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Abstract 
 

The dependability of technological systems is a growing social 
concern. Increasingly computer based systems are developed that 
carry the potential of increasing catastrophic consequences from 
single accidents. There have been significant research advances in 
assessment methods. However dependability assessment of 
computer systems in practice is still a very uncertain and often ad-
hoc procedure. Decision making about system dependability is an 
uncertain affair and must account of failures in expertise and be 
capable of integrating different sources of evidence.  A more 
meaningful way of reasoning about systems dependability can be 
achieved by rejecting current ad-hoc dependability assessment 
methods and replacing them with the idea of dependability 
argumentation. Bayesian Belief Networks (BBN’s) is proposed as 
the most promising technology to support this kind of 
dependability argumentation. 

 

1 Introduction 
The dependability of technological systems is a growing social concern as more 
computer based systems are developed that carry the potential of increasing 
catastrophic consequences from single accidents [Perrow 84, Mellor 94]. A large 
amount of effort is spent in improving the dependability of these systems and also 
in assessing this dependability to the satisfaction of regulatory agencies, insurers, 
owners and the public at large. For systems where accidents may have serious 
consequences on human life and health and on the environment, assessors apply 
methods to help assure that such accidents will happen with acceptably low 
probabilities. A variety of standards, models and risk assessment methods have 
traditionally been employed to support these activities. 



Despite the considerable success in the use of such methods, systems dependability 
assessment is still a very uncertain and often ad-hoc procedure, especially where 
systems contain software. Traditional PRA (Probabilistic Risk Assessment) 
methods of assessing dependability have tended to concentrate on the dangers 
presented by physical sources of failure rather than by design faults. Engineers 
when they are asked to deal with uncertain situations, that require considerable 
judgement, have tended to rely on strictly “objective” (relative frequency) 
interpretations of accident likelihoods [Apostolakis 90]. The perception is that it is 
difficult to apply such frequency considerations to design faults so there has been a 
tendency to either ignore them or be less rigorous in their assessment. 

There are however many standards and models that aim to address the 
dependability problem. These methods provide a wealth of practical advise on 
which development approach to choose to achieve dependability but are inadequate 
when it comes to questions of dependability assessment. Software standards lack 
engineering rigour and are imprecise [Devine et al. 93, Fenton et al. 94], and do 
not address the fundamental problem of predicting dependability of software. 
Alternative approaches to safety assessment for software have been presented 
borrowing from the ideas of fault tree and hazard analysis [Leveson 95, DEF00-58 
95]. There is good reason to believe that these approaches might make us more 
confident in a system’s dependability but their rejection of the probability concepts  
inherent in the original techniques weaken any attempt to assess dependability. 
There have been a number of attempts at “characterising” software dependability 
using quality models [Walters and McCall 78, Basili and Rombach 88]. These 
approaches propose that if we can decompose dependability properties into 
supposedly measurable attributes then we can indicate the degree of dependability 
possessed by the system. This reductionist scheme seems promising but we argue 
that it is flawed and cannot be used to reason about dependability in a meaningful 
way.  

We recognise that making decisions about system dependability is an uncertain 
affair and must take into account disparate sources of evidence, the most prominent 
being expert judgement [Littlewood 93]. However the impact of such evidence is 
riddled with uncertainty. The relative contributions of different factors are often 
unknown or controversial and difficult to quantify [Littlewood et al. 95a]. Generally 
a dependability assessment is obtained by relying on the ability of human experts to 
integrate the evidence, by applying their own judgement, to obtain important 
conclusions and make predictions. 

It is the contention of this paper that a more meaningful way of reasoning about 
systems dependability can be achieved by rejecting current ad-hoc dependability 
assessment methods and replacing them with the idea of dependability 
argumentation. The use of the word argumentation emphasises the key role 
concepts like uncertainty, judgement, belief, reasoning and evidence play in our 
deliberations, whereas assessment is suggestive of dispassionate and objective 
analysis.  



We propose that the most promising technology to support this kind of 
argumentation is Bayesian Belief Networks (BBNs). BBNs can formalise 
dependability claims, the models employed to make those claims and the evidence 
collected in a manner open to independent scrutiny [Littlewood et al. 95a]. 

2 Assessing Dependability 

2.1 Overview 
Dependability is defined as “ that property of a computer system such that reliance 
can justifiably be placed on the service it delivers”  [Laprie 92]. Depending on the 
intended application of the system dependability is usually expressed as a number 
of inter-dependent properties such as reliability, maintainability and safety. 

There is as yet no definitive and agreed general definition of what constitutes 
dependability assessment. Commercial companies engaged in assessment activities 
and standards bodies that produce systems guidelines and standards have evolved 
different interpretations of what constitutes the act of assessment. The scope of an 
assessment can be as wide or as narrow as the customer or regulator desires it. For 
example a company producing safety critical systems might obtain an assessment of 
their process against ISO9000 criteria [TickIT 92] or if increased confidence is 
demanded, might be asked by the regulator to produce a formal analysis of the 
product. What we can and cannot conclude about dependability from an assessment 
obviously depends on the type of assessment being undertaken. Indeed whether an 
assessment would even explicitly consider dependability would depend on the 
assessment approach. What could we say about the dependability of a system given 
we know it was developed by a company registered under ISO9000? Such evidence 
might offer some confidence in dependability but any claim that it was sufficient 
would clearly be disputed.  

Systems assessment can be carried out in a number of ways. Pre-deployment 
assessment involves evaluating products and processes after the system has been 
produced, but before deployment. In-process assessment involves executing an 
assessment throughout the development process in order to identify and prevent 
problems earlier. The third assessment approach, in-field, assesses a system that is 
already being operated. Clearly the type and extensiveness of evidence obtainable 
from an assessment, and indeed the validity of resulting dependability claims, will 
depend on the type of assessment employed.  In retrospective assessments data on 
actual use, failure rates and user experiences all provide a rich set of diagnostic 
evidence on the dependability of the product. Pre-deployment assessments would 
tend to use evidence gathered solely from the testing process, with the 
accompanying problem that testing data might not be enough for high reliability 
requirements [Littlewood and Strigini 93].  In-process assessments would tend to 
make dependability claims based on the application of trustworthy design methods, 
even though there is little empirical evidence to support such reasoning [Fenton et 
al. 94]. 



Differing assessment approaches and dependability claims concentrate on one or 
more sources of evidence: 

• Development process evidence: Knowing that systems developers are 
using "best practice" project management and quality management 
principles, coupled with a defined life-cycle, usually influences our 
conviction that the eventual system will be fit for purpose. 

• Product evidence: Specifications, designs and test plans, etc. also form 
useful sources of evidence. The quality of these components may be 
determined, in part, by the effectiveness of the processes put in place. 
Similarly diagnosis of product attributes, by measurement etc., allows us to 
form a better picture of potential future operational problems. 

• Resource evidence: Resources are people, methods, tools and machines. 
The ability of people is often identified as a major factor in systems 
assessment. Knowing that developers are skilled and competent usually 
makes us more confident about eventual system dependability. The 
capability of methods and tools to handle the problem at hand is also of 
interest. 

• Evidence about the operating environment: The general environment 
within which a project operates will have an effect on dependability at all 
levels. A lax safety culture or a lack of training can negatively affect 
dependability. 

• Analogy: We may have the benefit of historical experience such as past 
cases. These cases can be called analogues and their relevance will be 
dictated by the degree of similarity between the present case and historical 
ones. For instance a developer’s track record of building similar systems to 
the one being assessed will inspire confidence. Likewise if similar design 
solutions exist, and are being reused, this will often strengthen our 
conviction. 

2.2 Standards 
Standards are used to provide the criteria upon which assessment is based. 
Examples of relevant standards are IEC 65A [IEC65A 91], DIN-0801 [DIN-0801 
89], and DEF-STAN 00-55 and 00-56 [DEF00-55 91, DEF00-56 91]. The 
standards specify lists of criteria addressing a variety of requirements. For example 
"the product shall be complete, consistent and correct" is an example of a standard 
type criterion. Many of the criteria contained in standards are ambiguous and 
difficult to assess objectively [Devine et al. 93]. 

One standard that is of particular relevance to dependability is the IEC 65A draft 
standard. IEC 65A consists of two parts. The first part [IEC65 92] addresses 
general requirements, whilst the second part [IEC65A 91] applies to firmware, 
operating systems, high-level and low-level languages and PLCs. 



IEC 65A predominantly focuses on development process “ best practices” , like 
design methods and testing techniques. For high reliability requirements this seems 
sensible because we cannot solely rely on evidence from testing alone [Littlewood 
and Strigini 93]. From the developers point of view this advice is obviously 
welcome. However, advice on best practice might not be enough. Assessors need 
methods that can predict the system’s dependability with an acceptable degree of 
confidence, using test and process evidence. It is perhaps unwise to solely rely on 
the argument  “ trust us we have used best practice”  when we are generally ignorant 
of how much of an advantage some practices provide. 

For dependability assessment the IEC 65A standard requires application of a 
systematic approach using PSA (Probabilistic Safety Assessment) terminology, the 
most important of which are described below: 

• Safety: The expectation that a system does not, under defined conditions, 
lead to a state in which human life, limb and health, economics or 
environment is endangered. 

• Safety Integrity: The likelihood of a programmable electronic system 
achieving its safety functions under all stated conditions within a stated 
period of time. Safety integrity levels are defined for the system and for 
software as ordinal rankings, as given in Table 1. 

 

 

 

Level 

Description of Software 

Safety Integrity 

(qualitative label) 

Description of System Safety 
Integrity 

(probability of failure for 

continuously operated 

system, per hour) 

4 Very High  10-8 ≤ p(failure) < 10-7 

3 High  10-7 ≤ p(failure) < 10-6 

2 Medium  10-6 ≤ p(failure) < 10-5 

1 Low  10-5 ≤ p(failure) < 10-4 

0 Non Safety-Related  10-4 ≤ p(failure) 

  

Table 1: IEC 65A Safety Integrity Levels for Systems and Software 

 

In IEC 65A uncertainty is represented by “ safety integrity levels”  in two different 
ways. Firstly at the system level the standard uses terms familiar to risk assessors in 
more traditional hardware engineering fields. For a system it uses the concept of 
"system safety integrity" to indicate four levels of probability expressed for systems 
operating discretely or continuously. These system safety integrity levels indicate 



the chance of future failure, expressed as a frequency. However when it comes to 
software safety such rigour is disregarded. Software safety integrity is instead 
expressed in imprecise natural language on a range from high to low and non-
safety related. Interpretation of these qualitative terms relies considerably on expert 
judgement. This would be no cause for concern if software was an insignificant 
component in modern systems - but it is not, such systems often have hundreds of 
thousands of lines of  complex code whose functionality has come to dominate 
reliability concerns. 

This unequal treatment of software in IEC 65A, and other standards concerned 
with dependability of computer-based systems, raises some significant questions: 

• How confident can the public be that a quantified system level 
dependability target has been achieved when  the potential unreliability of 
the software that makes up much of the system has not itself been 
quantitatively assessed? 

• What is it about software that makes software developers reluctant to apply 
quantitative estimates of reliability? 

• Why do the role and power of expert judgement receive scant attention in 
standards? 

Despite the lack of a quantified approach to software risks, achievement of 
reasonable reliability targets is clearly possible. However giving a convincing and 
open justification of how they achieved the target is necessary especially when 
much of an assessment consists of expert judgement. Currently assessments of 
computer systems are not exercises in expert accountability and argument, because 
the standards either do not require it or they do not provide methods for doing it. 

An answer to the second question has partly been provided by Littlewood et al. 
[Littewood et al. 95b]. A significant number of practising engineers do not appear 
to accept the proposition that software can fail (or even that hardware design is a 
cause of failure), and hence conclude that probability does not apply. We will not 
go into the detailed arguments against this position here because they are well 
documented in [Littlewood et al. 95b]. However it is sufficient to say that 
expressing design reliability using probability is meaningful, whether it is for 
software or traditional engineering artefacts, such as bridges [Blockley 80]. 

Given the use of subjective labels and the dependence on expert judgement one 
would expect standards to offer concrete methods to model, express and validate 
opinions. Apostolakis [Apostolakis 90] says that engineers doing risk analysis are 
being asked to deal with situations that require extensive judgement, but they are 
unaccustomed to mixing objective facts with opinion and so feel the exercise lacks 
rigour. Additionally those engineers with some grounding in statistics find their 
frequentist reasoning challenged by the need to apply judgement. There is a need 
therefore to find ways of making judgement more visible and moving away from 
strictly frequentist views of uncertainty. 



2.3 Quality Models 
We can think of software dependability assessment as part of the broader issue of 
software quality assessment. It is therefore worth seeing what the established 
software quality models have to offer. Quality models are essentially 
decompositions of important product properties of software systems into a 
hierarchical tree-structure. A generic example of this is shown in Figure 1.  
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Figure 1: Generic Software Quality Model 

 

The best known approaches are those of Walters-McCall [Walters and McCall 78], 
and Boehm [Boehm 78] which provide fixed decompositions. Basili and Rombach's 
GQM (goal, question, metric) model [Basili and Rombach 88] provides a generic, 
top-down approach. The Walter-McCall model has in fact been adopted as the 
focus of an international standard [ISO9126 91]. The SCOPE (Software 
Certification PrOgramme in Europe) project [Rae et al. 95] adopted this standard as 
its basis for certification.  Similarly  the IEEE has developed a draft standard based 
on the same approach [IEEE-1061 91]. 

Graph-based approaches, such as quality models, may add structure to 
dependability assessments but by themselves do not, and cannot, go far enough. 
Little of the work on quality models has concentrated on the semantics of the 
relationships represented  The relationship between criteria, factors and metrics  
seem to bundle some related concepts together in an ad-hoc fashion. Little or no 
distinction is made between temporal relations, such as cause and effect The 
calculus for representing the strength of relations between factors, criteria and 
metrics is left undecided. This makes reasoning based on quality models difficult 
and impossible to formalise.  



However the popularity of quality models to manage assessment evidence identifies 
the usefulness and importance of a graph based framework. We will propose one 
more rigorous than available at present. 

2.4 Safety Analysis 
From the 1950’s, when large complex industrial facilities were first built, studies 
were performed to determine their safety. These studies had many synonyms, the 
most well known being PSA (Probabilistic Safety Assessment) and Quantitative 
Risk Analysis (QRA). Safety analysis studies essentially looked at the degradation 
of physical components making up industrial plant and the resulting failures. 
Central to safety analysis is the use of techniques like Failure Modes and Effects 
Analysis (FMECA), Fault Tree Analysis (FTA), Event Tree Analysis (ETA) and 
and HAZard Operability studies (HAZOP) which have since become popular in the 
chemical, transport and nuclear industries. 

Quantification of risk and top-down decomposition formed the key principles 
underlying the success of the safety analysis approach for hardware based systems. 
Systems analysis allowed detailed and rigorous study of possible failure causes and 
effects. Quantification made it easier to assess where risk predominated and also 
helped prioritise fault prevention actions according to the favourability of 
cost/benefit criteria. In addition to these technical advantages, quantified safety 
analysis also conferred significant social benefits as well - by comparing the costs 
of failure with the benefits of operation society had the potential to make informed 
decisions using rational criteria. 

How have these principles and techniques been transferred to the computer 
domain? It is fair to say that the HAZOP method [DEF00-58 95] and some forms of 
FTA and FMECA have been widely applied though in a different from that applied 
for hardware.  

The idea of top-down decomposition is easily transferable from hardware to 
software because modern methodologies encourage block diagram representation of 
functionality. Where some form of risk quantification has been performed it has 
been done subjectively, as in the case of Frimtzis et al. [Frimtzis et al. 78] who used 
a form of FMECA to identify essential system requirements and ranked them 
according to expected failure. 

The fact that software is a logical rather than physical artefact has led some to 
examine how FTA could be applied to software. Leveson’s work in applying 
Software Fault Tree Analysis (SFTA) to the Ontario Hydro shut-down system is 
perhaps the most well known [Leveson 95]. Generally, the SFTA approach assumes 
that the similarity between the logical components that make up an FTA (that is the 
use of AND and OR connectives to link failure events) and semantics of a program 
can be usefully exploited. The conjecture is that we can represent a program as a 
fault tree and  demonstrate that certain fault events cannot happen or do not exist 
by using formal verification techniques. With regard to quantification Leveson says 
that if SFTA detects a path to an unsound or unsafe output it should be eliminated 
(designed out) rather than quantified. Eliminating design faults is worthy advice 



but  such reasoning places an absurd requirement on risk quantification. It implies 
that quantification only targets known problems, when in actuality risk forecasts 
are primarily concerned with predicting the likely effects of the unexpected or 
unknown. Unfortunately there is no guarantee of zero defect software, even after 
known design faults have been eliminated. Applying SFTA would simply help 
increase our confidence not buy us certainty. 

Safety analysis techniques obviously have a strong and useful role in software 
dependability achievement. The use of such techniques to prove consistency and 
highlight problem areas would form a valuable input to assessment. The main 
element that made safety analysis of hardware systems so valuable, however, is 
missing - rigorous quantification. Existing methods of software safety analysis 
either prohibit us from expressing our uncertainty or restrict it to imprecise and 
fuzzy subjective rankings. Even in the case of SFTA where formal verification is 
used Leveson admits we might still get it wrong when building systems. It is this 
residual doubt that we need to quantify. 

2.5 The Ubiquity of Expert Judgement 
We must recognise that making decisions about system dependability is an 
uncertain affair and must take into account disparate sources of evidence 
[Littlewood 93]. Such evidence would come from the many models and methods 
employed during system construction, test and operation. However the impact of 
such evidence is riddled with uncertainty. The relative contributions of different 
factors are often unknown or controversial and difficult to quantify [Littlewood et 
al. 95b]. Consequently engineers fail to combine the evidence in an open and 
quantified way. Generally a dependability assessment is obtained by relying on the 
ability of human experts to integrate the evidence, by applying their own 
judgement, to obtain important conclusions and make predictions. Unfortunately 
there is ample scientific evidence that human beings are not to be trusted a priori in 
complex tasks of this kind [Ayton 94]. Unless the experts are known to be reliable 
(a knowledge that is usually missing for predictions of rare events), means for 
checking and validating their reasoning, and aiding them in revising their 
judgements in the light of experience, are absolutely necessary. 

It would be rash to view assessment of systems involving new and emerging 
technologies as simply the accumulation of facts and incontrovertible proofs - but 
such a view is commonly held amongst many practicing engineers. The limit of 
scientific and engineering knowledge is a complex issue but we may be able to 
identify a number of reasons for the misconception that assessments are wholly 
objective and absolute. Firstly, the traditional perceptions of science and 
engineering are based on the search for objective truth rather than ascertaining the 
accuracy of scientific and engineering models.  Requirements for strictly objective 
judgement clearly conflict with the problem of expert fallibility inevitable in 
dependability assessments. Engineers cannot and do not deal with truth or falsity, 
the best they can do is to aspire to higher accuracy of predictions. Secondly, 
because the public is supposedly unable to understand risk issues, responsibility for 



assessment has inevitably been placed in authorised expertise resident in private 
companies, institutions and government departments. Institutional expertise of this 
kind can confer a degree of legitimacy for dependability decisions quite separate 
from any evidence. In many minds such paternalistic authority can be confused 
with objectivity and, more worryingly, at its worst can help provide a kind of 
scientific legitimacy for what may be political decisions [Smith and Lloyd 93]. 

When we scrutinise the claims made about a system’ s properties we uncover a set 
of models and assumptions employed by the expert. Unfortunately these can 
become out-of-date and dangerously inaccurate if they are not continually 
questioned and tested against the reality they purport to model.  At a personal level, 
each of us rarely observes and test our own thinking to improve and update the 
models we base our decisions upon. The degree of uncertainty we will have about 
the dependability decision will be directly related to how far we trust these models 
to reflect reality accurately enough for the situation at hand. 

These uncertain reasoning mechanisms are implicit in assessment and are 
uncovered when expert assessors employ particular phrases, such as: belief, 
judgement, inference, evidence and degree of conformance. Despite their ubiquity 
the role of these words in dependability assessment remains obscure. How assessors 
reason with these words and how they develop assessment conclusions deserves 
attention. 

What do we mean when we say we believe something? There are generally two 
common uses of the word. Firstly we often believe that something is true in an 
absolute sense. This is most often the case when we have the benefit of hindsight or 
physical proof. Statements like "a customer requirements elicitation exercise took 
place" and "a requirements specification document exists" are taken as 
uncontroversial statements of fact. The second and more common use of the word 
belief are when we are unsure or are making an uncertain inference. The richness 
of the natural language reflects the ubiquity of uncertainty. We use words like 
likely, probable, credible, plausible, possible, chance and odds. Assessors may make 
statements like "the clients claim that a customer requirements elicitation exercise 
has taken place but I am not too sure" and "I doubt we can be certain that knowing 
they have used method X is sufficient to accept that the system is reliable". 

Of course, as unavoidable as uncertainty may be, it is natural and beneficial to 
search for facts. For example it is better to observe first hand what actually went on 
during a software development process than to receive a third-hand report of what 
happened from the developer, who may of course be prejudiced. That is why the 
goal for assessment is to approximate objective judgement about a system's 
dependability. 

When we consider assessment reasoning we are really addressing two aspects of 
inference: diagnosis and prediction. Diagnosis involves saying what something is. 
Stating that "the system software is riddled with GOTO statements "is a diagnosis. 
On the other hand prediction involves saying something about the future, such as 
“ the MTTF (Mean Time To Failure) of this system is 10-6 per hour” . Such a 
prediction would be accurate if it was confirmed by future events. 



We have already said that assessors form beliefs on the basis of evidence 
interpreted through the application of models. We can think of these models 
containing criteria with which the evidence is compared. The extent to which 
evidence satisfies the criteria is typically taken to be the degree of conformance. 
We can usefully think of an assessor’ s degree of conformance as representing one 
of two things. Firstly it can mean the evidence defines the extent to which some 
attribute is present - thus being similar to the action of measurement. For example 
an assessor might measure the size of a module and compare it to some desired 
limit. The second, and more important, interpretation is that the degree of 
conformance may mean degree of belief. This second interpretation deserves closer 
scrutiny. Assessors might process a point of evidence and ask what it tells them 
about some related but uncertain proposition or event. He uses the evidence from 
one entity, not to tell him about that entity, but to infer or predict the state of some 
other entity. So knowing that a program had low McCabe metric values [McCabe 
76], according to some criterion, may prompt assessors to believe the system has 
high maintainability. 

Expert judgement is a central component of any dependability assessment exercise, 
especially given the dearth of empirically tested models in software engineering. 
Such expert judgement pervades all aspects of reasoning in dependability 
assessment yet its ubiquity stirs little debate. At worst such judgement may wrongly 
be assumed to be scientific and hence trustworthy, so few demands are made to 
make assessment more accountable and visible. Nevertheless, some judgements 
have been shown after the event to be “ good”  ones - the problem is to know before 
the event that they will be. 

3 Challenges in Dependability Assessment 
From the preceding analysis it should be clear that a number of serious challenges 
can be levelled at the ways we currently assess complex computer-based systems. 
We list them here with the claim that the activity of systems dependability 
assessment will only become accurate, meaningful and accountable when the 
research community has accepted and resolved them. 

1. Representing Judgement: The community needs to find a way of 
representing human judgement and facts from diverse sources of evidence 
in a predictive framework. A safety case or dependability case should be 
presented as an argument rather than as a statement of incontrovertible 
truth, with means for checking and validating judgement. Use of an 
uncertainty calculus is essential if judgement is to be made visible and 
accountable. 

2. Empirical Foundations: Most ad-hoc dependability approaches have no 
method for determining whether or not the resulting risk forecast is a 
successful predictor of system behaviour. The use of imprecise terminology 
makes confirmation or falsification of such forecasts impossible. A 
forecast that "the system is on the whole fairly risk-free with respect to the 
majority of usage situations" leaves the terms "on the whole" "majority" 



and "risk free" undecided. We need a way to determine from an observed 
set of accidents or incidents whether this prediction was indeed accurate. 
A crucial prerequisite of a risk management system is that it can learn 
from mistakes and use this feedback to improve performance over time. 
Information from failures and incidents provides an index of success for 
risk management. Without numerical counts of such things we cannot 
learn from mistakes and specify process improvements. 

3. Economic Justification: Systems development and use is a careful 
balancing act between safety and productive performance. Central to this 
task is cost/benefit analysis. Because of their very imprecision, qualitative 
safety and risk forecasts cannot be manipulated in costs/benefit analysis 
leaving the quantitatively expressed production figures to predominate. 
This one-sidedness could lead to a dangerous erosion in the capability of 
decision making mechanisms to adequately address safety matters. 

4. Evidence Integration: There is a need to develop an integrating framework 
where each of the above challenges can be met. We should aim to link 
dependability claims, engineering models, expert judgement and uncertain 
evidence in a rigorous framework that promotes accountability.  

4 Bayesian Probability and Belief Networks 

4.1 Background 
We contend that Bayesian Belief Networks (BBNs) offer the most promising 
technical solution to many of the above challenges. Existing BBN technology, 
based on probability and decision theory, can potentially improve assessment 
reasoning under uncertainty. BBNs enable us to analyse and formalise, rather than 
just mimic, expert judgement and engineering models. 

BBNs are known under various synonyms as Graphical Probability Networks, 
Belief Networks, Causal Probabilistic Networks, Causal Nets and Probabilistic 
Influence Diagrams. They have been used in a wide variety of applications [Pearl 
88] as an appropriate representation of probabilistic knowledge. They have been 
applied in medicine, oil price forecasting and diagnosis of copier machine faults. In 
software engineering they have been used to diagnose and find faults during 
debugging of the Sabre airline reservation system [Burnell and Horovitz 95]. 
Probably the most famous application is the Answer wizard in Microsoft’ s Office 
95 products, where they are used for automated learning for custom-tailoring help 
software to a user’ s work patterns and preferences. 

The world-wide interest in BBNs has produced many implementations, most 
notable amongst these is the HUGIN tool [HUGIN 94] based on the award winning 
theoretical work of Lauritzen and Spiegelhalter [Lauritzen and Spiegelhalter 88]. 

A BBN is a directed graph used to represent probabilistic relationships amongst 
events or propositions. Each node represents a set of alternative events of interest, 
the arcs represent the probabilistic conditioning of a node’ s value on that of other 



nodes. Associated with each node is a conditional probability table that shows the 
probability of that node state being true given the events represented by the parent 
nodes. When a node has no parents the conditional probability table is simply the 
prior distribution. The BBN directed graph with its conditional probability tables 
specifies a joint marginal distribution of all the events. When the actual state of a 
node is observed the probabilities of event states are calculated by propagating the 
“ new”  knowledge along the arcs in the graph. In this way the probabilities change 
as our uncertainty and knowledge changes. 

4.2 Probability Theory 
We need some, preferably formal, way of representing expert judgements about 
uncertain events. There is a formal theory of probability called Bayesian, or 
subjective, probability that allows us to do so [de Finetti 74]. In Bayesian 
probability theory a probability number, lying in the range zero to one, is used to 
represent an individual’ s degree of belief in the truth of an event or proposition. 
Expressed mathematically as p(A | H) it is interpreted as the degree of belief in the 
truth of A given that H is known to be true. 

This definition might surprise some readers, but it is objective and scientific 
because it accurately represents an individual’ s belief. More specifically, it can be 
shown to be a necessary consequence of adhering to certain intuitively plausible 
prescriptive notions of  “ rationality”  - for example that a rational individual should 
not have circular pair-wise preferences. Of course, the validity of a belief can be 
questioned,  but as a representation of an individual’ s stated belief a probability 
number cannot be disputed. It has been claimed this definition is the only way to 
describe uncertainty and all alternative descriptions are unnecessary, even the 
frequentist interpretation [Lindley 87]. We would not wish to go so far, but think it 
attractive that the frequentist interpretations, so popular in risk and safety analysis, 
can be expressed more conveniently and meaningfully as part of a Bayesian 
framework. In those circumstances where there is a believable argument based 
upon frequentist principles - such as the probability of Heads for tossing a fair coin 
- it would be rational for ones subjective probability to coincide with the frequentist 
one. Even apparently simple cases like this pose problems, however: how are we to 
know the coin is fair? We cannot easily execute a number of repetitive trials of 
coins drawn at random from the local bank in order to determine the proportion of 
fair ones. Bayesianism offers a more practical resolution, that allows us to express 
our belief that the coin is fair as a “ subjective”  probability. 

Using probability we can compare beliefs, we can share them and reuse them, and 
we can build consensus. The narrow frequentist interpretation denies the 
subjectivity of probability and would restrict decision making to repetitive, 
statistical events - despite the fact that a perfectly repeatable event is an idealisation 
rather than a representation of reality [Watson 94].  

The key to utilising the above probability concepts to process uncertain evidence is  
given by Bayes' theorem: 



 p A B
p B A p A

p B
( / )

( / ) ( )
( )

=  

 

This states that the probability of A, given we know B, is equal to the probability of 
B, given we know A, multiplied by the ratio of probabilities of A and B. 

The importance of the theorem is that it connects two entirely different probabilities 
concerning the same two events, namely P(A | B) and P(B | A). In the former B is 
part of the evidence and A is uncertain. In the latter the roles of A and B are 
reversed allowing Bayes’  theorem to propagate the effects of added evidence, 
through a network of variables in any direction. Unfortunately natural language is 
often capable of hiding the differences between these two notions. 

4.3 Example of a Bayesian Belief Network 
Consider the following simple everyday reasoning problem that we can solve using 
a BBN. A colleague is late for work and you suspect that he has either slept-in or 
there has been a failure in the London underground system. From experience you 
know that the probability of failure on the London underground system is high, p(T 
= true) = 0.3. You also believe that because your colleague is a fastidious 
timekeeper he is unlikely to sleep in, p(Slept-in = true) = 0.05. You have an 
important business appointment and had planned to travel there by Tube. Knowing 
that your colleague is late may make you more likely to believe that the London 
Underground system has failed, but by how much? 

Using this information we can construct a Bayesian network, portrayed in Figure 2, 
with three nodes, L =Late, T = Tube system failure and S = Slept-in, each with two 
states: true and false. 

 

 
 

Figure 2: Example BBN 

 

Expressed mathematically the marginal distribution for the example network is: 

 
p L p S p T p L S T( ) ( ) ( ) ( / , )=  

This states that the probability of L is calculated from knowledge about the states of 
variables S and T and the likelihood of L given these states. This of course assumes 
that it is reasonable to suppose that S and T are independent. 



For each of the nodes in the BBN a conditional probability table is needed. For each 
of the combinations of the node states we would estimate a probability of that 
combination being true. Conditional probability values for nodes T and S are given 
in Table 2 and conditional probability values for node L are given in Table 3: 

 

 true false 

p(T) 0.30 0.70 

p(S) 0.05 0.95 

 

Table 2: Conditional probability for T and S 

 

p( L / T, S) T = true T = false 

S = true (0.9, 0.1) (0.7, 0.3) 

S = false (0.6, 0.4) (0.1, 0.9) 

 

Table 3: Conditional probability table for L 

 

We can calculate the probability that T is true given L is true using Bayes’  theorem. 

 

p T t L t
p L t T t p T t

p L t
( / )

( / ) ( )
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= = =
= = =

=
 

 

From Table 2 p(T = true) = 0.3. We can calculate p(L = true) over all possible 
values of S and T from the marginal distribution and the conditional probability 
tables, as follows: 

 

p L t p S t p T t p L t S t T t

p S t p T f p L t S t T f
p S f p T t p L t S f T t
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=

0 05 0 3 0 9 0 05 0 7 0 7 0 95 0 3 0 6 0 95 0 7 01

0 2755

 

 

Next we need to calculate the likelihood p(L = true | T = true) using the fact that: 

 



p L t T t

p L t T t S t p S t p L t T t S f p S f

( / )

( / , ) ( ) ( / , ) ( )
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0 9 0 05 0 6 0 95

0 615

 

Finally we can calculate p(T=t  | L = t) as: 

 

p T t L t( / )
.
.

( . ) .= = = =0 615
0 2755

0 3 0 6697  

 

Knowledge about your colleague’ s lateness has caused the revision, from an initial 
0.3 degree of belief that the London Underground system has failed, to 0.67 degree 
of belief. Travel to the business appointment using London Underground would be 
ill-advised. 

From this very simple example we can see that the BBN formalism offers a number 
of benefits. Firstly, its graphical nature makes for a powerful, intuitively appealing, 
knowledge acquisition device. Secondly, the quick and easy propagation of  “ facts”  
through the graphs makes it easy to check for coherence and perform “ what if”  
analyses. The greatest benefit is that automatic methods are now available that can 
be used to propagate the evidence without recourse to tedious manual methods, 
even for large graphs. 

5 Moving from Dependability Assessments to 
 Arguments 

5.1 Bayesian Approach to Argumentation 
 

BBNs provide an uncertainty calculus and graphical framework by which 
dependability arguments can be expressed. The nodes in a BBN can be used to 
represent the types of evidence required in a dependability argument and the 
probabilities can model expert opinion or statistical data. Furthermore the maturity 
of Bayesian probability gives the added benefit of being able to update the BBN to 
accommodate the accumulation of statistical evidence, for example from repeated 
test runs. Of great benefit is the capability to develop arguments in two stages: 
identifying sources of evidence and their interrelationships can be separated from 
the quantification. 

Moving from current ad-hoc approaches towards BBN-based argumentation places 
expert judgement and the uncertainty of knowledge at the centre of dependability 
decisions rather than on the fringe. In doing so the opinion of the expert is placed 
at the centre of scrutiny and frequency data is perceived as playing a supporting 
role. Such an approach does not imply that there is a single “ correct”  argument for 



dependability, rather its use should facilitate an open dialogue and encourage all 
parties in a dependability decision to develop their own BBNs. Of course such a 
process would not guarantee safer systems but it would lead to greater 
accountability and the open exchange of experience. 

In Figure 3 we present a model of the structure of dependability arguments. This 
structure is intended to act as a guide to linking attributes of interest, the relations 
between them (causes and consequences) and, at the centre, the dependability 
properties of a system (reliability, safety, etc.). Application of the model would 
require the use of argumentation templates, for each of the dependability properties, 
that could be tailored to the particularities of the system in question. 

 

 
 

Figure 3: Structuring Dependability Arguments 

 

When assessors are predicting systems dependability they are interested in those 
factors, under the developers control, which cause the developed process to produce 
a good system. In Figure 3 these are called the developer causes. Effort is 
concentrated on the quality of the intermediate products, the people and resources 
used in their production and the processes and methods applied. These in turn are 
known to be influenced by business constraints, such as budget restrictions, 
company culture and general engineering capability. Similarly assessors need to 
investigate the influence the system user will have on system dependability. In 
Figure 3 these are termed the user causes. Domain complexity, the accuracy of 
requirements and business constraints may have a tangible and immediate effect on 
dependability. Also the culture, operational history and capability have underlying 
causal effects on both requirements and operation. For instance a lack of a safety 
culture could lead to system misuse and accidents. The consequences of system use 
are the most interesting from the end-users point of view. A dependable system 
should operate well in its immediate environment. However operators, resources 
and business processes can be negatively affected by poor system performance. 
These factors can be classified as user consequences.  Assessors have to consider 
the consequences of the system's operation. For example on a fly-by-wire aircraft 
the user consequences of system failure may have a knock-on effect on other 



systems and the decisions made by the pilot. Disruption of business may result from 
undependable operation. Such disruption would most clearly manifest itself as  lost 
profits, higher costs and lower profitability. We can also identify developer 
consequences. The most obvious impact of a poor system dependability will be in 
maintenance. More serious problems might result in litigation and a loss of 
reputation. The ultimate consequences would be a decrease in staff morale and poor 
performance in business operations. 

5.2 Dependability Argument Templates 
System dependability arguments can now be composed of inter-connected argument 
templates. Such a template would consist of a BBN developed to predict a single 
dependability property of the system. Here we present two BBN templates for 
reliability and correctness. 

The templates themselves are simply expositions of the arguments that would be 
employed to predict or infer dependability and should not be seen as definitive or 
correct models. For example an alternative to the correctness template has been 
developed to concentrate on fault density prediction. 

5.2.1 Correctness 

Users of computer systems want obviously them to be functionally correct. 
Assessors must therefore attempt to answer two questions when trying to predict 
correctness before the system has been developed: 

• How likely is it that faults have been introduced into the software? 

• If there were faults what is the chance that they were removed? 

 

 

 
Figure 4: Correctness BBN Template 

 

In order to find some way of predicting the correct design node we would first look 
at the design and review activities in the software development process. Thus the 



nodes review activities and design activities enter the BBN given in Figure 4. These 
two nodes are believed to influence the chance of obtaining a correct design. If a 
design activity is performed well we would expect that due care would have been 
taken not to introduce design faults into the system. Good review activities would 
help find any design faults that slipped through the design process. 

The ability to design fault-free systems will be largely influenced by the complexity 
and size of the problem. So the size and complexity of the application domain form 
another node predicting correctness. 

Now we can take a deeper look at a project and ask what causes good design and 
review activities? Good review activities are caused by customer involvement, good 
supporting technology and capable staff. If customer representatives carry out 
reviews during development, or take part in development review meetings, we 
would be more likely to expect that faults would be detected. Appropriate 
supporting technology, such as proof checkers and formal review procedures, would 
also positively influence our belief about the effectiveness of reviews. Capable staff 
play a strong role because they influence review and design activities. Any pressure 
on resources may have a negative effect on the quality of the design and review 
activities. A consequence of good review activities would be that faults were picked 
up early in the life-cycle. 

If a system specification is functionally correct we could expect a number of 
consequences. Firstly any implementation made from the specification would be 
less likely to contain faults. Secondly, because there are fewer faults to be triggered 
during operation, high operational reliability should result. An assessor might want 
to predict these consequences for reliability from a diagnosis or prediction of 
correctness. These consequences are relevant to the next template. 

5.2.2 Reliability 

An unreliable system can lead to frequent maintenance, the production of work-
around procedures to ensure that business processes can operate in some way, and 
of course failures in other systems. Figure 5 shows a BBN with these factors as 
consequences of low system reliability. Some of these factors have a knock on 
effect. Frequent maintenance can cause high downtime that is likely to make for 
dissatisfied users. Of course there may be other explanations for some of these 
consequences. Firstly there may be other sources of failure that are causing high 
downtime and work-around procedures. For example the successful execution of 
application software is dependent on operating systems software. If this is 
unreliable then downtime of application and operating systems will result. Poor 
user training can result in dissatisfaction, high downtime and the production and 
use of work-around procedures. After all, a system may be very reliable but if it is 
not being used correctly problems are bound to occur. 



 
Figure 5: Reliability BBN Template 

 

We can predict system reliability during testing using formal techniques, by the use 
of reliability models, or by informal judgement. We concentrate on a judgemental 
approach here. Figure 5 shows the causal and influential factors for system 
reliability from the testing processes, past reliability of duplicates, MTTF during 
testing and realistic usage scenario. There is one factor deserves particular attention 
- the reliability data available from use of duplicates copies the software. For 
instance if a developer has a historical system that achieved 10-7 per hour then we 
might be willing to consider the argument that the new system will achieve 10-7 per 
hour. Of course such reasoning would be very weak when making claims about a 
novel system, changed version, or use in a new operational environment. However 
we could consider making trade-offs along the following lines. If a system has 
demonstrated high reliability in its original operating environment and is being 
reused in a new working environment then full testing may not need to be 
performed. We must however be careful: such reasoning would be valid only if the 
new working environment was sufficiently similar to the old one and the software 
was indeed a duplicate. With some provisos we can use historical reliability 
knowledge to compensate for full testing information.  



6 Conclusion 
We have argued that, despite the considerable success in the use of current 
assessment methods, dependability assessment of computer systems  is still a very 
uncertain and often ad-hoc procedure. We have provided an overview of current 
assessment approaches, including standards, quality models and software safety 
analysis. Examining each of these has led to the conclusion that these methods do 
not allow quantitative expressions of dependability in the rigorous way we desire. 
Where quantification is done, it relies on either a frequentist interpretation that 
disallows expression of expert judgement or is expressed as imprecise rankings. 
The frequentist requirement contrasts with the predominant role of expertise in 
systems assessments. 

From an analysis of current practice a number of challenges are evident. We have 
highlighted the need to express expert opinion, employ proper empirical methods, 
apply costs/benefit analysis and develop an integrating framework as major 
challenges to the research community. 

In an attempt to meet these challenges a move from ad-hoc assessment to 
argumentation is advocated. Such a move would exploit the more robust Bayesian 
interpretation of probability, thus reconciling judgements about single events with 
statistical data. Finally, Bayesian Belief Networks (BBNs) are proposed as the most 
promising technology to support this kind of dependability argumentation. 

We need to solve a number of outstanding issues to apply in practice dependability 
argumentation, through the use of BBNs. Firstly, the development of a template-
based toolset is needed to support large scale assessments. Secondly, the number of 
probabilities needed for BBNs, even in small scale argumentation exercises, can be 
extremely large. Work is currently underway to resolve this problem by 
automatically generating conditional probability tables using Beta distributions. 
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