Predicting Software Defects in Varying Development
Lifecycles using Bayesian Nets

Norman Fenton*, Martin Neil*,

William Marsh
Department of Computer Science
Queen Mary, University of London

Mile End Road, London

and *Agena Ltd, London

norman,martin,william
@dcs.gmul.ac.uk

ABSTRACT

An important decision problem in many software pot§ is when
to stop testing and release software for use. niamy software
products, time to market is critical and therefarenecessary
testing time must be avoided. However, unrelisddéware is
commercially damaging. Effective decision supgodis for this

problem have been built using causal models reptedeby

Bayesian Networks (BNs), which incorporate both eitgl data

and expert judgement. Previously, this has redquaecustom-
built BN for each software development lifecycM/e describe a
more general BN, which, together with the AgenaRis&lset,

allows causal models to be applied to any developrikecycle

without the need to build a BN from scratch. Thedel and

toolset have evolved in a number of collaborativejgrts and
hence capture significant commercial input. Extensgalidation

trials have taken place among partners on the EGefdl project
MODIST (this includes Philips, Israel Aircraft Inslwies and
QinetiQ) and the feedback so far has been very .goéwr

example, for projects within the range of the medwiedictions
of defects are very accurate. Moreover, the caosadelling

approach enables decision-makers to reason in athvedyis not
possible with other regression-based models oivené defects.

Categories and Subject Descriptors
D.2.8 [Software Engineering] Metrics —Product metrics.K.6.3
[Management of Computing and Information Systems]
Software ManagementSoftware development.

General Terms
Management, Measurement, Reliability.

Keywords
Causal Models, Dynamic Bayesian Networks, Softwaefects,
Decision Support.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.
Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

Paul Krause
Department of Computing
University of Surrey
Guildford, SURREY, UK

p.krause@surrey.ac.uk

Rajat Mishra
Philips Software Centre,
Bangalore, India

rajat.mishra@philips.com

1. INTRODUCTION

A number of authors, for example [3, 6, 21], haseently used
Bayesian Networks (BNs) in software engineering agament.
In our own earlier work [8] we have shown how BN@ de used
to predict the number of software defects remainingetected
after testing. This work lead to the AID tool [2@¢veloped in
partnership with Philips, and used to predict safavdefects in
consumer electronic products. Project managersaalBN-based
tool such as AID to help decide when to stop testind release
software, trading-off the time for additional tesfiagainst the
likely benefit.

Rather than relying only on data from previous @ctg, this work
uses causal models of the Project Manager's uradelistg,
covering mechanisms such as:
e poor quality development increases the number &dctie
likely to be present
« high quality testing increases the proportion ofedts
found.
Causal models are important because they allowhallevidence
to be taken into account, even when different ewideconflicts.
Suppose that few defects are found during testindpes this
mean that testing is poor or that development wistanding and
the software has few defects to find? Regressaset models of
software defects are little help to a Project Mamagho must
decide between these alternatives [10]. Data frmevious
projects is used to build the BN, with expert juchgaits on the
strength of each causal mechanism.

In this paper, we extend the earlier work by déseg a much

more flexible and general method of using BNs fafedt

prediction. We also describe how the AgenaRisktfblset is

used to create an effective decision support sy§tem the BN.

An important limitation of the earlier work was theed to build a
different BN for each software development lifeeyel to reflect
both the differing number of testing stages inlifeeycle and the
differing metrics data available. Given the woekjuired to build

a BN, this severely limits the practically of thppaoach. To
overcome this limitation, we describe a BN that eledthe

creation and detection of software defects witlmmrhmitment to

a particular development lifecycle. We then shawla software
development organisation can adapt this BN to ttiewrelopment
lifecycle and metrics data with much less effosrttis needed to
build a tailored BN from scratch.

The contents of the remainder of the paper areolsws: in
Section 2 we introduce BNs and show how they ae Usr

causal modelling in software engineering. SecBomtroduces
the idea of a ‘phase’ as a sub-part of a softwHdeeykcle and

shows how several phase models can be combinedotielm
different lifecycles. The phase model is descrifredietail in

Section 4; Section 5 shows how it is adapted tdemdint

development lifecycles. An experimental validatioh defect

predictions is described in Section 6.

2. DEFECT PREDICTION WITH BNs

2.1 Bayesian Nets

A Bayesian net [13] (BN) is a graph (such as thats in Figure
1) together with an associated set of probabitibiés. The nodes
represent uncertain variables and the arcs repfresea
causal/relevance relationships between the vagable

Effective KLOC
implemented
¥,
Inherent pot
clefects

Pot defects given spec and
documentation adeqguacy

Prob awvaiding
spec defects

T
Prol of avaiding
clefect in dew

Defects fixed

% i
Resiclual defects

Figure 1 BN for Defect Prediction

The BN of Figure 1 forms a causal model of the psscof
inserting, finding and fixing software defects. eTlvariable
‘effective KLOC implemented’ represents the comijilex
adjusted size of the functionality implemented ttas amount of
functionality increases the number of potentiakdéf rises.

The ‘probability of avoiding defect in developmemtttermines
‘defects in’ given total potential defects. Thisnmuer represents
the number of defects (before testing) that athénnew code that
has been implemented.

However, inserted defects may be found and fixkd: residual
defects are those remaining after testing. Vaembkpresenting a
number of defects take a value in a numeric radigeretised into
numeric interval.

There is a probability table for each node, spéeufyhow the
probability of each state of the variable dependshe states of
its parents. Some of these are deterministic: fample the

‘Residual defects’ is simply the numerical diffecerbetween the
‘Defects in’ and the ‘Defects fixed’. In other ess we can use
standard statistical functions: for example thecpss of finding

defects is modelled as a sequence of independg@riments,

one for each defect present, using the ‘Probabiftfinding a

defect’ as a characteristic of the testing process:

Defects found = B(Defects inserted, Prob findindeéect)

where B(n,p) is the Binomial distribution forn trials with
probabilityp. For variables without parents the table justams
the prior probabilities of each state.

The BN represents the complete joint probabilitgtritbution —
assigning a probability to each combination ofestadf all the
variables — but in a factored form, greatly redgcthe space
needed. When the states of some variables are kribwerjoint
probability distribution can be recalculated coruied on this
‘evidence’ and the updated marginal probabilitytritisition over
the states of each variable can be observed.

The quality of the development and testing processe
represented in the BN of Figure 1 by four variakdéscretised
over the 0 to 1 interval:

« probability of avoiding specification defects

« probability of avoiding defects in development

» probability of finding defects

» probability of fixing defects.

The BN in Figure 1 is a simplified version the Bitlze heart of
the decision support system for software defe®dsne of these
probability variables (or the ‘Effective KLOC imptented’

variable) are entered directly by the user: instélagse variables
have further parents modelling the causes of peogeality as we
describe in Section 4.

2.2 Decision Support with BNs

Although the underlying theory (Bayesian probapjlihas been
around for a long time, executing realistic BN misdeas only
first made possible in the late 1980s as a redutr@akthrough
algorithms and software tools that implement thégi.[Methods
for building large-scale BNs are even more recgri, (19]) but it
is only such work that has made it possible to ya@Ms to the
problems of software engineering.

Drawing on this work in various commercial projesfith Agena,
Fenton and Neil have built BN-based applicationat thave
proved the technology is both viable and effecti@everal of
these applications have been related to systemsofiware
assessment. Especially significant was the TRAGS [b8] to

assess vehicle reliability for QinetiQ (on behdltlee MOD) and
the AID tool [20] to predict software defects in nsoimer
electronic products for Philips. Much of the modatejl work

described here has been done as part of the MOpi&&ct [9],

which extends the ideas in AID. The toolset immatation has
been based on Agena’s AgenaRisk technology thatewended
to incorporate recent developments in building dasgale BNs
that was undertaken in the SCULLY, SIMP and SCOREepts
[11].

Two features of AgenaRisk are especially criticallfuilding this
model:

* Large tables can be handled efficiently. For eXemp the
default model here the number of defects may réirage 0
to 3000, in intervals of varying size.

e Probability tables are generated from numerical
statistical expressions by simulation. The expoesgiven
above using the binomial distribution is not onlyet
conceptual model but also how the model is spetifie

2.3 Buildingthe BN M odel

Like all BNs, the defect model was built using atuie of data
and expert judgements. Understanding cause aeck éffa basic
form of human knowledge, underlying our decisiong-or

example, a project manager knows that more rigortegting

increases the number — and proportion of — defectsd during
testing and therefore reduces the number remaiminghe

delivered software.

It is obvious that the relationship is not the oty round.
However, it is equally obvious that we need to take account
whatever evidence we have about: the likely nunabefefects in
the software following development; the capabiit@ the team;
and the adequacy of the time allowed. The expertierstanding
of cause and effect is used to connect the vadaifi¢he net with
arcs drawn from cause to effect.

To ensure that our model is consistent with thesgircal
findings, the probability tables in the net are stomcted using
data, whenever it is available. However, whendhsrmissing
data, or the data does not take account of akdlisal influences,
expert judgement must be used as well.

3. VARYING THE LIFECYCLE

When we describe defects being inserted in ‘implgatéon’ and

removed in ‘testing’ we are referring to the adtes that make up
the software development lifecycle. We need toafitlecision

support system to the lifecycle being used buttpaiclifecycles

vary greatly. In this section, we describe howstlgan be
achieved without having to build a bespoke BN fazrg different

lifecycle. The solution has two steps: the ideaaofifecycle

‘phase’ modelled by a BN and a method of linkingaate phase
models into a model for an entire lifecycle.

3.1 A Lifecycle Phase

We model a development lifecycle as made up fronages’, but
a phase is not a fixed development process aseirirititional

waterfall lifecycle. Instead, a phase can consfsany number
and combination of such development processes.exanple, in

the ‘incremental delivery’ approach the phases ¢adrrespond
to the code increments; each phase then includesthal

development processes: specification, design, godim testing.
Even in a traditional waterfall lifecycle it is bky that a phase
includes more than one process with, for examgie, testing

phases involving some new design and coding work.

The incremental and waterfall models are just tvmalseof a
continuum. To cover all parts of this continuung @onsider all
phases to include one or more of the following tgveent
activities:

» Specification/documentation: This covers any ativi
whose objective is to understand or describe soristireg
or proposed functionality. It includes: requirengent
gathering writing, reviewing, or changing any
documentation (other than comments in code).

and

» Development (or more simply coding): This coverg a
activity that starts with some predefined requiretae
(however vague) and ends with executable code.

» Testing and rework: This covers any activity thatalves
executing code in such a way that defects are faandi
noted; it also includes fixing known defects.

The phase BN includes all these activities, allgntine extent of
each activity in any actual phase to be adjustéa.the most
general case, a software project will consist ebebination of
these phases. In Section 4 we describe the BN Infod®ne

phase in more detail. First, in the next sectisa,describe how
multiple instances of the BN are linked to model abitrary

lifecycle.

3.2 Linking Phases: Dynamic BNs

Whatever the development lifecycle, the main oljecis: given
information about current and past phases we wékédto be
able to predict attributes of quality for future gses. We
therefore think of the set of phases as a timeséhiat defines the
project overall. This is readily expressed as addyic Bayesian
Network (DBN) [2]. A DBN allows time-indexed vakkes: in
each time frame one of the parents of a time-indesagiable is
the variable from the previous time frame. Fig@rehow how
this is applied when the quality attribute is thember of residual

defects.
Hew clefects Residual
in defects pre

Defects foun:

Defects fixed

o
Resicual defects
post

Figure 2 A Dynamic BN Modelling a Software Lifecycle

The dynamic variable is shown with a bold boundavye
construct the DBN with two nodes for each time-xetevariable:
the value in the previous time frame is the ‘inpntde (here
‘Residual defects pre’) and it has no parents ertbt. The node
representing the value in this time frame is called ‘output
node’ (here ‘Residual defects post’). Note thatwhriable for the
current time frame ‘Residual defects post’ depesrishe one for
the previous time frame, but as an ancestor rdltzer as a parent
since it is clearer to represent the model with ititermediate
variable ‘Total defects in’.

As well as defects, we also model the documentatigadity as a
time-varying quality attribute. Recall that docurteion includes
specification, which even in iterative developmergs often
prepared in one phase and implemented in a lataseph We
consider specification errors as defects so a plimsehich

documentation is the main activity may lead to ewpdrtant
incremental change in documentation quality thgiassed on to
the next phase.

4, MODELLING A SINGLE PHASE

We describe the ‘phase-level BN’, which modelsrgls software
development phase, first giving an overview andhttiescribing
two part of the BN in more detail.

4.1 Overview

The phase BN is best presented as six ‘subnetsf) eansisting
of BN variables, as shown in Figure 3, with gresoeus marking
where there is at least one variable in one suhigh is a parent
of a variables in different subnets. The subnay®lno part in
inference but is a useful for guide for the usethef BN.

Scale of New

— Functionality
Specification ang Implemented
Documentation

Design and
Development
Defect
Insertion
Testing and and
Rework Discovery

Figure 3 Subnets of the Phase BN
The subnets are:

Indicators of specification and
documentation process quality

Spec & doc
process
cuality
Regularity of
spec and doc
reviews

<

<] [

Spec and doc
process owerall
effectiveness

Stanclarel
procecures
followed

Relewvant

experience of
spec & doc staff

Indicators of adequacy of spec and doc foLhe
functionality

Ly Spec defects
discoveredin

review

Quality of
documentation
inspected

Belequacy of doc for rew
functionality (after spec
worl: this phase)

e Scale of New Functionality Implemente&ince we are to
build and test some software we may be implemersiorge
new functionality in this phase. This subnet pded a
measure of the size of this functionality.

» Specification and Documentatiohis subnet is concerned
with measuring the amount of specification and
documentation work in the phase, the quality of the
specification process and determining the changehén
quality of the documentation as a result of thekadwne in
the phase (modelled as a time-indexed variable).

» Design and Developmenthis subnet models the quality of
the design and development process, which influetice
probability of inserting each of the potential dafeinto the
software.

* Testing and ReworkThis subnet models the quality of the
testing process and the rework process, influenche
probabilities of finding and fixing defects.

« Defect and Insertion and DiscoveryThis subnet follows
the pattern already described in Section 2.1, adapd
handle changes to the number of defects using e-tim
indexed variable. The amount of ‘new functionality
implemented’ will influence the inherent numberdefects
in the new code. We distinguish between potentidbcts
from poor specification and ‘inherent potential etd$’,
which are independent of the specification. Thmiper of
these is a function of the number of function p®int
delivered (based on empirical data by Jones [1}, 15

4.2 Specification and Documentation

Figure 4 shows the Specification and Documentasobnet.
Before implementing any functionality there is assd to be
some specification of it. If we are lucky this sifieation will be

Quiality of overall system spec
Spec & doc and documentation PRE
effort

lecuacy of pre-
phase spec for
e functionalit;

Scale of all new specificaton and
gdocumentation work inthis phase

Y,

M - s
Telta improvementto |

mod spec & }
- documentation -

uality of owverall system
spec and documentation
POST

It ‘ -
 Frab avaiding spec |
§ cetects L

Figure 4 Specification and Documentation Subnet

a well-written document at the appropriate level adtail.
However, in many cases it may be nothing more tharague
statement of requirements. Generally, therefdneret may be
work that needs to be done on the specificatiopaas of this
lifecycle phase.

The ‘scale of all new specification and documentatvork in this

phase’ and ‘spec & doc process quality’ will deteren the

‘adequacy of documentation for new functionalityftéda spec

work this phase)’ that is being implemented in thigse. If, for
example, there is very little new functionality ¢aso the ‘scale of
new specification and documentation work’ is lowgn, even if
the ‘spec & doc process quality’ is poor, it isdlik that adequacy
of documentation will be sufficient. On the othemid, if there is
a lot of new functionality the scale of new spewfion and

documentation work is likely to be high, which meahat the

process quality will need to be good in order fdret
documentation to be adequate.

This subnet shows the use of ‘indicator’ nodes:erample the
experience of the staff is an indicator of the pszc quality.
Indicators can easily be tailored to match the rimfation
available in the software development environmesee Section
5.

4.3 Testing and Rework

Figure 5 shows the testing and rework subnet.
quality

Indicators of testing process qualr

Testing
effort

Testing process
owverall
effectivensss

Testing

process
well

defined

Testing
staff
Experience

Quality of
clacumertec
test cases

Rewvorl:
process ouality

Reworl: process
overall
effectiveness

Rewwork: effort

Figure 5 Testing and Rework Subnet

The better testing process the more likely we ardind the

defects. We may or may not decide to fix the dsfégund in

testing in this phase; the success of such fixisdepend on the
‘probability of fixing defect’. The two probabilés are used to
update the number of residual defects in the ‘Didfesertion and
Discovery’ subnet and to predict the number ofthesl defects at
the start of any subsequent phase in which furtleeelopment
and/or testing of the software takes place.

4.4 Variationson the Phase M odel

In principle, the phase net can describe any phesen if it
includes only some of the software developmentviies. A
phase with no development or testing (i.e. was

specification/documentation) is modelled by settiti;e new
functionality implemented to zero, and the develeptn testing
and rework effort to zero.

This effectively restricted the model to the subcticerned with
specification and documentation and ensured theaintiormation
about defects was not changed (since without codmtesting
defects are neither introduced nor removed).

However, it is irksome for users to enter dummyinfation to
ensure that certain variables are set to zero,esmtnoduced a set
of variants of the phase BN that explicitly mode tases where
at least one of the software development activitiesnot
undertaken:
1. specification/documentation and developmentedmut in
the phase, but not testing
2. specification/documentation and testing cariwed in the
phase, but not development
3. development and testing carried out in the phbsé not
specification/documentation
4. only specification/documentation carried outtia phase
5. only development carried out in the phase, and
6. only testing carried out in the phase.

These BNs are constructed by selecting the relesatets and
omitting those that are irrelevant. The BN modgjlthe general
case is known as the ‘all activities’ phase BN.

5. APPLICATION METHODOLOGY

There are two steps for applying the defect prasficinodel to a
specific software development environment:

1. choose the ‘indicators’ used to judge the qiealibf the
different processes

2. link together phase BNs to model the full lifeley
5.1 Quality Indicators

Indicator variables used in the BN can be custodnisenatch the
indicators used within the organisation. As wallegliting names
given to an indicator in the questionnaire, itshyataility table can
be adjusted. The formula language of the AgenaRiskset
makes this feasible. Consider, for example, thestiig process
quality’ (TPQ) shown in Figure 5. The suggestetidators are:

e Quality of documented test cases

» Testing process well defined

» Testing staff experienced

The process quality and the indicator values alggd on a five-
point scale from ‘very low’' to ‘very high’: the jgg&ment being
relative to the norm for the development environmefo set up
the indicators, an expert need only judge its rejte’ as an
indicator of the underlying quality attribute. @®iv that the
process quality really is high, how certain ishitthe staff will be
experienced? We have found the truncated nornsatfilglition
useful for creating a probability expressing anezkp assessment
of the ‘strength’ of an indicator. For exampleppase:

Testing process well defined = TNormal(‘TPQ’, 0.6)
Testing staff experience = TNormal(‘TPQ’, 0.2)

this expresses the judgement that the staff expegids the
stronger indicator, since it has a smaller varigo@eameter (0.2)
than the other indicator. In both cases the mesnevof the

just indicator is given by the parent process quality.

5.2 Lifecycle Modéelling

We show two examples of how the phase BN and iignts can
be linked to model different lifecycles.

5.2.1 lIterative Development
An incremental software lifecycle is modelled bygexies of the

‘all activities’ phase BN. The diagram shown igifie 6 is this is
displayed in the AgenaRisk toolset.

Incremerit1

Incremertz

Increment3

Figure 6 An Incremental Development Lifecycle

Figure 7 shows an example of the predicted defecthis model.
In increment 1, the defects before the start ofghase is set to
zero and the new functionality to 50 function psjrincrement 2
has 250 function points and the final incremenfustion points
of new functionality. Although each phase includas the
activities, the first one gives most effort to sfieation and the
final one most effort to testing and rework. Themtber of
residual defects falls from increment 2 to incretr@ras a result
of the testing effort.

5.2.2 A Waterfall Example with Integration
This example, in Figure 8, shows a waterfall lifdeybut with
initial development of modules 1 and 2, includigne low-level
testing, done by two separate teams, for exampléeliiog
development at different sites or the use of sutraotors.

The initial development follows different lifecysle the two
phases for module 1 being ‘specification, developmeut no
testing’ followed by ‘testing only’, while module Zas a
specification only initial phase. This differentay represent the

different way that metrics data is gathered attiire sites as well
as actual lifecycle differences.

Mocdlule1: documertation
and development

1 el |

Module 1: Testing

Module 2: Specification

L

Wadule 2; developmert sind
testing

s LA L

join

¢

Integration work

i

System Testing

;

User 1 Test User 2 Test

Figure8 A More Complex Lifecycle with Two Teams

The ‘join’ subnet combines the defect estimates tfo two

modules, taking account of their relative sizeobeftwo phases
of testing applied to the system as a whole. Ewample also
shows that user trials can be modelled as a ‘gpstity’ phase.

5.3 Toolset

Our experience from earlier commercial projectghiat project
managers and other users who are not BN expen®tdwish to
use a BN directly via a general purpose BN editbrstead, the
BN needs to be hidden behind a more specialisedinteface.
The toolset provided by AgenaRisk is actually ampliaation

[L/___Ilncremem 3 - Residual defects post LE]L

Incremerrt 1 - Residual defects post | Inrement 2 - Residual defects post
] 0.0020 "
0.0056 |8 -
an 0.0018 Y
00048 || | 0.0016 |
00022 r i _ gggg [
T |
0.0032 I B
4 ooo10] [
0.0024 \ 80E-4] | \\
0.0016 4 G0E-47] 7 N
i 40E-47f ~
8.05-3 Il\n 2.05-; 1 \'u-
: [EepE—p—Ta Lo (L : i 1 1 1
- L] = [o = = - — - - L] = [o
2 & & & - 2 ¥ & 2 =% ! 5 5 B B
(=] L L L L =1 o =1 o o (=] L L B B

Figure 7 Defects Predicted at Each I ncrement of the Incremental Lifecycle

0.0024
oooz0 | | s
0.0016
0.0012
B.0E-4
4.0E-4

00

ook
OOLE
ooy
ooLs
ooLsk
ooLek

OActual OPredicted rnd 1 M Predicted rnd 2

4500
4000 -
3500 -
3000 -
2500 H
2000 -

of defects

1500 -
1000 -

<1

PO PSRN,
<2,\o\ Q@\ <2,\o\ Q‘O\ Q,\o\

> 9
RN

Mﬂﬂmmhhﬂﬁﬂﬂﬂaﬂmmmmﬂﬂﬂﬂﬂ

A o N o) <
Ny N NV YV Vv
& & F & & E
Qﬂo\ Q\o\ Qﬂo\ Qﬂo\ Q\o\ Q\o\

X X
< 9 <

@ @ @
Q,\o\ Q@\ Q,\o\

Figure 9 Accuracy of the Prediction for 32 Projects

generator that enables toolset users to tailor bwthunderlying
BN models and the user interface that is providetthé end-users
when the application is generated.

The main functions provided to the end-user are:

1. Observations can be entered using a questi@nimaarface,
where questions correspond to BN variables. Eaestépn
includes an explanation and the user can seldete (the
number of states is small) or enter a number @fstates of
the variable are intervals in a numeric range). swers
given are collected into ‘scenarios’ that can bmed and
saved. At least one scenario is created for eaftivare
development project but it is possible to creat# @ampare
multiple scenarios for a project.

2. Predictions are displayed as probability disttitms and as
summary statistics (mean, median, variance). iDigions
are displayed either as bar charts or as line grdpbe
Figure 7) depending on the type of variable andntin@ber
of states. The predictions for several scenarias be
superimposed for ease of comparison. Summarystitati
can be exported to a spreadsheet.

The questionnaires shown to the end user can béguoed

widely. For example, questions can be grouped artéred
arbitrarily and the question text is fully editabldot all variables
need have a question, allowing any BN variablegdidden from
the end user.

6. VALIDATION

The toolset and models have been widely trialledvhyious
commercial organisations, including those involvéd the
MODIST project, namely Philips, Israel Aircraft lnstries (Tel
Aviv) and QinetiQ (Malvern). In addition, Philigsas recently
completed a retrospective trial of thirty-two praifcarried out at
Bangalore.

6.1 Aim and Methodology
The aim of the recent Philips trial was to evaluataccuracy of
the AgenaRisk defect prediction capabilities intwafe projects.
Initially, 116 consumer electronics software prégecompleted
between 2001 and 2004 were assessed for inclusidiei trial
against the following criteria:
» reliable data was available
* project resulted in a commercial product
* some key people from the project were still avadator
interview
» the projects should represent a range of produptadts
and a variety of design layers, including user riate,
intermediate and driver layers.

Thirty-two projects were identified as suitable fbe trial, based
on these criteria.

A questionnaire, based on the AgenaRisk form foterémg
observations, was used to collect qualitative am@ntjtative
information from key project members. This datasvemtered
into the model to predict the number of defectsfbin testing.
These predictions were then compared with the hawraber of
defects found in all testing phases. Data wasectt in two
rounds: in the second round a more detailed irgarvivas
conducted with the ‘Quality Leaders’ for each povjeesulting in
improved data and improved predictions.

The trial used a variant of the ‘all-activities’ gge-level net. The
single BN was used since it was not possible is tairospective
trial to separate the defect data into separatsgsha

6.2 Results

The main results of the trial were:

* For code sizes between 10 and 90 KLOC, the predisti
for defects found were exceptionally accurate @uaacies
are less than 30%).

» The best predictions (inaccuracy <20%) were obthiioe
code sizes between 50 and 87 KLOC.

e For code size < 5 KLOC the prediction inaccuracys wa
more than 70%.

* For code sizes between 5 and 10 KLOC and greester30

KLOC, the prediction inaccuracy was between 40% and

80%.

The relative inaccuracies outside the range 100t&I9OC were
inevitable given that the default used has beefigumed only for
code between 20 to 80 KLOC.

6.3 Lessons from the Validation

KLOC existing
code base

Owerall process and
testing guality of
existing codle base

Complexity of
existing code
base

Resiclual defects pre

Figure 10 Stub Phase for Existing Code

The validation also showed the need to ensure ttietmodel

closely matches the situation. For example, tlaedaracies for
projects outside the range of the default model largely

explained by the ‘defects pre’ variable, representhe number of
defects before the (one and only) development phassless a
value is explicitly entered here, a default valsi@ssumed, which
heavily biased the defect predictions upwards fog smaller
projects and may also bias the prediction downwéoddarger

projects.

Although it is easy to enter a value in the AgesRoolset, we
did not provide a systematic method to determireatbpropriate
value. Many of the projects in the trial enhanaedsting

software, so the initial defects was not expectetle zero. This
problem was easily overcome within the modellingthnd we

have described by explicitty modelling the pre-&ri3 code,

using a simple stub phase (no specification, dewveémt or
testing), as shown in Figure 10.

7. CONCLUSIONS

We have shown how a wide variety of software lifdeg can be
modelled using a Dynamic Bayesian Net, in whichhetime
frame is a lifecycle ‘phase’ combining all softwatevelopment
activities in different amounts. This approactoal a BN for
software defect prediction to be tailored to ddfetr software
development environments. The AgenaRisk toolsdtemahis a
practical approach, providing a formula languagéhvetandard
statistical distributions which can be used to geathe quality
indicators available in each software developmeaitt

The approach and toolset have been extensiveljlettisby

industrial partners in a collaborative project. spige making little
use of the available tailoring capabilities, a asprective trial of
32 projects showed a good fit between predictedaamahl defect
counts.

The AgenaRisk toolset allows the use of large deiastate
spaces that are necessary to achieve accuratetpesdj with the
formula language making the construction of verygda
probability tables feasible. However, discretisaterrors can still
be a problem especially when the net is used foblpms of
widely varying scale, as was shown by the projdatsthe
retrospective trial. The AgenaRisk toolset now omporates
dynamic discretisation [16, 17] to overcome thislghem.

We have also used AgenaRisk to reason about seftprajects
as a whole [9] and the trade-off between time, uess and
quality. Many of the factors are common in these tmodels,
covering both the assessment of process qualitytleegbroduct
quality achieved and required. In future, we htpeombine the
two models into a single decision support systemsfaftware
projects. Part of this is being done in the eXDegroject [5].

8. ACKNOWLEDGMENTS

This report is based in part on work undertakenthenfollowing
funded research projects: MODIST (EC Framework bjeet
IST-2000-28749), SCULLY (EPSRC Project GR/NO0O258MP
(EPSRC Systems Integration Initiative Programme jeeto
GR/N39234), and SCORE (EPSRC Project Critical Jyste
Programme GR/R24197/01). We also acknowledge
contributions of individuals from Agena, Philipsrael Aircraft
Industries, QinetiQ and BAE Systems.

9. REFERENCES

[1] AgenaRisk: Adavanced risk analysis for impottdecisions.
http://www.agenarisk.com

[2] Bangsg, O. and Wuillemin, P. H.pp-down construction
and repetitive structures representation in Bayesia
networks In ‘Proceedings of The Thirteenth International
Florida Artificial Intelligence Research Symposium
Conference’, Florida, USA., 2000. AAAI Press.

[3] Bibi, S. and Stamelos, oftware Process Modeling with
Bayesian Belief Networka Proceedings of b
International Software Metrics Symposium (Metri€92)
14-16 September 2004, Chicago, USA.

[4] Dean, T. and Kanazawa, K.model for reasoning about
persistence and causatip@omputational Intelligence,
5:142-150, 1989.

[5] eXdecide: Quantified Risk Assessment and DeniSupport
for Agile Software Projects, EPSRC project EP/Ci54,
www.dcs.gmul.ac.uk/~norman/radarweb/core_page®pioj
.html

[6] Fan, Chin-Feng, Yu, Yuan-ChargBN-based software
project risk managemeni Systems Software, 73, 193-203,
2004.

[7] Fenton, N. E., Krause, P., Neil, MProbabilistic Modelling
for Software Quality ControlJournal of Applied Non-
Classical Logics 12(2), 173-188, 2002

the

[8] Fenton, N. E., Krause, P., Neil, Mepftware Measurement:
Uncertainty and Causal ModellingEEE Software 10(4),
116-122, 2002.

[9] Fenton, N. E., Marsh, W., Neil, M., Cates, Porey, S. and
Tailor, T. Making Resource Decisions for SoftwBrejects.
In Proceedings of 26th International Conference on
Software Engineering (ICSE 2004), (Edinburgh, Eahit
Kingdom, May 2004)EEE Computer Society 2004, ISBN 0-
7695-2163-0, 397-406

[10] Fenton, N. E. and Neil, MA Critique of Software Defect
Prediction ModelsIEEE Transactions on Software
Engineering, 25(5), 675-689, 1999.

[11] Fenton, N. E. and Neil, MSCULLY: Scaling up Bayesian
Nets for Software Risk Assessméhieen Mary University
of London, www.dcs.gmul.ac.uk/research/radar/Ptejec
2001.

[12] Fenton, N. E. and Pfleeger, SSoftware Metrics: A
Rigorous and Practical Approach (2nd EditipfdWS,
ISBN: 0534-95429-1, 1998.

[13] Jensen, F.VAn Introduction to Bayesian Network$CL
Press, 1996.

[14] Jones, CProgrammer Productivity, McGraw HjllL986.
[15] Jones, CSoftware sizinglEE Review 45(4), 165-167, 1999.

[16] Koller, D., Lerner, U. and Angelov, [General Algorithm
for Approximate Inference and its Application tolrg

Bayes Netsln Proceedings of the 15th Annual Conference
on Uncertainty in Al (UAI), Stockholm, Sweden, Augju
1999, pages 324—333

[17] Kozlov, A.V. and Koller, DNonuniform dynamic
discretization in hybrid network®roceedings of the 13th
Annual Conference on Uncertainty in Al (UAI), Prdence,
Rhode Island, August 1997, pages 314--325.

[18] Neil, M., Fenton, N. E., Forey, S. and HarRsUsing
Bayesian Belief Networks to Predict the Reliabiity
Military Vehicles IEE Computing and Control Engineering,
12(1), 2001, pp. 11-20.

[19] Neil, M., Fenton, N. E., Nielsen, Building large-scale
Bayesian NetworkS'he Knowledge Engineering Review,
15(3), 2000, pp. 257-284.

[20] Neil, M., Krause, P., Fenton, N. Boftware Quality
Prediction Using Bayesian NetworksSoftware
Engineering with Computational Intelligence, (Ed
Khoshgoftaar TM), Kluwer, ISBN 1-4020-7427-1, Cltep
6, 2003

[21] Stamelosa, I., Angelisa, L., Dimoua, P., Skkéd, P.On the
use of Bayesian belief networks for the predictibn
software productivitylnformation and Software Tech, 45
(1), 51-60, 2003.

