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Abstract 

Successful implementation of major projects requires careful management of uncertainty and risk. Yet 

such uncertainty is rarely effectively calculated when analysing project costs and benefits. This paper 

presents a Bayesian network (BN) modelling framework to calculate the costs, benefits, and return on 

investment of a project over a specified time period, allowing for changing circumstances and trade-

offs. The framework uses hybrid and dynamic BNs containing both discrete and continuous variables 

over multiple time stages. The BN framework calculates costs and benefits based on multiple causal 

factors including the effects of individual risk factors, budget deficits, and time value discounting, 

taking account of the parameter uncertainty of all continuous variables. The framework can serve as 

the basis for various project management assessments and is illustrated using a case study of an 

agricultural development project. 

Keywords: Project management, risk analysis, cost-benefit analysis, Bayesian networks 

1 Introduction 

Uncertainty and risks are common elements of all major projects and they must be effectively managed for 

projects to be successful (Chapman and Ward, 2004, Ward and Chapman, 2003, Ward and Chapman, 1995, 

Green, 2001). Failure to account for uncertainty is a major cause of time and cost over-runs and 

disappointing project outcomes.  

This paper focuses on uncertainty and risks associated with the cost, benefit and Return On Investment 

(ROI) of a project. We propose a Bayesian Network (BN) modelling framework that calculates these 

elements over the duration of the project, taking into account the uncertainty of all parameters while making 

these calculations. Our framework aims to model multiple risk events, and to enable users to assess the 

costs and benefits of the project under different risk scenarios. The model incorporates many important 

causal factors including the effects of having a budget deficit, uncertainty in cost estimates, time value of 



money, and the impact of inaccurate risk prediction. We illustrate the use of this framework using a case 

study of agricultural development projects. 

Our approach complements previous work on project risk, which has focused on the planning and 

uncertainty of project time schedules, by focusing instead on costs and benefits of projects and the 

associated risk factors. Our model offers unique features by using uncertainty and variability of risk factors 

together with economic and adoption factors for making predictions in different time stages of a project. 

These features can help project managers especially in project selection, planning and control stages. 

The paper is structured as follows: Section 2 provides an overview of BNs, which are proving to be an 

increasingly popular and effective method for modelling uncertainty and risk and reviews their previous 

applications in project management. Section 3 presents the proposed framework. Section 4 describes the 

case study and presents an instantiation of the framework for the case study. Section 5 shows the use and 

results of the model generated from the framework, and we provide our conclusions in Section 6. 

2 Bayesian Networks 

Bayesian Networks (BN) are powerful tools for making probabilistic inference on complex domains with 

a large number of variables (Fenton and Neil, 2012, Pearl, 1988). A BN is a probabilistic graphical model 

that consists of a graphical structure and parameters of conditional probability distributions corresponding 

to the structure. The graphical structure of a BN is composed of nodes representing variables, and arcs 

representing the relations between the variables. The parameters of a BN represent the nature and strength 

of the relations represented by the arcs. It is beyond the scope of this paper to show the technical details of 

BNs and their calculations; the readers are referred to Fenton and Neil (2012), and Koller and Friedman 

(2009). 

The graphical structure of a BN is suitable for modelling causal relations (Pearl, 2000). Therefore, BNs 

offer unique features in integrating expert knowledge (Yet et al., 2014a, Yet et al., 2014b, Fenton and Neil, 

2012) and data (Cheng et al., 1998, Heckerman, 1997) into model building. This is especially beneficial in 



domains where the availability of relevant data is limited but where extensive expert knowledge is available. 

As a result, BNs have been used for complex problems in many diverse domains including medicine (Yet 

et al., 2013, Yet et al., 2014b), law (Fenton et al., 2013, Fenton et al., 2014), finance (Neil et al., 2009), and 

sports (Constantinou et al., 2012, Constantinou et al., 2013). 

Until recently, one of the main limitations of BNs was in building and calculating models that contain both 

discrete and continuous variables (such models are called hybrid BNs). Standard inference algorithms (such 

as the junction tree algorithm) and associated software packages require all variables to be either discrete 

or Gaussian. This turns out to be a major limitation for project risk models as they inherently contain many 

continuous variables that do not necessarily have a Gaussian distribution. However, recent advances in 

BNs, for example, the development of the dynamic discretization algorithm (Neil et al., 2007), have made 

it possible to build and solve hybrid BN models - involving arbitrary continuous distributions- accurately, 

efficiently and conveniently. These powerful algorithms have been implemented in a freely available BN 

software package with a graphical interface (Fenton and Neil, 2014, AgenaRisk, 2015). This software is 

used for the BN models in the paper. 

2.1 Bayesian Networks for Project Risk 

BNs are especially suited to model the attributes of uncertainty and risk that are common to all projects (as 

discussed in Section 1).   BNs are powerful in reasoning about uncertainty as they are able to represent and 

make inference about complex joint probability distributions with numerous random variables. In addition 

to uncertainty and risk, all projects are unique by definition (PMI, 2013) and many, such as long-term 

development projects, have sparse relevant historical data. Moreover, the data collected from one project 

may not apply to others due to their differences and, it is often costly and time-consuming to collect data 

from long-term projects. However, expert knowledge is often available in abundance both in project 

management and the application domain and when available, it can be profitably used as a source of 

evidence (Shepherd et al., 2015). BNs offer powerful and unique features to use and combine this expert 

knowledge with available data, where available (Yet et al., 2014a, Renooij, 2001, Neil et al., 2000). 



Despite their clear potential benefits, the use of BNs in project management has been quite limited (possibly 

because of the previous limitations on hybrid BNs). The earliest published article devoted to using BNs 

explicitly in a general project management context appears to be Khodakarami et al. (2007), which proposes 

a BN model to deal with the uncertainty in project scheduling. This model implements the critical path 

method (CPM) into a BN model, and extends CPM by reasoning with the causes of delays. Similarly, Luu 

et al. (2009) compute the risk of having an overall schedule delay using a discrete BN model without 

parameter uncertainty. Fineman et al. (2009) use a simple BN model to reason about the trade-off between 

the time, cost and quality aspects of a project. Lee et al. (2009) use a BN model to estimate the risk of 

exceeding budget and time schedule, and of having insufficient specifications. They apply their model in 

the shipbuilding domain. Khodakarami and Abdi (2014) use BNs to estimate only the project costs based 

on the causes of the costs. 

In contrast to the relatively few applications of BNs to general project management, there has been more 

extensive use in the specific context of management of software engineering projects (possibly because of 

the proximity of this domain to computer scientists). Fan and Yu (2004) proposed a framework that 

continuously assesses and manages risk in different aspects of software development. Fenton et al. (2004) 

demonstrate a static BN model for making resource decisions in software projects. Their model takes the 

trade-off between quality, time and costs into account, and it is able to make inference about the resources 

required to achieve a target quality value. de Melo and Sanchez (2008) use discrete BNs to assess risks and 

predict delays in software maintenance projects. Hu et al. (2013) use constraint-based structure learning 

algorithms on BNs to learn causal relations and make predictions about the risk factors of software 

development projects. Perkusich et al. (2015) use BNs to identify problematic processes in software 

development projects. 

Among the reviewed studies, the most similar ones to our framework are (Lee et al., 2009) and (Fenton et 

al., 2004). Lee et al.’s model (2009) is suitable for making a cost, benefit and ROI analysis of a project. The 

model has a wider scope that also predicts schedule delays but its structure is a discrete and static BN that 



contains a small number of nodes. As a result, their model does not calculate the uncertainty of continuous 

parameters and changing risks in different time stages. Fenton et al.’s model (2004) reasons about the cost 

and quality trade-off, and calculates the effects of budget and individual risk factors on project outcomes. 

Their model contains continuous variables that take parameter uncertainty into account. However, Fenton 

et al. uses a simpler, static, model that has aggregate cost, quality and time values for the whole project.  

Both Lee et al. (2009) and Fenton et al. (2004) developed their models for a specific domain. In this paper, 

we propose a general framework that calculates the costs, returns, and the effects of risk factors in individual 

time stages of a project by taking both the uncertainty of parameters and the variability of risks into account. 

In the following section, we describe the structure of our modelling framework. 

3 Overview of Framework 

Since one of our objectives is to calculate the return on investment over multiple years, our framework is 

based on a Dynamic Bayesian Network (DBN) that represents individual time stages t with separate linked 

BN objects. In DBNs, each BN object is a BN model structure that represents the variables and relations 

between them at each predetermined time stage. The BN objects are linked together through the nodes that 

represent temporal relations over different time stages. The purpose of modelling with BN objects is to 

simplify inference over multiple time stages, and to clarify the structure and parameters of the model in 

different time stages (Murphy 2002). In our framework, the structures of the BN objects are identical for 

the first time stage and onwards, i.e. t = 1, 2, …, n. Only the structure of the BN object corresponding to 

the beginning of the project (t = 0) is different from the others.  



 

Figure 1 Template Model 

The BN objects corresponding to individual time stages can have large structures in our framework. In 

order to simplify description and building of these objects, we also divided the BN structure of each BN 

object into smaller fragments of model structures. We call these smaller fragments ‘BN components’. A 

BN component consists of multiple nodes and arcs that represent a similar purpose or concept in the BN 

object. For example, all nodes relevant to costs calculations in a time stage t can be located in a BN 

component named ‘Cost & Budget t’. BN components do not have any use when the model is calculated; 

their only purpose is to clarify and help describe and build the BN. In summary, our framework is divided 

into multiple BN objects, each of which represents a distinct time stage, and each BN object can be divided 

into multiple BN components each representing a similar purpose or concept in the time stage.  

Figure 1 shows the template of our BN framework (for the first three years of a project; the extension to 

subsequent years follows the same pattern). The rectangle nodes shown in Figure 1 are BN components 

that contain multiple nodes and arcs. The content of these components may change in different domains. 

For example, the content of ‘cost & budget estimate’ component in the Time 0 object can differ between a 

construction project and a software project. Therefore, the structure shown in Figure 1 is not a BN but its 

aim is to show the relations between different components and serve as a template to build such BN models. 



We use the term template to illustrate that the contents of each component can be defined as the user sees 

fit, to match local conventions, and still be coupled together using this process. 

In the remainder of this section the t = 0 (Section 2.1) and t = 1, 2, …, n (Section 2.2) BN objects and the 

BN components within these BN objects. 

3.1 Time 0 (Project start) 

The ‘Project Start’ BN object models the cost, budget, impact and risk estimates prepared at the beginning 

of the project (see the top of Figure 1). Each rectangle node within this BN object in Figure 1 represents a 

BN component that contains multiple nodes and variables. The content of these components is examined 

in the remainder of this section.  

 

Figure 2 Cost and Budget Estimate 

3.1.1 Cost & Budget Estimate 

The ‘cost & budget estimate’ component contains nodes representing different kinds of costs and budget. 

Figure 2 shows the BN structure corresponding to the ‘Cost & Budget Estimate’ component in Figure 1.  

Specifically, 

a) the ‘initial investment cost’ node represents one-off capital cost spent at the beginning of the 

project,  

b) the ‘upkeep cost per year’ node represents the yearly costs such as personnel and materials. In later 

time stages, this estimate is adjusted with the percentage of people who adopt the outcome of the 

development project in order to calculate the actual upkeep cost at that stage (see Sections 2.2.2 

and 2.2.3), and 



c) the ‘other cost per year’ node includes the costs associated with risks. These costs are adjusted in 

later time stages depending on the discrepancy between the estimated and actual risks (see Section 

2.2.1). 

The three categories of costs above were chosen because they are common to most projects. However, 

additional categories can be added by modifying the structure shown in Figure 2. For example, we can 

model upkeep cost in more detail by adding separate nodes for labour and material cost as a parent of the 

‘upkeep cost’ node. 

 

 

Figure 3 Components of the Framework 

The ‘budget’ node estimates the initial budget by summing up the initial investment, upkeep and other costs 

by taking project duration into account. The project duration is defined in the parameters of this node. 

Alternatively, the user can manually define the budget by entering a point value or a distribution. The BN 

offers the flexibility for the budget to be estimated from costs or user-defined. The ‘additional budget’ node 

represents the additional capital that can be invested in the project; crucially, in a fixed cost project this will 

be set to zero.  This node can have either a point value or a distribution. We can also use the BN model to 

automatically calculate the extra budget needed to avoid having a budget deficit. If extra cost is required 



but no extra budget is available in later time stages (so additional budget is still set to 0) then we will observe 

a decrease in the impact of the project as a result of the budget deficit. 

The ‘total budget’ node sums up the initial budget and additional budget. This variable is used in later time 

stages to calculate the presence and impact of budget deficits.  

3.1.2 Project Impact Estimate 

The ‘project impact estimate’ component models the targets for different categories of impact expected 

from the project. Although impact is often transformed to monetary value, categories of impact are likely 

to differ in different domains. For example, the impact categories in a software project are different from 

the categories in an agricultural development project. 

We adjust the impact for stakeholders as the utilities of the project impact can differ for different 

stakeholders. For example, the utilities of additional income for people with high and low income can be 

different. In that case, we can adjust the impact by an income utility multiplier that models the utility of 

marginal income as a decreasing function of the income. Consequently, the benefits of a project for different 

stakeholders can be calculated. 

In later time stages, the cost estimate and target impact is adjusted by adoption rate (a concept that we 

discuss in Section 2.2.2) and the degree of budget deficit to calculate the cost and impact in a particular 

time stage. In other kinds of project added value measures could be used equally well. 

3.1.3 Risk Estimate 

The ‘risk estimate’ component models the initial risk estimated at the beginning of the project. In 

subsequent time stages, estimated risk is compared to the observed risk factors to adjust the costs (see 

Section 2.2). One of the main objectives of the model is to account for project risks as they are observed, 

so the question is: to what extent have any of the risks already been considered in the initial budget and 

target impact. For example, an initial risk estimate can be modelled by a variable that has five ordinal states 

ranging from ‘Very Low’ to ‘Very High’. If no risks have been considered, then the ‘risk estimate’ will be 



assigned the value ‘Very Low’. If there are actually no real project risks, then the ‘actual risk’ (the variable 

in the model that takes account of known risks at any stage) will also be ‘Very Low’ and there will be no 

‘discrepancy’ between the estimate and actual risks. If, however, there are tangible project risks then there 

will be a positive discrepancy that will result in the model predicting increased required costs in order to 

meet the target impacts. 

3.2 Time t = 1, 2, … , n 

In each time stage t = 1, 2, …, n, our model calculates the cost, impact, and total return on investment. In 

the remainder of this section, we describe the structure of the components in a ‘Time t’ object (see Figure 

1). 

3.2.1 Actual Risk at time t 

The framework compares the observed risks to the estimated risks in each time stage. Individual risk factors 

observed at time t are entered.  If the risks are over or under estimated, actual costs are respectively higher 

or lower than the estimated costs. We model this reasoning by adjusting the estimated costs by the degree 

of discrepancy between the estimated and actual risk (see Figure 3).  

Ranked nodes (Fenton et al., 2007) offer a flexible and convenient way of modelling the degree of estimated 

and actual risks. A ranked node is an approximation of the truncated normal distribution to the multinomial 

distribution with ordinal scale. As a result, a ranked node automatically transforms the ordinal states of the 

risk estimates into numerical values based on the truncated normal distribution. Moreover, ranked nodes 

have many associated functions that can be used to model the behaviour between individual risk factors 

and an overall summary of risk. For example, a summary risk node can be modelled as a weighted average 

of individual risk factors when both summary and individual risk nodes are modelled using a ranked node. 

Fenton et al. (2007) provides a convenient approach to elicit model parameters for ranked nodes. The 

ordinal states of a ranked node must be carefully defined with domain experts in order to correctly represent 

the risks of the application domain. Continuous variables should be used when the behaviour of a risk node 



is not suitable to be modelled by using ordinal states. Our framework is able to integrate continuous factors 

together with ranked nodes. 

3.2.2 Adoption Rate at time t 

The project impact and direct costs can also be adjusted by adoption rate, which is an important component 

in most application domains of project management. The adoption rate represents the rate of expected end 

use of the outcome of the project (which could be a product, a new technology or an innovation) within a 

specified period of time. For example, in all commercial product design projects, the impact of the project 

increases as more people adopt the product developed by the project. This is certainly also true of the case 

study in Section 4 (agricultural development projects). The Bass model is commonly used to model 

adoption rate (Bass, 1969). It uses rate of innovation p and rate of imitation q to estimate the rate of adoption 

AR over a specified time period t as follows:  

 𝐴𝑅 =
1−𝑒−(𝑝+𝑞)𝑡

1+(
𝑞

𝑝
)𝑒−(𝑝+𝑞)𝑡

 

Our framework allows us to define p and q by using either a point value or an entire probability distribution 

(see Figure 4). If adoption rate is not relevant to the application domain, the framework can be conveniently 

adapted by either removing the adoption rate component or entering a fixed adoption rate of one in this 

component. 

 

Figure 4 Adoption rate parameters defined as (a) probability distributions and (b) point values 



3.2.3 Costs and Budget at t 

This component calculates the total cost at time t by summing different categories of costs, such as upkeep 

and other costs (see Figure 3). The upkeep and other costs are adjusted by the adoption rate (Section 2.2.2) 

and risk discrepancy (Section 2.2.1) respectively. The total cost is compared with the project budget at each 

time stage. If the total cost is greater than the budget at time t, the project impact at that stage is reduced 

according to the extent of exceeding the budget.  

At each time step, the BN model calculates the probability of running over-budget by comparing the costs 

to the total budget of the project. If the project costs are higher than the total budget of the project, this will 

have a negative effect on the impact of the project. The actual impact will decrease, and therefore be smaller 

than the estimated impact, as the budget deficit increases. The framework is flexible in terms of modelling 

the relation between budget deficit and impact: we can use a linear, exponential or similar expression to 

model the behaviour of this adjustment. 

3.2.4 Project Impact at time t 

The project impact is calculated by adjusting the estimated impact per year by the adoption rate (Section 

2.2.2) and the degree of budget deficit (Section 2.2.3) at t (see Figure 3).  

3.2.5 Discounted Return on Investment and Time Value at time t 

The framework calculates the ROI by subtracting the total cost from the impact at every time stage t (see 

Figure 3). Since the value of money diminishes as the time progresses, we discount the ROI. We can use a 

wide variety of approaches to calculate Discounted ROI (DROI) including the fixed and environmental 

discount rate. A Fixed Discount Rate (FDR) is calculated as follows:  

𝐹𝐷𝑅 =
1

(1 − 𝐴𝐷𝑅)𝑡
 

where ADR is the annual discount rate. 

Environmental Discount Rate (EDR) can be better suited to long-term development and environmental 

projects as FDR can underestimate long-term benefits. EDR shows the behaviour of a fixed discount rate 



in the short term but the discount rate asymptotically approaches to a minimum value in the long term. EDR 

for year t is calculated as follows: 

𝐸𝐷𝑅 =
1

(1 − 𝐴𝐷𝑅)𝑡
 (1 − 𝑀𝐸𝐷𝑅) + 𝑀𝐸𝐷𝑅 

where MEDR is the minimum environmental discount rate. Both ADR and MEDR can be defined by either 

a point value or a probability distribution in our framework.  

In the following section, we present a case study to which we apply this framework.  The purposes of the 

case study are to illustrate the methodology rather than validate the expert estimates or predictions made 

during the project itself. 

4 Case study set-up and model 

Although the overall structure of the framework (Figure 1) is the same for most domains, instantiation of 

the components, and the associated templates, may differ. Our case study is based on an agricultural 

development project. This will obviously have different risk factors and pathways to impact than, for 

example, a software project. Therefore, the BN components about these factors must be built considering 

the specifics of the application domain. Section 4.1 presents the case study and Section 4.2 describes the 

parts of the framework that are modified for the case study.  

4.1 Agricultural development project 

In the case study we collaborated with relevant domain experts to build a model to calculate the costs, 

impact and ROI of a generic agricultural development project. The primary risk factors that can 

significantly affect the outcome of such a project are: extreme climate events, political instability of the 

country where the project is done, degree of stakeholder involvement, and efficacy of the enabling 

organisation. These risk factors are defined by a group of domain experts. The project can benefit the local 

community by improving the quality of food and water supplies. The impact to the local population will 

increase as more people adopt the development outcomes of the project. A project may also have 

environmental benefits by decreasing the ecological footprint. A one-off capital investment is made at the 



beginning of the project. The project will also have yearly upkeep costs for the employees and materials 

used. All other costs, including the costs due to risk events, will be categorised as ‘other costs’. In the 

remainder of this section, we fine-tune the framework to model the specifics of the case study. In Section 

5, we will parameterise the model and calculate ROI for a 10-year period.  

4.2 Fine-tuning for Case Study 

The case study has impact categories that are unique to development projects. Therefore, we need to build 

the ‘project impact estimate’ component at time 0 specifically for the case study (Section 4.2.1). The initial 

risk estimate component also needs minor modifications for the case study (Section 4.2.2). Finally, we need 

to modify the ‘actual risk’ component, as risk factors are also specific to the domain (Section 4.2.3). We 

use the Bass model and EDR to model the adoption and discount rate respectively. We therefore do not 

need to modify the structure of these components for the case study. In the remainder of this section, we 

describe the components that are modified for the case study.  

 

Figure 5 Project Impact Estimate in Case Study 

4.2.1 Project Impact Estimate 

Figure 5 shows the ‘Project Impact Estimate’ component refined for the case study. An agricultural 

development project is assumed to have two different kinds of impact: environmental and livelihood impact. 

These impacts are transformed into monetary values in US dollars per person and in US dollars per 

environmental footprint respectively.  



For livelihood impact, we also consider the difference of the utilities of additional income for people with 

high and low income. We assume the utility of marginal income as a decreasing function of the income, 

and adjust the livelihood income accordingly. Using an income utility multiplier allows us to calculate the 

benefits of models for different stakeholders. The target project impact component estimates the overall 

target by summing up the livelihood and environmental targets. The target project impact is adjusted by the 

adoption rate and degree of budget deficit in later stages. 

4.2.2 Risk Estimate 

Figure 6 shows the estimated and actual risk components. The ‘estimated risk’ variable is modelled with a 

ranked node that has five ordinal states ranging from ‘Very Low’ to ‘Very High’. This variable represents 

the initial risk assessment done during the planning stage. We also added a variable representing the country 

where the project is done. This variable is used in later time stages to estimate the risk due to political 

instability of the country. 

Table 1 Input Variables and Distributions for Project Proposals 

Variable Input Values / Distributions 

 Proposal 1 Proposal 2 

Initial Budget 15000 7000 

Initial Investment Cost 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(3750, 1000, 0, 10000) 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(1000, 250, 0, 10000) 

Upkeep Cost / Year 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(300, 250, 0, 3000) 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(280, 100, 0, 3000) 

Other Cost / Year 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(1000, 500, 0, 10000)  𝑇𝑁𝑜𝑟𝑚𝑎𝑙(290, 100, 0, 10000)  

Target livelihood impact 20 10 

Target environmental footprint 100 35 

KUSD / population year 20 20 

KUSD / footprint year 40 40 

Country Kenya Uganda 

Risk estimation Medium Medium 

Rate of innovation (p) 𝐵𝑒𝑡𝑎(25, 75) 𝐵𝑒𝑡𝑎(30, 70) 

Rate of imitation (q) 𝐵𝑒𝑡𝑎(4, 6) 𝐵𝑒𝑡𝑎(50, 50) 

ADR 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(0.03, 0.001, 0, 1) 𝑇𝑁𝑜𝑟𝑚𝑎𝑙(0.03, 0.001, 0, 1) 

MEDR 𝐵𝑒𝑡𝑎(26,74) 𝐵𝑒𝑡𝑎(26,74) 

Income utility multiplier 1.57 1.57 

 

4.2.3 Actual Risk 

Each main risk factors identified by the domain experts (political instability, extreme climate impact, 

institutional efficacy and stakeholder involvement) is modelled with a ranked node as a parent of the ‘risk 



(t)’ node representing the actual risk at t. The ‘risk (t)’ node is also a ranked node defined by a weighted 

average of the individual risk factors. 

 

Figure 6 Estimated and Actual Risk in Case Study 

5 Case study results 

While Section 4 demonstrates the ease with which the generic framework could be tailored to a specific 

application domain, this section presents the use and results of the tailed version of the model described 

there. We calculate costs and benefits of two alternative agricultural development project proposals over a 

period of 10 years. One of these proposals has higher costs and uncertainty but it can also lead to higher 

impact. The other project is a safer option requiring a smaller budget but its potential return is also smaller. 

We analyse the potential return on investment and effects of adjusting the budget of these projects under 

different risk scenarios.  

5.1 Initial Analysis 

Our first step is to enter the initial budget, cost, impact and risk estimates to the model for each proposal. 

The unit of all monetary values is in thousand US dollars (KUSD). Some of our estimates are point values, 

others are probability distributions. For example, we use a point value for our budget estimate, i.e. initial 

budget of the first proposal is 15000 KUSD, and a truncated Normal distribution for our upkeep cost 

estimate, i.e. 𝑇𝑁𝑂𝑅𝑀𝐴𝐿(𝜇: 300, 𝜎2: 250, 𝑎: 0, 𝑏 ∶ 3000) where a and b are lower and upper bounds 

respectively. Our modelling framework is flexible in enabling us to use point estimates or probability 



distributions to define any parameter in the model. The parameters of a BN model can be elicited from 

domain experts (Renooij, 2001), learned from data (Daly et al., 2011) or defined by using a combination of 

both (Yet et al., 2014a). Table 1 shows the values and distributions used for initial parameters of each 

proposal. 

5.2 Cost-Benefit Calculations 

After entering the initial parameters for each proposal, we run the model to calculate the costs, benefits and 

DROI for a 10-year period. The model provides detailed information about these factors including their 

entire probability distributions. For example, we are able to obtain the probability distributions of cost, 

impact and return on investment for each year. Moreover, the model estimates the risk and impact of 

running over-budget in different years (see Figure 7).  

 

Figure 7 Probability distributions of the cost, impact and ROI estimates of the model 

Figure 8 shows the risk of exceeding budget (REB), and the 95% credible interval (CI) of discounted return 

on investment (DROI) for proposals 1 and 2 respectively.  



 
Figure 8 Cumulative DROI and REB for (a) Proposal 1 (b) Proposal 2 

5.3 Risk Scenarios 

The model offers a powerful way of analysing project risk scenarios as it is able to update the probability 

distributions of its variables when an observation is entered in any risk factor or variable in the model. In 

this section, we analyse the impact of two risk scenarios.  

5.3.1 Scenario 1: Incorrect Adoption Rate Estimate 

In the first scenario, the adoption rate estimate turns out to be incorrect as the true value of the rate of 

innovation and imitation is 10% and 15% lower than the expected values of the initial estimates 

respectively. For proposal 1, we entered 0.15 and 0.25 as observations to the rate of innovation p and rate 

of imitation q respectively. For proposal 2 we entered 0.20 and 0.35 to p and q. Note that the expected 

values of p and q’s initial estimates were respectively 0.25 and 0.40 in proposal 1, and 0.30 and 0.50 in 

proposal 2.  



Figure 9 shows the cumulative DROI for each proposal under this scenario. A lower adoption rate decreased 

both the project impact and the direct costs. As a result of the decreasing direct costs, the risk of exceeding 

budget is smaller compared to the initial analysis. The expected DROI of both proposals decreased 

significantly. The expected DROI of proposal 1 became negative as the impact significantly decreased; 

however the expected DROI of proposal 2 is still positive.  

 
Figure 9 DROI and REB of (a) Proposal 1 (b) Proposal 2 under Risk Scenario 1 

5.3.2 Scenario 2: Multiple Risk Events 

In the second scenario, we entered observations for the following risk events and recalculated the 

probability distributions of each proposal:  

 Extreme climate events observed in year 5 and 7 

 Decreased lead institution efficacy and degree of involvement of enabling institution between 

years 5 – 10.  

 Decreased community involvement in years 8 – 10. 



 
Figure 10 DROI and REB of (a) Proposal 1 (b) Proposal 2 under Risk Scenario 1 

Figure 10 shows each proposal’s cumulative DROI and risk of exceeding budget for this risk scenario. The 

risk events increased the project costs and decreased the chance of having a positive DROI. In proposal 1, 

there is 99% risk of exceeding budget, and unlike the initial analysis, the project has a negative expected 

DROI at the end of the 10th year. In proposal 2, the expected DROI also significantly decreased but it still 

has a positive expected outcome in the 10th year. In the following section, we analyse whether increasing 

budget could increase DROI of proposals in these scenarios.  

5.4 Budget Increase 

Exceeding the budget causes the impact of the projects to be lower than initially estimated. In this section 

we analyse the effect of investing additional funds to each proposal’s budget in the first and second risk 

scenarios.  



5.4.1 Additional Budget for Scenario 1 

In the first risk scenario (see Section 4.2.1), DROI decreases since the adoption rate, and thereby the impact, 

turns out to be lower than the initial estimate. Figure 11 shows the results of investing additional budget for 

proposal 1 and 2 in this case. We analysed the effects of investing an additional 4000 KUSD to the proposal 

1 and 1000 KUSD to the proposal 2. The amount of additional budget was defined based on the 99th 

percentile of the total cost in the 10th year. Investing additional budget slightly increases the DROI in 

scenario 1 but its effects are minimal. In proposal 1, the DROI is still negative after the additional budget. 

DROI only increased by 10 KUSD in proposal 2. This is because the main cause of decreasing DROI was 

the decreasing impact, not increasing costs. Therefore, additional budget does not change the outcome 

significantly.   

 

Figure 11 Additional Budget in Scenario 1 for (a) Proposal 1 and (b) Proposal 2 



 
Figure 12 Additional Budget in Scenario 2 for (a) Proposal 1 and (b) Proposal 2 

5.4.2 Additional Budget for Scenario 2 

In the second risk scenario (see Section 4.2.2), we increased the budget by the same amount as in the first 

scenario. The risk events in scenario 2 increase the costs. The risk of exceeding the budget also increases 

due to increased costs. Exceeding the budget causes the impact of the project to be lower than initially 

estimated. When we invest additional funds to the projects’ budget in scenario 2 the risk of running over 

budget decreases considerably. In proposal 1, the expected DROI of the project becomes positive starting 

from the 9th year. In proposal 2, additional budget causes fivefold increase in the expected project DROI. 

Figure 12 shows the risk of exceeding budget and DROI when the budget is increased.  

5.5 Summary of the Results 

Our BN model successfully calculated the expected values and uncertainty of cost, impact and ROI of 

projects 1 and 2. Project 1 had a higher expected ROI than project 2 but its uncertainty and the risk of 

exceeding the budget were also higher. The uncertainty of all parameters and previous years were taken 

into account when predicting the costs and returns at a time stage. The uncertainty of ROI predictions 



increased in later years as long-term predictions are more uncertain than short-term predictions. The BN 

model enabled us to make a detailed what-if analysis of various risk factors happening at different stages. 

Project 2 was more robust to increased costs and decreased returns due to risk events and incorrect adoption 

rate predictions. Our model also enabled us to examine different budget policies as it calculated the effect 

of investing extra budget when risk events occur. Extra budget led to positive ROI for both projects but 

project 1 still had higher benefits. The main limitation of our framework was to assume a fixed time horizon. 

Although risk events and budget extension may have effects on the duration of a project, we used a 10-year 

horizon to analyse both projects. 

6 Conclusion and Future Work 

This paper presented a BN modelling framework that calculates costs, benefits and ROI of projects by 

taking budget, individual risk factors, adoption and discount rate into account. The framework offers a 

powerful method for analysing risk scenarios and their effects on project success and does so using a DBN 

that uses standardised components and reusable template models. The underlying BN models use the causal 

and associational relations between the parameters, and take uncertainty into account while making 

calculations. The model uses the entire probability distribution of both discrete and continuous variables 

when calculating the posteriors. The method is illustrated using a case study of an agricultural development 

project. The case study demonstrated the relative ease with which the generic framework could be tailored 

to a specific application domain, and also the powerful range of quantitative risk insights under different 

scenarios and assumptions. 

Our method can potentially help the decision makers during project selection, planning and control stages 

of project management. In the selection stage, the method can be used to make cost-benefit analysis of 

project alternatives. In the planning stage, it can be used to estimate the costs, impact and budget. The 

method can also be used to analyse risk at that stage by calculating the potential effects and the degree of 

uncertainty of different risk factors. In the control stage, users can update the model and revise the plan as 

the project progresses. They can enter observed costs, impact, and risk factors as the project continues, and 



revise the predictions about the project outcomes. The iterative updating of projections with evidence also 

provides a learning and impact evaluation tool. 

The case study showed the results of the method when multiple risk factors and budget extension are 

analysed for proposals of two alternative agricultural development projects. The application of our 

modelling framework, however, is not limited to agricultural projects. The general structure shown in 

Figure 1 and Figure 2 can be instantiated and specialised for a wide variety of domains such as construction 

and software projects. Moreover, the model can be extended by adding more detailed components or 

modifying the existing components.  

Because the existing techniques about cost and budget estimation do not incorporate the extent of 

information that our framework allows, it is not useful to compare the results/accuracy of our models to 

those.  Moreover because of the very uncertainty of project planning, and the inevitable lack of sufficiently 

large and relevant datasets, traditional 'validation' of the framework and models is unrealistic. 

As further research, we plan to develop an efficient value of information technique (VoI) for BNs with 

continuous variables. Chapman and Ward (2004) argue that “… best practice in project risk management 

is concerned with managing uncertainty that matters in an effective and efficient manner.” VoI is a useful 

technique to identify uncertainty that matters in an efficient way as it identifies the parts of a model where 

additional investment is most useful. Therefore, VoI enables the user to focus where uncertainty reduction 

is most valuable (Coyle and Oakley, 2008). However, making a VoI analysis for individual continuous 

variables is a challenging task often requiring complex approximations (Madan et al., 2014). An efficient 

and convenient way of analysing the VoI of individual variables would be a useful complementary 

technique for our framework. We also plan to implement the uncertainty of time aspect to our modelling 

framework. Our framework currently assumes a fixed time period for a project but time schedules of 

projects are highly uncertain. We plan to extend our framework with the time uncertainty aspect of 

Khodakarami et al. (2007). Moreover, our BN framework could be extended to model costs, benefits and 



risks of different stakeholders. Including time uncertainty and views of different stakeholders would be a 

step towards having a unified modelling framework for all subjects of project risk analysis. 

Finally, we plan to make our framework more user-friendly for project managers who are not experts in 

BN technology. Our model must be modified and instantiated in order to apply it to projects from other 

domains. Currently, this requires knowledge of BN models and software. We aim to develop general 

building blocks for project management models using a similar approach to the BN idioms (Neil et al., 

2000). This would enable users to easily develop and modify their own models by simply selecting the 

building blocks that are suitable to their domain.  
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