innocence. How would you 

arrive at a decision?  

 Safety: A transport service (such as a rail network or an air traffic control centre) is 

continually striving to improve safety, but must nevertheless ensure that any proposed 

improvements are cost effective and do not degrade efficiency. There are a range of 

alternative competing proposals for safety improvement, which depend on many 

different aspects of the current infrastructure (for example, in the case of an air traffic 

control centre alternatives may include new radar, new collision avoidance detection 

devices, or improved air traffic management staff training). How do you determine 

the „best‟ alternative taking into account not just cost but also impact on safety and 

efficiency of the overall system? How would you justify any such decision to a team 

of government auditors? 

 Financial: A bank needs sufficient liquid capital readily available in the event of 

exceptionally poor performance, either from credit or market risk events, or from 

catastrophic operational failures of the type that brought down Barings in 1995 and 

almost brought down Société Générale in 2007.  It therefore has to calculate and 

justify a capital allocation that properly reflects its „value at risk‟. Ideally this 

calculation needs to take account of a multitude of current financial indicators, but 

given the scarcity of previous catastrophic failures, it is also necessary to consider a 

range of subjective factors such as the quality of controls in place within the bank. 

How can all of this information be combined to determine the real value at risk in a 

way that is acceptable to the regulatory authorities and shareholders? 

 Reliability: The success or failure of major new products and systems often depends 

on their reliability, as experienced by end users. Whether it is a high end digital TV, a 

software operating system, or a complex military vehicle, like an armoured vehicle, 

too many faults in the delivered product can lead to financial disaster for the 

producing company or even a failed military mission including loss of life. Hence, 

pre-release testing of such systems is critical. But no system is ever perfect and a 

perfect system delivered after a competitor gets to the market first may be worthless. 

So how do you determine when a system is „good enough‟ for release, or how much 

more testing is needed? You may have hard data in the form of a sequence of test 

results, but this has to be considered along with subjective data about the quality of 

testing and the realism of the test environment.  

 

What is common about all of the above problems is that a „gut-feel‟ decision based on doing 

all the reasoning „in your head‟ or on the back of an envelope is fundamentally inadequate 

and increasingly unacceptable. Nor can we base our decision on purely statistical data of 

„previous‟ instances, since in each case the „risk‟ we are trying to calculate is essentially 

unique in many aspects. To deal with these kinds of problems consistently and effectively we 
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need a rigorous method of quantifying uncertainty that enables us to combine data with 

expert judgement. Bayesian probability, which we introduce in Section 2, is such an 

approach. We also explain how Bayesian probability combined with causal models (Bayesian 

networks) enables us to factor in causal relationships and dependencies.  In Section 3 we 

review standard statistical and other approaches to risk assessment, and argue that a proper 

causal approach based on Bayesian networks is needed in critical cases.  

 

2. Bayes theorem and Bayesian networks 
 

At their heart, all of the problems identified in Section 1 incorporate the basic causal structure 

shown in Figure 1. 

 

H 

(hypothesis)

E

(evidence)

 

Figure 1 Causal view of evidence 

  

There is some unknown hypothesis H about which we wish to assess the uncertainty and 

make some decision. Does the patient have the particular disease? Is the defendant guilty of 

the crime? Will the system fail within a given period of time? Is a capital allocation of 5% 

going to be sufficient to cover operational losses in the next financial year?  

 

Consciously or unconsciously we start with some (unconditional) prior belief about H (for 

example, „there is a 1 in a 1000 chance this person has the disease‟).  Then we update our 

prior belief about H once we observe evidence E (for example, depending on the outcome of 

a test our belief about H being true might increase or decrease). This updating takes account 

of the likelihood of the evidence, which is the chance of seeing the evidence E if H is true. 

 

When done formally this type of reasoning is called Bayesian inference, named after Thomas 

Bayes who determined the necessary calculations for it in 1763. Formally, we start with a 

prior probability P(H) for the hypothesis H. The likelihood, for which we also have prior 

knowledge, is formally the conditional probability of E given H, which we write as P(E|H).  

 

Bayes‟s theorem provides the correct formula for updating our prior belief about H in the 

light of observing E. In other words Bayes calculates P(H|E) in terms of P(H)  and P(E|H). 

Specifically:   
 

( | ) ( ) ( | ) ( )
( | )

( ) ( | ) ( ) ( | ) ( )

P E H P H P E H P H
P H E

P E P E H P H E notH P notH
 


 

 

Example 1: Assume one in a thousand people has a particular disease H. Then: 

 

P(H) = 0.001, so  P(not H) = 0.999 
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Also assume a test to detect the disease has 100% sensitivity (i.e. no false negatives) 

and 95% specificity (meaning 5% false positives). Then if E represents the Boolean 

variable “Test positive for the disease”, we have: 

 

P(E | not H) = 0.05 

P(E | H) = 1 

 

Now suppose a randomly selected person tests positive. What is the probability that 

the person actually has the disease? By Bayes Theorem this is: 

 

( | ) ( ) 1 0.001
( | ) 0.01963

( | ) ( ) ( | ) ( ) 1 0.001 0.05 0.999

P E H P H
P H E

P E H P H E notH P notH


  

   
 

 

So there is a less than 2% chance that a person testing positive actually has the 

disease. 

 

Bayes theorem has been used for many years in numerous applications ranging from 

insurance premium calculations [10], through to web-based personalisation (such as with 

Google and Amazon).  Many of the applications pre-date modern computers (see, e.g. [12] 

for an account of the crucial role of Bayes theorem in code breaking during World War 2).   

 

However, while Bayes theorem is the only rational way of revising beliefs in the light of 

observing new evidence, it is not easily understood by people without a 

statistical/mathematical background. Moreover, the results of Bayesian calculations can 

appear, at first sight, as counter-intuitive. Indeed, in a classic study [2] when Harvard Medical 

School staff and students were asked to calculate the probability of the patient having the 

disease (using the exact assumptions stated in Example 1) most gave the wildly incorrect 

answer of 95% instead of the correct answer of less than 2%.  The potential implications of 

such incorrect „probabilistic risk assessment‟ are frightening. In many cases, lay people only 

accept Bayes theorem as being „correct‟ and are able to reason correctly, when the 

information is presented in alternative graphical ways, such as using event trees and 

frequencies (see [3] and [6] for a comprehensive investigation of these issues). But these 

alternative presentation techniques do not scale up to more complex problems. 

 

If Bayes theorem is difficult for lay people to compute and understand in the case of a single 

hypothesis and piece of evidence (as in Figure 1), the difficulties are obviously compounded 

when there are multiple related hypotheses and evidence as in the example of Figure 2. 
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Figure 2 Bayesian network for diagnosing disease 

 

As in Figure 1 the nodes in Figure 2 represent variables (which may be known or unknown) 

and the arcs represent causal (or influential) relationships. Once we have relevant prior and 

conditional probabilities associated with each variable (such as the examples shown in Figure 

3) the model is called a Bayesian network (BN). 

 

Probability Table for “Visit to Asia?”  
Probability Table for “Bronchitis?”  

Figure 3 Node Probability Table (NPT) examples 

 

The BN in Figure 2 is intended to model the problem of diagnosing diseases (TB, Cancer, 

Bronchitis) in patients attending a chest clinic. Patients may have symptoms (like dyspnoea – 

shortness of breath) and can be sent for diagnostic tests (X-ray); there may be also underlying 

causal factors that influence certain diseases more than others (such as smoking, visit to 

Asia).   

 

To use Bayesian inference properly in this type of network necessarily involves multiple 

applications of Bayes Theorem in which evidence is „propagated‟ throughout.  This process is 

complex and quickly becomes infeasible when there are many nodes and/or nodes with 

multiple states. This complexity is the reason why, despite its known benefits, there was for 

many years little appetite to use Bayesian inference to solve real-world decision and risk 

problems. Fortunately, due to breakthroughs in the late 1980s that produced efficient 

calculations algorithms [9], [11] there are now widely available tools such as [1] that enable 

anybody to do the Bayesian calculations without ever having to understand, or even look at, a 

mathematical formula. These developments were the catalyst for an explosion of interest in 

BNs. Using such a tool we can do the kind of powerful reasoning shown in Figure 4. 
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a) Prior beliefs point to bronchitis as most likely b) Patient is „non-smoker‟ experiencing dyspnoea 

(shortness of breath): strengthens belief in bronchitis 

 
 

c) Positive x-ray result increases probability of TB and 

cancer but bronchitis still most likely 

d) Visit to Asia makes TB most likely now 

Figure 4 Reasoning within the Bayesian network 

 

Specifically: 

 

 With the prior assumptions alone (Figure 4a) Bayes theorem computes what are called 

the prior marginal probabilities for the different disease nodes (note that we did not 

„specify‟ these probabilities – they are computed automatically; what we specified 

were the conditional probabilities of these diseases given the various states of their 

parent nodes).  So, before any evidence is entered the most likely disease is bronchitis 

(45%).  

 When we enter evidence about a particular patient the probabilities for all of the 

unknown variables get updated by the Bayesian inference. So, (in Figure 4b) once we 

enter the evidence that the patient has dyspnoea and is a non-smoker, our belief in 

bronchitis being the most likely disease increases (75%).  

 If a subsequent X-ray test is positive (Figure 4b) our belief in both TB (26%) and 

cancer (25%) are raised but bronchitis is still the most likely (57%).   

 However, if we now discover that the patient visited Asia (Figure 4d) we overturn our 

belief in bronchitis in favour of TB  (63%). 
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Note that we can enter any number of observations anywhere in the BN and update the 

marginal probabilities of all the unobserved variables. As the above example demonstrates, 

this can yield some exceptionally powerful analyses that are simply not possible using other 

types of reasoning and classical statistical analysis methods. 

In particular, BNs offer the following benefits: 

 Explicitly model causal factors:  

 Reason from effect to cause and vice versa 

 Overturn previous beliefs in the light of new evidence (also called „explaining away‟) 

 Make predictions with incomplete data 

 Combine diverse types of evidence including both subjective beliefs and objective 

data.  

 Arrive at decisions based on visible auditable reasoning (Unlike black-box modelling 

techniques there are no “hidden” variables and the inference mechanism is based on a 

long-established theorem). 

With the advent of the BN algorithms and associated tools, it is therefore no surprise that 

BNs have been used in a range of applications that were not previously possible with 

Bayes Theorem alone. A comprehensive (and easily accessible) overview of BN 

applications, with special emphasis on their use in risk assessment, can be found in [5]. 

 

It is important to recognise that the core intellectual overhead in using the BN approach is 

in defining the model structure and the NPTs – the actual Bayesian calculations can and 

must always be carried out using a tool. However, while these tools enable large-scale 

BNs to be executed efficiently, most provide little or no support for users to actually build 

large-scale BNs, nor to interact with them easily. Beyond a graphical interface for 

building the structure, BN-builders are left to struggle with the following kinds of 

practical problems that combine to create a barrier to the more widespread use of BNs: 
 

 Eliciting and completing the probabilities in very large NPTs manually (e.g. for a 

node with 5 states having three parents each with 5 states, the NPT requires 625 

entries);  

 Dealing with very large graphs that contain similar, but slightly different 

“patterns” of structure ; 

 Handling continuous, as well as discrete variables. 

 

Fortunately, recent algorithm and tool developments (also described in [5]) have gone a long 

way to addressing these problems and may lead to a „second wave‟ of widespread BN 

applications. But before BNs are used more widely in critical risk assessment and decision 

making, there needs to be a fundamental cultural shift away from the current standard 

approaches to risk assessment, which we address next.  
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3. From statistical models and risk registers to causal 
models 
 

3.1 Prediction based on correlation is not risk assessment 

Standard statistical approaches to risk assessment seek to establish hypotheses from 

relationships discovered in data. Suppose we are interested, for example, in the risk of fatal 

automobile crashes. Table 1 gives the number of crashes resulting in fatalities in the USA in 

2008 broken down by month (source: US National Highways Traffic Safety Administration).  

It also gives the average monthly temperature. 

 
Table 1 Fatal automobile crashes per month 

 

 

We plot the fatalities and temperature data in a scatterplot graph as shown in Figure 5. 
 

 

Figure 5 Scatterplot of temperature against road fatalities (each dot represents a month) 

Month Total 
fatal 
crashes 

Average 
monthly 
temperature (F) 

January 297 17.0 

February 280 18.0 

March 267 29.0 

April 350 43.0 

May 328 55.0 

June 386 65.0 

July 419 70.0 

August 410 68.0 

September 331 59.0 

October 356 48.0 

November 326 37.0 

December 311 22.0 
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There seems to be a clear relationship between temperature and fatalities – fatalities increase 

as the temperature increases. Indeed, using the standard statistical tools of correlation and p-

values, statisticians would accept the hypothesis of a relationship as „highly significant‟ (the 

correlation coefficient here is approximately 0.869 and it comfortably passes the criteria for a 

p-value of 0.01).  

 

However, in addition to serious concerns about the use of p-values generally (as described 

comprehensively in [13]), there is an inevitable temptation arising from such results to infer 

causal links such as, in this case, higher temperatures cause more fatalities. Even though any 

introductory statistics course teaches that correlation is not causation, the regression equation 

is typically used for prediction (e.g. in this case the equation relating N to T is used to predict 

that at 80F we might expect to see 415 fatal crashes per month). 

 

But there is a grave danger of confusing prediction with risk assessment. For risk assessment 

and management the regression model is useless, because it provides no explanatory power at 

all. In fact, from a risk perspective this model would provide irrational, and potentially 

dangerous, information: it would suggest that if you want to minimise your chances of dying 

in an automobile crash you should do your driving when the highways are at their most 

dangerous, in winter.   

 

One obvious improvement to the model, if the data is available, is to factor in the number of 

miles travelled (i.e. journeys made).  But there are other underlying causal and influential 

factors that might do much to explain the apparently strange statistical observations and 

provide better insights into risk. With some common sense and careful reflection we can 

recognise the following: 

 

 Temperature influences the highway conditions (which will be worse as temperature 

decreases).  

 Temperature also influences the number of journeys made; people generally make 

more journeys in spring and summer and will generally drive less when weather 

conditions are bad.  

 When the highway conditions are bad people tend to reduce their speed and drive 

more slowly. So highway conditions influence speed. 

 The actual number of crashes is influenced not just by the number of journeys, but 

also the speed. If relatively few people are driving, and taking more care, we might 

expect fewer fatal crashes than we would otherwise experience. 

 

The influence of these factors is shown in Figure 6: 
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Figure 6 Causal model for fatal crashes 

 

The crucial message here is that the model no longer involves a simple single causal 

explanation; instead it combines the statistical information available in a database (the 

„objective‟ factors) with other causal „subjective‟ factors derived from careful reflection. 

These factors now interact in a non-linear way that helps us to arrive at an explanation for the 

observed results. Behaviour, such as our natural caution to drive slower when faced with poor 

road conditions, leads to lower accident rates (people are known to adapt to the perception of 

risk by tuning the risk to tolerable levels. - this is formally referred to as risk homeostasis). 

Conversely, if we insist on driving fast in poor road conditions then, irrespective of the 

temperature, the risk of an accident increases and so the model is able to capture our intuitive 

beliefs that were contradicted by the counterintuitive results from the simple regression 

model.  

 

The role played in the causal model by driving speed reflects human behaviour. The fact that 

the data on the average speed of automobile drivers was not available in a database explains 

why this variable, despite its apparent obviousness, did not appear in the statistical regression 

model. The situation whereby a statistical model is based only on available data, rather than 

on reality, is called “conditioning on the data”. This enhances convenience but at the cost of 

accuracy. 

 

By accepting the statistical model we are asked to defy our senses and experience and 

actively ignore the role unobserved factors play. In fact, we cannot even explain the results 

without recourse to factors that do not appear in the database. This is a key point: with causal 

models we seek to dig deeper behind and underneath the data to explore richer relationships 

missing from over-simplistic statistical models. In doing so we gain insights into how best to 

control risk and uncertainty. The regression model, based on the idea that we can predict 
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automobile crash fatalities based on temperature, fails to answer the substantial question: how 

can we control or influence behaviour to reduce fatalities. This at least is achievable; control 

of weather is not. 

3.2 Risk Registers do not help quantify risk 

While statistical models based on historical data represent one end of a spectrum of 

sophistication for risk assessment, at the other end is the commonly used idea of a „risk 

register‟. In this approach, there is no need for past data; in considering the risks of a new 

project risk managers typically prepare a list of „risks‟ that could be things like: 

 

 Some key people you were depending on become unavailable 

 A piece of technology you were depending on fails.  

 You run out of funds or time 

 

The very act of listing and then prioritising risks, means that mentally at least risk managers 

are making a decision about which risks are the biggest. Most standard texts on risk propose 

decomposing each risk into two components:  

 

 „Probability‟ (or likelihood) of the risk 

 „Impact‟ (or loss) the risk can cause 

 

The most common way to measure each risk is to multiply the probability of the risk 

(however you happen to measure that) with the impact of the risk (however you happen to 

measure that) as in Figure 7.  
 

 

Figure 7 Standard impact-based risk measure 

 

The resulting number is the „size‟ of the risk - it is based on analogous „utility‟ measures.  

This type of risk measure is quite useful for prioritising risks (the bigger the number the 

„greater‟ the risk) but it is normally impractical and can be irrational when applied blindly. 

We are not claiming that this formulation is wrong. Rather, we argue that it is normally not 

sufficient for decision-making. 

 

One immediate problem with the risk measure of Figure 7 is that, normally, you cannot 

directly get the numbers you need to calculate the risk without recourse to a much more 

detailed analysis of the variables involved in the situation at hand.  

 
Example: By destroying the meteor in the film Armageddon Bruce Willis saved the world. Both 

the chance of the meteor strike and the consequences of such a strike were so high, that nothing 

much else mattered except to try to prevent the strike. In popular terminology what the world was 

confronting was a truly massive „risk‟.  But if the NASA scientists in the film had measured the 

size of the risk using the formula in Figure 7 they would have discovered such a measure was 
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irrational, and it certainly would not have explained to Bruce Willis and his crew why their 

mission made sense. Specifically: 

 Cannot get the Probability number (for meteor strikes earth). According to the NASA 

scientists in the film the meteor was on a direct collision course with earth. Does that make 

it a certainty (i.e. a 100% chance) of it striking Earth? Clearly not, because if it was then 

there would have been no point in sending Bruce Willis and his crew up in the space 

shuttle. The probability of the meteor striking Earth is conditional on a number of control 

events (like intervening to destroy the meteor) and trigger events (like being on a collision 

course with Earth). It makes no sense to assign a direct probability without considering the 

events it is conditional on. In general it makes no sense (and would in any case be too 

difficult) for a risk manager to give the unconditional probability of every „risk‟ 

irrespective of relevant controls and triggers. This is especially significant when there 

are, for example, controls that have never been used before (like destroying the meteor with 

a nuclear explosion). 

 Cannot get the Impact number (for meteor striking earth). Just as it makes little sense to 

attempt to assign an (unconditional) probability to the event “Meteor strikes Earth‟, so it 

makes little sense to assign an (unconditional) number to the impact of the meteor striking. 

Apart from the obvious question “impact on what?”, we cannot say what the impact is 

without considering the possible mitigating events such as getting people underground and 

as far away as possible from the impact zone. 

 Risk score is meaningless. Even if we could get round the two problems above what exactly 

does the resulting number mean? Suppose the (conditional) probability of the strike is 0.95 

and, on a scale of 1 to 10, the impact of the strike is 10 (even accounting for mitigants). The 

meteor „risk‟ is 9.5, which is a number close to the highest possible 10. But it does not 

measure anything in a meaningful sense  

 It does not tell us what we really need to know. What we really need to know is the 

probability, given our current state of knowledge, that there will be massive loss of life. 

In addition to the problem of measuring the size of each individual risk in isolation, risk 

registers suffer from the following problems: 

 However the individual risk size is calculated, the cumulative risk score measures the 

total project risk. Hence, there is a paradox involved in such an approach: the more 

carefully you think about risk (and hence the more individual risks you record in the 

risk register) the higher the overall risk score becomes. Since higher risk scores are 

assumed to indicate greater risk of failure it seems to follow that your best chance of a 

new project succeeding is to simply ignore, or under-report, any risks. 

 Different projects or business divisions will assess risk differently and tend to take a 

localised view of their own risks and ignore that of others. This “externalisation” of 

risk to others is especially easy to ignore if their interests are not represented when 

constructing the register. For example the IT department may be forced to accept the 

deadlines imposed by the marketing department. 

 A risk register does not record “opportunities” or “serendipity” and so does not deal 

with upside uncertainty, only downside.  

 Risks are not independent. For example, in most circumstances cost, time and quality 

will be inextricably linked; you might be able to deliver faster but only by sacrificing 

quality. Yet “poor quality” and “missed delivery” will appear as separate risks on the 
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register giving the illusion that we can control or mitigate one independently of the 

other. In the subprime loan crisis of 2008 there were three risks: 1) extensive defaults 

on subprime loans, 2) growth in novelty and complexity of financial products and 3) 

failure of AIG (American International Group Inc.) to provide insurance to banks 

when customers default. Individually these risks were assessed as „small‟. However, 

when they occurred together the total risk was much larger than the individual risks. 

In fact, it never made sense to consider the risks individually at all. 

 

Hence, risk analysis needs to be coupled with an assessment of the impact of the underlying 

events, one on another, and in terms of their effect on the ultimate outcomes being 

considered. The accuracy of the risk assessment is crucially dependent on the fidelity of the 

underlying model; the simple formulation of Figure 7 is insufficient. Instead of going through 

the motions to assign numbers without actually doing much thinking, we need to consider 

what lies under the bonnet. 

 

Risk is a function of how closely connected events, systems and actors in those systems 

might be. Proper risk assessment requires a holistic outlook that embraces a causal view of 

interconnected events. Specifically to get rational measures of risk you need a causal model, 

as we describe next. Once you do this measuring risk starts to make sense, but it requires an 

investment in time and thought. 
 

3.2.1 Thinking about risk using causal analysis 

 

It is possible to avoid all the above problems and ambiguities surrounding the term risk by 

considering the causal context in which risks happen (in fact everything we present here 

applies equally to opportunities but we will try to keep it as simple as possible). The key 

thing is that a risk is an event that can be characterised by a causal chain involving (at least): 
 

 the event itself 

 at least one consequence event that characterises the impact  

 one or more trigger (i.e. initiating) events 

 one or more control events which may stop the trigger event from causing the risk 

event   

 one or more mitigating events which help avoid the consequence event  

 

This is shown in the example of Figure 8. 
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Figure 8 Meteor strike risk 

With this causal perspective, a risk is therefore actually characterised not by a single event, 

but by a set of events. These events each have a number of possible outcomes (to keep things 

as simple as possible in the example here we will assume each has just two outcomes true and 

false so we can assume “Loss of life” here means something like „loss of at least 80% of the 

world population‟).  

The „uncertainty‟ associated with a risk is not a separate notion (as assumed in the classic 

approach). Every event (and hence every object associated with risk) has uncertainty that is 

characterised by the event‟s probability distribution. Triggers, controls, and mitigants are all 

inherently uncertain. The sensible risk measures that we are proposing are simply the 

probabilities you get from running the BN model. Of course, before you can run it you still 

have to provide the prior probability values. But, in contrast to the classic approach, the 

probability values you need to supply are relatively simple and they make sense. And you 

never have to define vague numbers for „impact‟.  

Example. To give you a feel of what you would need to do, in the Armageddon BN 

example of Figure 8 for the uncertain event “Meteor strikes Earth” we still have to 

assign some probabilities. But instead of second guessing what this event actually 

means in terms of other conditional events, the model now makes it explicit and it 

becomes much easier to define the necessary conditional probability. What we need 

to do is define the probability of the meteor strike given each combination of parent 

states as shown in Figure 9. 

 

Figure 9 Conditional probability table for "Meteor strike Earth" 

For example, if the meteor is on a collision course then the probability of it striking 

the earth is 1, if it is not destroyed, and 0.2, if it is. In completing such a table we no 

longer have to try to „factor in‟ any implicit conditioning events like the meteor 

trajectory.  
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There are some events in the BN for which we do need to assign unconditional 

probability values. These are represented by the nodes in the BN that have no parents; 

it makes sense to get unconditional probabilities for these because, by definition, they 

are not conditioned on anything (this is obviously a choice we make during our 

analysis). Such nodes can generally be only triggers, controls or mitigants. An 

example, based on dialogue from the film, is shown in Figure 10. 

 

Figure 10 Probability table for “Meteor on collision course with Earth” 

Once we have supplied the priors probability values a BN tool will run the model and 

generate all the measures of risk that you need. For example, when you run the model 

using only the initial probabilities the model (as shown in Figure 11) computes the 

probability of the meteor striking Earth as 99.1% and the probability of loss of life 

(meaning at least 80% of the world population) is about 94%.  

 

Figure 11 Initial risk of meteor strike 

In terms of the difference that Bruce Willis and his crew could make we run two 

scenarios: One where the meteor is exploded and one where it is not. The results of 

both scenarios are shown together in Figure 12. 
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Figure 12 The potential difference made by Bruce Willis and crew 

Reading off the values for the probability of “loss of life” being false we find that we 

jump from just over 4% (when the meteor is not exploded) to 81% (when the meteor 

is exploded). This massive increase in the chance of saving the world clearly explains 

why it merited an attempt. 

Clearly risks in this sense depend on stakeholders and perspectives, but these perspectives 

can be easily combined as shown in Figure 13 for „flood risk‟ in some town.  
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Figure 13 Incorporating different risk perspectives 

 

The types of events are all completely interchangeable depending on the perspective. From 

the perspective of the local authority the risk event is „Flood‟ whose trigger is „dam bursts 

upstream‟ and which has „flood barrier‟ as a control. Its consequences include „loss of life‟ 

and also „house floods‟. But the latter is a trigger for flood risk from a Householder 

perspective. From the perspective of the Local Authority Solicitor the main risk event is  

„Loss of life‟ for which „Flood‟ is the trigger and „Rapid emergency response‟ becomes a 

control rather than a mitigant.  

This ability to decompose a risk problem into chains of interrelated events and variables 

should make risk analysis more meaningful, practical and coherent. The BN tells a story that 

makes sense. This is in stark contrast with the “risk equals probability times impact” 

approach where not one of the concepts has a clear unambiguous interpretation. Uncertainty 

is quantified and at any stage we can simply read off the current probability values associated 

with any event. 

The causal approach can accommodate decision-making as well as measures of utility.  It 

provides a visual and formal mechanism for recording and testing subjective probabilities. 

This is especially important for a risky event for which you do not have much or any relevant 

data. 
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4. Conclusions 
 

We have addressed some of the core limitations of both a) the data-driven statistical 

approaches and b) risk registers, for effective risk management and assessment.  We have 

demonstrated how these limitations are addressed by using BNs. The BN approach helps to 

identify, understand and quantify the complex interrelationships (underlying even seemingly 

simple situations) and can help us make sense of how risks emerge, are connected and how 

we might represent our control and mitigation of them. By thinking about the hypothetical 

causal relations between events we can investigate alternative explanations, weigh up the 

consequences of our actions and identify unintended or (un)desirable side effects. 

Of course it takes effort to produce a sensible BN model:  

 Special care has to be taken to identify cause and effect: in general, a significant 

correlation between two factors A and B (where, for example A is „yellow teeth‟ and 

B is „cancer‟) could be due to pure coincidence or a causal mechanism, such that: 

o A causes B 

o B causes A 

o Both A and B are caused by C (where in our example C might be „smoking‟) 

or some other set of factors 

The difference between these possible mechanisms is crucial in interpreting the data, 

assessing the risks to the individual and society, and setting policy based on the 

analysis of these risks. In practice causal interpretation may collide with our personal 

view of the world and the prevailing ideology of the organisation and social group, of 

which we will be a part. Explanations consistent with the ideological viewpoint of the 

group may be deemed more worthy and valid than others irrespective of the evidence. 

Hence simplistic causal explanations (e.g. „poverty‟ causes „violence‟) are sometimes 

favoured by the media and reported unchallenged. This is especially so when the 

explanation fits the established ideology helping to reinforce ingrained beliefs. 

Picking apart over-simplistic causal claims and reconstructing them into a richer, 

more realistic causal model helps separate ideology from reality and determine 

whether the model explains reality. The richer model may then also help identify 

more realistic possible policy interventions. 

 The states of variables need to be carefully defined and probabilities need to be 

assigned that reflect our best knowledge.  

 It requires an analytical mindset to decompose the problem into “classes” of event and 

relationships that are granular enough to be meaningful, but not too detailed that they 

are overwhelming.  

If we were omniscient we would have no need of probabilities; the fact that we are not gives 

rise to our need to model uncertainty at a level of detail that we can grasp, that is useful and 
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which is accurate enough for the purpose required. This is why causal modelling is as much 

an art (but an art based on insight and analysis) as a science. 

The time spent analysing risks must be balanced by the short term need to take action and the 

magnitude of the risks involved. Therefore, we must make judgements about how deeply we 

model some risks and how quickly we use this analysis to inform our actions. 
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