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Trajectory Design and Power Control for Multi-UAV
Assisted Wireless Networks: A Machine
Learning Approach
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Abstract—A novel framework is proposed for the trajectory de-
sign of multiple unmanned aerial vehicles (UAVs) based on the
prediction of users’ mobility information. The problem of joint tra-
jectory design and power control is formulated for maximizing the
instantaneous sum transmit rate while satisfying the rate require-
ment of users. In an effort to solve this pertinent problem, a three-
step approach is proposed, which is based on machine learning
techniques to obtain both the position information of users and the
trajectory design of UAVs. First, a multi-agent Q-learning-based
placement algorithm is proposed for determining the optimal posi-
tions of the UAVs based on the initial location of the users. Second,
in an effort to determine the mobility information of users based
on a real dataset, their position data is collected from Twitter to
describe the anonymous user-trajectories in the physical world. In
the meantime, an echo state network (ESN) based prediction al-
gorithm is proposed for predicting the future positions of users
based on the real dataset. Third, a multi-agent Q-learning-based
algorithm is conceived for predicting the position of UAVs in each
time slot based on the movement of users. In this algorithm, multi-
ple UAVs act as agents to find optimal actions by interacting with
their environment and learn from their mistakes. Additionally, we
also prove that the proposed multi-agent Q-learning-based trajec-
tory design and power control algorithm can converge under mild
conditions. Numerical results are provided to demonstrate that as
the size of the reservoir increases, the proposed ESN approach im-
proves the prediction accuracy. Finally, we demonstrate that the
throughput gains of about 17% are achieved.

Index Terms—Multi-agent Q-learning, power control, trajectory
design, Twitter, unmanned aerial vehicle (UAV).

I. INTRODUCTION
A. Motivation

S A benefit of their agility, as well as line-of-sight
(LoS) propagation, unmanned aerial vehicles (UAVs) have
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received significant research interests as a means of mitigating
a wide range of challenges in commercial and civilian applica-
tions [2], [3]. The future wireless communication systems are
expected to meet unprecedented demands for high quality wire-
less services, which imposes challenges on the conventional ter-
restrial communication networks, especially in traffic hotspots
such as in a football stadium or rock concert [4]-[6]. UAVs may
be relied upon as aerial base stations to complement and/or sup-
port the existing terrestrial communication infrastructure [5],
[7], [8] since they can be flexibly redeployed in temporary traf-
fic hotspots or after natural disasters. Secondly, UAVs have also
been deployed as relays between ground-based terminals and
as aerial base stations for enhancing the link performance [9].
Thirdly, UAVs can also be used as aerial base stations to collect
data from Internet of Things (IoT) devices on the ground, where
building a complete cellular infrastructure is unaffordable [7],
[10]. Fourthly, combined terrestrial anad UAV communication
networks are capable of substantially improving the reliability,
security, coverage and throughput of the existing point-to-point
UAV-to-ground communications [11].

Key examples of recent advance include the Google Loon
project [12], Facebook’s Internet-delivery drone [13], and the
AT&T project of [14]. The drone manufacturing industry faces
both opportunities and challenges in the design of UAV-assisted
wireless networks. Before fully reaping all the aforementioned
benefits, several technical challenges have to be tackled, includ-
ing the optimal three dimensional (3D) deployment of UAVs,
their interference management [15], [16], energy supply [9],
[17], trajectory design [18], the channel model between the UAV
and users [19], [20], resource allocation [7], as well as the com-
patibility with the existing infrastructure.

The wide use of online social networks over smartphones
has accumulated a rich set of geographical data that describes
the anonymous users’ mobility information in the physical
world [21]. Many social networking applications like Facebook,
Twitter, Wechat, Weibo, etc allow users to ’check-in’ and explic-
itly share their locations, while some other applications have im-
plicitly recorded the users’ GPS coordinates [22], which holds
the promise of estimating the geographic user distribution for
improving the performance of the system. Reinforcement learn-
ing has seen increasing applications in next-generation wireless
networks [23]. More expectantly, reinforcement learning mod-
els may be trained by interacting with an environment (states),
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and they can be expected to find the optimal behaviors (actions)
of agents by exploring the environment in an iterative manner
and by learning from their mistakes. The model is capable of
monitoring the reward resulting form its actions and is chosen
for solving problems in UAV-assisted wireless networks.

B. Related Works

1) Deployment of UAVs: Among all these challenges, the
geographic UAV deployment problems are fundamental. Early
research contributions have studied the deployment of a sin-
gle UAV either to provide maximum radio coverage on the
ground [24], [25] or to maximize the number of users by using
the minimum transmit power [26]. As the research evolves
further, UAV-assisted systems have received significant atten-
tion and been combined with other promising technologies.
Specifically, the authors of [27]-[29] employed non-orthogonal
multiple access (NOMA) for improving the performance of
UAV-enabled communication systems, which is capable of
outperforming orthogonal multiple access (OMA). In [30],
UAV-aided D2D communications was investigated and the
tradeoff between the coverage area and the time required for
covering the entire target area (delay) by UAV-aided data
acquisition was also analyzed. The authors of [13] proposed
a framework using multiple static UAVs for maximizing the
average data rate provided for users, while considering fairness
amongst the users. The authors of [31] used sphere packing
theory for determining the most appropriate 3D position of the
UAVs while jointly maximizing both the total coverage area
and the battery operating period of the UAVs.

2) Trajectory Design of UAVs: It is intuitive that moving
UAVs are capable of improving the coverage provided by
static UAVs, yet the existing research has mainly considered the
scenario that users are static [10], [32]. Having said that, authors
of [33] jointly considered the UAV trajectory and transmit power
optimization problem for maintaining fairness among users. An
iterative algorithm was invoked for solving the resultant non-
convex problem by applying the classic block coordinate descent
and successive convex optimization techniques. In [17], the
new design paradigm of jointly optimizing the communication
throughput and the UAV’s energy consumption was conceived
for the determining trajectory of UAYV, including its initial/final
locations and velocities, as well as its minimum/maximum
speed and acceleration. In [10], a pair of practical UAV trajecto-
ries, namely the circular flight and straight flight were pursued
for collecting a given amount of data from a ground terminal
(GT) at a fixed location, while considering the associated energy
dissipation tradeoff. By contrast, a novel cyclical trajectory was
considered in [32] to serve each user via TDMA. As shown
in [32], a significant throughput gain was achieved over a static
UAV. In [34], a simple circular trajectory was used along with
maximizing the minimum average throughput of all users. In
addition to designing the UAV’s trajectory for its action as an
aerial base station, the authors of [35] studied a cellular-enabled
UAV communication system, in which the UAV flew from an
initial location to a final location, while maintaining reliable
wireless connection with the cellular network by associating
the UAV with one of the ground base stations (GBSs) at each
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time instant. The design-objective was to minimize the UAV’s
mission completion time by optimizing its trajectory.

C. Our New Contributions

The aforementioned research contributions considered the de-
ployment and trajectory design of UAVs in the scenario that
users are static or studied the movement of UAVs based on the
current user location information, where only the user location
information of the current time slot is known. Studying the pre-
deployment of UAVs based on the full user location information
implicitly assumes that the position and mobility information of
users is known or it can be predicted. With this proviso the flight
trajectory of UAVs may be designed in advance for maintaining
ahigh service quality and hence reduce the response time. Mean-
while, no interaction is needed between the UAVs and ground
control center after the pre-deployment of UAVs. To the best of
our knowledge, this important problem is still unsolved.

Again, deploying UAVs as aerial BSs is able to provide re-
liable services for the users [35]. However, there is a paucity
of research on the problem of 3D trajectory design of multiple
UAVs based on the prediction of the users’ mobility informa-
tion, which motivates this treatise. More particularly, i) most
existing research contributions mainly focus on the 2D place-
ment of multiple UAVs or on the movement of a single UAV in
the scenario, where the users are static. ii) the prediction of the
users’ position and their mobility information based on a real
dataset has never been considered, which helps us to design the
trajectory of UAVs in advance, thus reducing both the response
time and the interaction between the UAVs as well as control
center. the transmit power of UAVs is controlled for obtaining a
tradeoff between the received signal power and the interference
power, which in turn increases the received signal-interference-
noise-rate (SINR). Therefore, we formulate the problem of joint
trajectory design and power control of UAVs to improve the
users’ throughput, while satisfying the rate requirement of users.
Against the above background, the primary contributions of this
paper are as follows:

® We propose a novel framework for the trajectory design

of multiple UAVs, in which the UAVs move around in a
3D space to offer down-link service to users. Based on the
proposed model, we formulate on throughput maximiza-
tion problem by designing the trajectory and power control
of multiple UAVs.

® We develop a three-step approach for solving the proposed

problem. More particularly, i) we propose a multi-agent
Q-learning based placement algorithm for determining the
initial deployment of UAVs; ii) we propose an echo state
network based prediction algorithm for predicting the mo-
bility of users; iii) we conceive a multi-agent Q-learning
based trajectory-acquisition and power-control algorithm
for UAVs.

® We invoke the ESN algorithm for acquiring the mobility

information of users relying on a real dataset of users col-
lected from Twitter, which consists of the GPS coordinates
and recorded time stamps of Twitter.

® We conceive a multi-agent Q-learning based solution for

the joint trajectory design and power control problem of
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TABLE I
LIST OF NOTATIONS
Notations Description | Notations Description
Ny, Number of users | N Number of clusters and UAVs
Tk, Yk, Coordinate of users | Zn,Yn Coordinate of UAVs
fe Carrier frequency | hp Altitude of UAVs
Pmax UAV transmit power | gg,, channel power gain
No Noise power spectral | B Bandwidth
KULoSs N LoS Additional path loss for LoS and NLoS | Pr.s, PNLos LoS and NLoS probability
0 Minimum rate requirement | Iy Receives interference of users
Tky, Instantaneous achievable rate sum Overall achievable sum rate
b1,b2 Environmental parameters (dense urban) | « Path loss exponent
Ny Size of neuron reservoir | a¢ State in Q-learning algorithm
at Action in Q-learning algorithm | ¢ Reward in Q-learning algorithm

UAVs. In contrast to a single-agent Q-learning algorithm,
the multi-agent Q-learning algorithm is capable of support-
ing the deployment of cooperative UAVs. We also demon-
strate that the proposed algorithms is capable of converging
to an optimal state.

D. Organization and Notations

The rest of the paper is organized as follows. In Section II,
the problem formulation of joint trajectory design and power
control of UAVs is presented. In Section III, the prediction of
the users’ mobility information is proposed, relying on the ESN
algorithm. In Section IV, our multi-agent Q-learning based de-
ployment algorithm is proposed for designing the trajectory and
power control of UAVs. Our numerical results are presented in
Section V, which is followed by our conclusions in Section VI.
The list of notations is illustrated in Table I.

II. SYSTEM MODEL

We consider the downlink of UAV-assisted wireless com-
munication networks. Multiple UAVs are deployed as aerial
BSs to support the users in a particular area, where the ter-
restrial infrastructure was destroyed or had not been installed.
The users are partitioned into N clusters and each user be-
longs to a single cluster. Users in this particular area are de-
noted as K = {K,,... Ky}, where K, is the set of users that
belong to the n-th cluster, n € N = {1,2,... N}. Then, we
have K,, N K,y = ¢, n’ # n,Vn',n € N, while K,, = |K,| de-
notes the number of users in the n-th cluster. For any cluster n,
n € N, we consider a UAV-enabled FDMA system [36], where
the UAVs are connected to the core network by satellite. At
any time during the UAVs’ working period of T},, each UAV
communicates simultaneously with multiple users by employ-
ing FDMA.

We assume that the energy of UAVs is supplied by laser charg-
ing as detailed in [37]. A compact distributed laser charging
(DLC) receiver can be mounted on a battery-powered off-the-
shelf UAV for charging the UAV’s battery. A DLC transmitter
(termed as a power base station) on the ground is assumed to
provide a laser based power supply for the UAVs. Since the DLC
is capable of self-alignment and a LOS propagation is usually
available because of the high altitude of UAVs, the UAVs can
be charged as long as they are flying within the DLC’s coverage
range. Thus, these DLC-equipped UAVs can operate for a long

time without landing until maintenance is needed. The scenario
that the energy of UAVs is limited will be discussed in our future
work, in which DLC will also be utilized.

A. Mobility Model

Since the users are able to move continuously during the flying
period of UAVs, the UAV's have to travel based on the tele-traffic
of users. Datasets can be collected to model the mobility of users.
Again, in this work, the real-time position information of users
is collected from Twitter by the Twitter API, where the data con-
sists of the GPS coordinates and recorded time stamps. When
users post tweets, their GPS coordinates are recorded, provided
that they give their consent, for example in exchange for calling
credits. The detailed discussion of the data collection process is
in Section I1I. The mobility pattern of each user will then be used
to determine the optimal location of each UAV, which will natu-
rally impact the service quality of users. The coordinate of each
user can be expressed as wy,, = [z, (1), yk, (1)]T € R**\k, €
K,,, where RM*! denotes the M -dimensional real-valued vec-
tor space, while zy,, (¢) and yy,, (¢) are the X-coordinate and
Y-coordinate of user k,, at time ¢, respectively.

Since the users are moving continuously, the location of the
UAVs must be adjusted accordingly so as to efficiently serve
them. The aim of the model is to design the trajectory of UAVs
in advance according to the prediction of the users’ movement.
At any time slot during the UAVs’ flight period, both the verti-
cal trajectory (altitude) and the horizontal trajectory of the UAV
can be adjusted to offer a high quality of service. The verti-
cal trajectory is denoted by hy,(t) € [Amin, Pmax), 0 <t < T,
while the horizontal one by g, (t) = [z, (t),y,(t)]T € R**!,
with0 < ¢ < T,,. The UAVs’ operating period is discretized into
Nrp equal-length time slots.

B. Transmission Model

In our model, the downlink between the UAVs and users can
be regarded as air-to-ground communications. The LoS con-
dition and Non-Line-of-Sight (NLoS) condition are assumed to
be encountered randomly. The LoS probability can be expressed
as [13]

180 b2
Pios(0k,) = by <ﬂ_9kn - C) ) (1
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where 0y, (t) = sin_l(;;" ((t t))) is the elevation angle between

the UAV and the user k,,. Furthermore, b, and b, are constant
values reflecting the environmental impact, while ( is also a
constant value which is determined both by the antenna and
the environment. Naturally, the NLoS probability is given by
Paros = 1 — Pos.

Following the free-space path loss model, the channel’s power
gain between the UAV and user k,, at instant time ¢ is given by

i, () = Ko~ d;® () [PLostiLos + Prrostinios) 5 (2)

where K, = (%)2, « is the path loss exponent, jir,s and
LN Los are the attenuation factors of the LoS and NLoS links,
fe 1s the carrier frequency, and finally c is the speed of light.

The distance from UAV n to user k,, at time ¢ is assumed to
be a constant that can be expressed as

dy, () = \/ M (8) + [2a () = 2, (8] + [yn(8) = g, (O]
3)

The transmit power of UAV n has to obey
0 < Po(t) < Pax, “)

where Py, 1s the maximum allowed transmit power of the UAV.
Then the transmit power allocated to user k,, attime tis py, (t) =
P(t)/|K |

Lemma 1: In order to ensure that every user is capable of
connecting to the UAV-assisted network, the lower bound for
the transmit power of UAVSs has to satisfy

Punax 2 | K| intoso® Ko (Z‘K"‘”’/B - 1)
: &)
: maX{hl, ha,... hn}

Proof: See Appendix A. |

Lemma 1 sets out the lower bound of the UAV’s transmit
power for each users’ rate requirement to be satisfied.

Remark 1: Since the users tend to roam continuously, the
optimal position of UAVs is changed during each time slot. In
this case, the UAVs may also move to offer a better service. When
a particular user supported by UAV A moves closer to UAV B
while leaving UAV A, the interference may be increased, hence
reducing the received SINR, which emphasizes the importance
of accurate power control.

Accordingly, the received SINR Iy, () of user k,, connected
to UAV ¢ at time ¢ can be expressed as

_ P (t)gn, (1)

Fkn(t) I, + o2

; (6)
where 02 = By, N, with Ny denoting the power spectral density
of the additive white Gaussian noise (AWGN) at the receivers.
Furthermore, Iy, (t) = >_,, 2, Pk, (), (t) is the interference
imposed on user k,, at time ¢ by the UAVs, except for UAV n.

Then the instantaneous achievable rate of user k,, at time ¢,
denoted by 7, (t) and expressed in bps/Hz becomes

Pr, (1) gk, (t) > .

Ikn(t) + o2 )

Tk, (t) = Bknlogz (1 +
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Fig. 1. Deployment of multiple UAVs in wireless communications based on
the mobility information of users.

The overall achievable sum rate at time ¢ can be expressed as
Ky,

N
Rym = Z Tk, (t) (8)
n=1

n=1ky,

C. Problem Formulation

Let P = {pg, (t),kn € Cp,, 0 <t <T,}, Q={gn(t),0<
t<T,} and H = {h,(t),0 <t <T,}. Again, we aim for
determining both the UAV trajectory and transmit power
control at each time slot, i.e., {P(t), Py(t),..., P,(t)} and
{zn(t), yn(t), hn(t)}, n=1,2,...N, t=0,1,...T,, for
maximizing the total transmit rate, while satisfying the rate re-
quirement of each user.

Let us assume that each user’s minimum rate requirement 7
is satisfied. This means that all users must have a capacity higher
than a rate ry. Our optimization problem is then formulated as

N K,
ma; Rom = i (T 9a
Jnax R ; k}; ka (1) (%)
st. K, NK,y =¢,n #n,Vn',ncN, (9b)
hmin § hn (t) § hmaxa O § t S Tna (90)
Ty, (1) > 10, Vkn, t, 9d)
0 < Po(t) < P, Vhin, . (%)

where K (n) is the set of users that belong to the cluster n, hy, (¢)
is the altitude of UAV n at time slot ¢, while P, (¢) is the total
transmit power of UAV n assigned to all users supported by it at
time slot ¢. Furthermore, (9b) indicates that each user belongs to a
specific cluster which is covered by a single UAV; 9¢) formulates
the altitude bound of UAVs; (9d) qualifies the rate requirement
of each user; (9e) represents the power control constraint of
UAVs. Here we note that designing the trajectory of UAVs will
ensure that they are in the optimal position at each time slot.
This, in turn, will lead to improving the instantaneous transmit
rate. Meanwhile, designing the trajectory of UAVs in advance
based on the prediction of the users’ mobility will also reduce the
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Obtain geographical
information of the users from
online social networks

Obtain three-dimensional
position of the UAVs at initial
time slot

Multi-agent Q-
learning algorithm

f Twitter API

Multi-agent Q-
learning algorithm

ESN algorithm

Obtain the trajectory-acquiring
and power control scheme for
maximizing sum transmit rate

Predict the coordinate of users
based on a real dataset

Fig. 2. The procedure and algorithms used for solving the joint problem of
trajectory plan and power control of UAVs.

response time of UAVs, despite reducing the interactions among
the UAVs and the ground control center. Fig. 2 summarizes the
framework proposed for solving the problem considered. Given
this framework, we utilize the ESN-based predictions of the
users’ movement.

Remark 2: The instantaneous transmit rate depends on the
transmit power, on the number of UAVs, and on the location of
UAVs (horizonal position and altitude).

Problem (9a) is challenging since the objective function is
non-convex as a function of x,,(t), y,(t) and h,(t) [7], [17].
Indeed it has been shown that problem (9a) is NP-hard even if
we only consider the users’ clustering [38]. Exhaustive search
exhibits an excessive complexity. In order to solve this problem
at a low complexity, a multi-agent Q-learning algorithm will be
invoked in Section IV for finding the optimal solution with a
high probability, despite searching through only small fraction
of the entire design-space.

III. ECHO STATE NETWORK ALGORITHM FOR PREDICTION
OF USERS’” MOVEMENT

In this section, we formulate our ESN algorithm for predicting
the movement of users. A variety of mobility models have been
utilized in [39], [40]. However, in these mobility models, the
direction of each user’s movement tends to be uniformly dis-
tributed among left, right, forward and backward, which does
not fully reflect the real movement of users. In this section, we
tackle this problem by predicting the mobility of users based on
a real dataset collected from Twitter.

A. Data Collection of Users

In order to obtain real mobility information, the relevant po-
sition data has to be collected. Serendipitously, the wide use of
online social network (OSN) APPs over smartphones has accu-
mulated arich set of geographical data that describes anonymous
user trajectories in the physical world, which holds the promise
of providing a lightweight means of studying the mobility of
users. For example, many social networking applications like
Facebook and Weibo allow users to ‘check-in’ and explicitly
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Fig. 3. The initial positions of the users derived from Twitter.

show their locations. Some other applications implicitly record
the users’ GPS coordinates [22].

The users’ locations can be predicted by mining data from
social networks, given that the observed movement is associ-
ated with certain reference locations. One of the most effective
method of collecting position information relies on the Twitter
API. When Twitter users tweet, their GPS-related position infor-
mation is recorded by the Twitter API and it becomes available
to the general public. We relied on 12000 twitter collected near
Oxford Street, in London on the 14th, March 2018.! Among
these twitter users, 50 users who tweeted more than 3 times
were encountered. In this case, the movement of these 50 users
is recorded. Fig. 3 illustrates the distribution of these 50 users
at the initial time of collecting data. In an effort to obtain more
information about a user to characterise the movement more
specifically, classic interpolation methods was used to make sure
that the position information of each users were recorded every
200 seconds. In this case, the trajectory of each user during this
period was obtained. The position of users during the nth time
slot can be expressed as u(n) = [uy(n), uz(n), ... un, (n)]",
where N,, is the total number of users.

B. Echo State Network Algorithm for the Prediction of
Users’ Movement

The ESN model’s input is the position vector of users collected
from Twitter, namely u(n) = [ui(n),us(n), ... un,(n)]",
while its output vector is the position information of
users predicted by the ESN algorithm, namely y(n)=
[y1(n), 12(n), ... yn, (n)]". For each different user, the ESN
model is initialized before it imports in the new inputs. As illus-
trated in Fig. 4, the ESN model essentially consists of three lay-
ers: input layer, neuron reservoir and output layer [40]. The W,
and W,,,; represent the connections between these three layers,
represented as matrices. The W is another matrix that presents
the connections between the neurons in neuron reservoir. Every
segment is fixed once the whole network is established, except
Wout, which is the only trainable part in the network.

IThe dataset has been shared by authors in Github. It is shown on the websit:
https://github.com/pswi/Twitter-Dataset/blob/master/Dataset. Our approach can
accommodate other datasets without loss of generality.
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Algorithm 1: ESN Algorithm for Predicting Users’
Movement.
Input: 75% of the dataset for training process, 25% of the
dataset for testing process.
Initialize: W, W2, W out i = 0.
Training stage
for ¢ from O to N,, do
for n from 0 to NV, do
Computer the update equations according to
Eq. (12).
Update the network outputs according to
Eq. (13).
end for
end for
Prediction stage:
Get the prediction of users’ mobility information
based on the output weight matrix Woy.
Return: Predicted coordinate of users.

Q@ U aEwRe

@90 P

The classic mean square error (MSE) metric is invoked for
evaluating the prediction accuracy [40]

R I
N Z T Z [yi(n) — yitoreet (n)].
Y n=1 i=1
(10)

MSE (y7 ytargel> —

where y and y'*"¢" are the predicted and the real position of the
users, respectively.

Remark 3: The aim of the ESN algorithm is to train a model
with the aid of its input and out put to minimizes the MSE.

The neuron reservoir is a sparse network, which consists of
sparsely connected neurons, having a short-term memory of the
previous states encountered. In the neuron reservoir, the typical
update equations are given by

an
(12)

Z(n) = tanh(Wm[O cu(n)] +W-z(n — 1)),

z(n) =1 —-a)x(n—1)+ az(n),

where z(n) € R+ is the updated version of the variable Z(n),
N, is the size of the neuron reservoir, « is the leakage rate,
while tan h(-) is the activation function of neurons in the reser-
voir. Additionally, W;,, € RN="(14Nu) and TV € RN="Ne are the
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Fig. 5. The structure of multi-agent Q-learning for the trajectory design and
power control of the UAVs.

Algorithm 2: The Proposed Multi-agent Q-learning Algo-
rithm for Deployment of Multiple UAVs.

1: Lett=0,Q%s,,a,)=0forall s, and a,,
Initialize: the starting state s,

F
g
o
S
2=
=
o
)

¢ (st,:) to all other cooperating agents j
receive Q; (8%, :) from all other cooperating
agents j

6: if random < ¢ then
7: select action randomly
8: else
9: choose action: a!, = arg maxa(zl<j<N Q (s a))
10: receive reward r!,
11: observe next state st!
12: update Q-table as
Qn (571,7 an,) (1 -« Qn Sny an +
« (rn (Sns 7) + Bmax Q,, (§'n, )
beA,,
13: sl = stt!
14:  end loop

input and the recurrent weight matrices, respectively. The input
matrix W and the recurrent connection matrices W are ran-
domly generated, while the leakage rate « is from the interval
of [0,1).

After data echoes in the pool, it flows to the output layer,
which is characterized as

y(n) = Woul0; z(n)],

where y(n) € R™v represents the network outputs, while
Wou € RNy (I+NutN2) the weight matrix of outputs.

The neuron reservoir is determined by four parameters: the
size of the pool, its sparsity, the distribution of its nonzero ele-
ments and spectral radius of .

e Size of Neuron Reservoir N, : represents the number of

neurons in the reservoir, which is the most crucial parame-
ter of the ESN algorithm. The larger IV, the more precise

13)
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prediction becomes, but at the same time it increases the
probability of causing overfitting.

e Sparsity: Sparsity characterizes the density of the connec-
tions between neurons in the reservoir. When the density
is reduced, the non-linear closing capability is increased,
whilst the operation becomes more complex.

¢ Distribution of Nonzero Elements: The matrix IV is typ-
ically a sparse one, representing a network, which has nor-
mally distributed elements centered around zero. In this
paper, we use a continuous-valued bounded uniform dis-
tribution, which provides an excellent performance [41],
outperforming many other distributions.

e Spectral Radius of W: Spectral Radius of W scales the
matrix W and hence also the variance of its nonzero ele-
ments. This parameter is fixed, once the neuron reservoir
is established.

Remark 4: The size of neuron reservoir has to be carefully
chosen to satisfy the memory constraint, but /N, should also
be at least equal to the estimate of independent real values the
reservoir has to remember from the input in order to solve the
task.

A larger memory capacity implies that the ESN model is capa-
ble of storing more locations that the users have visited, which
tends to improve the prediction accuracy of the users’ move-
ments. In the ESN model, typically 75% of the dataset is used
for training and 25% for the testing process.

Remark 5: For challenging tasks, as large a neuron reservoir
has to be used as one can computationally afford.

IV. JOINT TRAJECTORY DESIGN AND TRANSMIT POWER
CONTROL OF UAVS

In this section, we assume that in any cluster n, the UAV is
serving the users relying on an adaptively controlled flight tra-
jectory and transmit power. With the goal of maximizing the sum
transmit rate in each time slot by determining the flight trajec-
tory and transmit power of the UAVs. User clustering constitutes
the first step of achieving the association between the UAVs and
the users. The users are partitioned into different clusters, and
each cluster is served by a single UAV. The process of cell par-
titioning has been discussed in our previous work [38], which
has demonstrated that the genetic K-means (GAK-means) algo-
rithm is capable of obtaining globally optimal clustering results.
The process of clustering is also detailed in [38], hence it will
not be elaborated on here.

A. Signal-Agent Q-learning Algorithm

In this section, a multi-agent Q-learning algorithm is invoked
for obtaining the movement of the UAVs. Before introducing
multi-agent Q-learning algorithm, the single agent Q-learning
algorithm is introduced as the theoretical basis. In the single
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agent model, each UAV acts as an agent, moving without coop-
erating with other UAVs. In this case, the geographic positioning
of each UAV is not affected by the movement of other UAVs.
The single agent Q-learning model relies on four core elements:
the states, actions, rewards and Q-values. The aim of this al-
gorithm is that of conceiving a policy (a set of actions will be
carried out by the agent) that maximizes the rewards observed
during the interaction time of the agent. During the iterations,
the agent observes a state sy, in each time slot ¢ from the state
space S. Accordingly, the agent carries out an action a;, from
the action space A, selecting its specific flying directions and
transmit power based on policy J. The decision policy .J is de-
termined by a Q-table Q(s¢, a;). The policy promote choosing
specific actions, which enable the model to attain the maximum
Q-values. Following each action, the state of the agent traverses
to a new state s, 1, while the agent receives a reward, r;, which
is determined by the instantaneous sum rate of users. See (14),
shown at the bottom of the page.

B. State-Action Construction of the Multi-Agent Q-learning
Algorithm

In the multi-agent Q-learning model, each agent has to keep
a Q-table that includes data both about its own states as well as
of the other agents’ states and actions. More explicitly, it takes
account of the other agents’ actions with the goal of promoting
cooperative actions among agents so as to glean the highest
possible rewards.

In the multi-agent Q-learning model, the individual agents
are represented by a four-tuple state: &, = (SL’UAV, y&:)\,,
h P, where (2%, y%,) is the horizonal position
of UAV n, while b, and P{%, are the altitude and the
transmit power of UAV n, respectively. Since the UAVs op-
erate across a particular area, the corresponding state space

is donated as: :LUAV {0,1,... X4}, yI(JZ{, {0, 1,... Yy},
hl(},?\, {Pmins - - - Pmax }» PI(JX\), ={0,... Pyax}, where X, and

Y, represent the maximum coordinate of this particular area.
while Apin and hyax are the lower and upper altitude bound
of UAVs, respectively. Finally, P« is the maximum transmit
power derived from Lemma 1.

We assume that the initial state of UAVs is determined ran-
domly. Then the convergence of the algorithm is determined by
the number of users and UAVs, as well as by the initial position
of UAVs. A faster convergence is attained when the UAVs are
placed closer to the respective optimal positions.

At each step, each UAV carries out an action a; € A, which
includes choosing a specific direction and transmit power level,
depending on its current state, s; € .S, based on the decision
policy J. The UAVs may fly in arbitrary directions (with dif-
ferent angles), which makes the problem non-trivial to solve.
However, by assuming the UAVs fly at a constant velocity, and

B k "_, By, log, (l + %) ., Sumrate,,, > Sumrateq,
zrn(t) — O n

(14)
Sumratee,, < Sumrategq.
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obey coordinated turns, the model may be simplified to as few as
7 directions (left, right, forward, backward, upward, downward
and maintaining static). The number of the directions has to be
appropriately chosen in practice to strike a tradeoff between the
accuracy and algorithmic complexity. Additionally, we assume
that the transmit power of the UAVs only has 3 values, namely
0.08 W, 0.09 W and 0.1 W.?

Remark 6: In the real application of UAVs as aerial base sta-
tions, they can fly in arbitrary directions, but we constrain their
mobility to as few as 7 directions.

We choose the 3D position of the UAVs (horizontal coordi-
nates and altitudes) and the transmit power to define their states.
The actions of each agent are determined by a set of coordinates
for specifying their travel directions and the candidate transmit
power of the UAVs.? Explicitly, (1, 0, 0) means that the UAV
turns right; (—1, 0, 0) indicates that the UAV turns left; (0, 1, 0)
represents that the UAV flies forward; (0, —1, 0) means that the
UAV flies backward; (0, 0, 1) implies that the UAV rises; (0, O,
—1) means that the UAV descends; (0, 0, 0) indicates that the
UAV stays static. In terms of power, we assume 0.08 W, 0.09 W
and 0.1 W. Again, we set the initial transmit power to 0.08 W,
and each UAV carries out an action from the set increase, de-
crease and maintain at each time slot. Then, the entire action
space has as few as 3 x 7 = 21 elements.

C. Reward Function of Multi-Agent Q-learning Algorithm

One of the main limitations of reinforcement learning is its
slow convergence. The beneficial design of the reward func-
tion requires a sophisticated methodology for accelerating the
convergence to the optimal solution [42]. In the multi-agent Q-
learning model, each agent has the same reward or punishment.
The reward function is directly related to the instantaneous sum
rate of the users. When the UAV carries out an action at time
instant ¢, and this action improves the sum rate, then the UAV
receives a reward, and vice versa. The global reward function is
formulated as (17).

Remark 7: Altering the value of reward does not change the
final result of the algorithm, but its convergence rate is indeed
influenced. Using a continuous reward function is capable of
faster convergence than a binary reward function [42].

D. Transition of Multi-Agent Q-learning Algorithm

In this part, we extend the model from single-agent Q-learning
to multi-agent Q-learning. First, we redefine the Q-values for the
the multi-agent model, and then present the algorithm conceived
for learning the Q-values.

To adapt the single-agent model to the multi-agent context,
the first step is that of recognizing the joint actions, rather than
merely carrying out individual actions. For an N-agent sys-
tem, the Q-function for any individual agentis Q(s,a',...a")

2In this paper, the proposed algorithm can accommodate any arbitrary number
of power level without loss of generality. We choose three power levels to strike
a tradeoff between the performance and complexity of the system.

3In our future work, we will consider the online design of UAV'” trajectories,
and the mobility of UAVs will be constrained to 360 degree of angles instead
of 7 directions. Given that, the state-action space is huge, a deep multi-agent
Q-network based algorithm will be proposed in our future work.
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rather than the single-agent Q-function, Q(s, a). Given the ex-
tended notion of the Q-function, we define the Q-value as the
expected sum of discounted rewards when all agents follow spe-
cific strategies from the next period. This definition differs from
the single-agent model, where the future rewards are simply
based on the agent’s own optimal strategy. More precisely, we
refer to Q7 as the Q-function for agent n.

Remark 8: The difference of multi-agent model compared to
the single-agent model is that the reward function of multi-agent
model is dependent on the joint action of all agents q.

Sparked by Remark 8, the update rule has to obey

Qn (8nyan) < (1 = @)@y (sn,an)

+a | r, (s, 7) + Bmax @, (s'n,b)
beA,

5)

The nth agent shares the row of its Q-table that corre-
sponds to its current state with all other cooperating agents j,
7 =1,..., N. Then the nth agent selects its action according to

16)

> Qi (sha)

1<j<N

t_
ay, = argmax

In order to carry out multi-agent training, we train one agent at
a time, and keep the policies of all the other agents fixed during
this period.

The main idea behind this strategy depends on the global
Q-value Q)(s,a), which represents the Q-value of the whole
model. This global Q-value can be decomposed into a lin-
ear combination of local agent-dependent Q-values as follows:
Q(s,a) = > 1<j<n Qj (sj,a;). Thus, if each agent j maxi-
mizes its own Q-value, the global Q-value will be maximized.

The transition from the current state s; to the state of the
next time slot s,y; with reward r, when action a; is taken
can be characterized by the conditional transition probability
p(St41,7t|St, at). The goal of learning is that of maximizing the
gain defined as the expected cumulative discounted rewards

G =E|> B"riin|, (17)
n=0

where 3 is the discount factor. The model relies on the learning
rate «, discount factor 5 and a greedy policy J associated with
the probability ¢ to increase the exploration actions. The learning
process is divided into episodes, and the UAVs’ state will be re-
initialized at the beginning of each episode. At each time slot,
each UAV needs to figure out the optimal action for the objective
function.

Theorem 1: Multi-agent Q-learning M Q,, , | converges to an
optimal state MQ* [k + 1], where k is the episode time.

Proof: See Appendix A. |
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Fig. 6.

TABLE I
SIMULATION PARAMETERS

Parameter Description

Value

fe Carrier frequency

2GHz

No Noise power spectral

-170dBm/Hz

Nz Size of neuron reservoir

2000

N Number of UAVs

a

B Bandwidth

1MHz

Environmental parameters

0.36,0.21 [12]

«a Path loss exponent

2

Additional path loss for LoS

3dB [12]

Additional path loss for NLoS

23dB [12]

g Learning rate

0.01

0.7

B Discount factor

TABLE III
PERFORMANCE COMPARISON BETWEEN ESN ALGORITHM AND BENCHMARKS

Metric HA
MSE 41.78
Computing time 116ms

ESN500
25.17
161ms

ESN1000
19.36
737ms

LSTM
24.82
2103ms

E. Complexity of the Algorithm

The complexity of the algorithm has two main contributors,
namely the complexity of the GAK-means based clustering al-
gorithm and that of the multi-agent Q-learning based trajectory-
acquisition as well as power control algorithm. In terms of the
first one, the proposed scheme involves three steps during each it-
eration. The first stage calculates the Euclidean distance between
each user and cluster centers. For NV,, users and N clusters, calcu-
lating all Euclidean distances requires on the order of O (6 X' N,,)
floating-point operations. The second stage allocates each user
to the specific cluster having the closest center, which requires
O [N, (N — 1]) comparisons.Furthermore, the complexity of
recalculating the cluster center is O (4N N,,). Therefore, the to-
tal computational complexity of GAK-means clustering is on
the order of O [ENN,, + N, (N + 1) +4NN,] = O (NN,).

In the multi-agent Q-learning model, the learning agent has to
handle N Q-functions, one for each agent in the model. These Q-
functions are handled internally by the learning agent, assuming
that it can observe other agents’ actions and rewards. The learn-
ing agent updates (Q', ..., Q"), where each Q",n =1,..., N,
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is constructed of Q™ (s, a', ...,a™V) forall s,a', ..., a™ . Assum-

ing|A'| = .-+ = |AN| = | A|, where | S| is the number of states,
and | A™| is the size of agent n’s action space A™. Then, the total
number of entries in Q™ is |S| - | A|". Finally, the total storage
space requirement is N | S| - |A|™ . Therefore the space size of
the model is increased linearly with the number of states, poly-
nomially with the number of actions, but exponentially with the
number of agents.
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Fig. 10. Trajectory design of one of the UAVs on Google Map.

V. NUMERICAL RESULTS

Our simulation parameters are given in Table II. The initial
locations of the UAVs are randomized. The maximum transmit
power of each UAV is the same, and transmit power is uniformly
allocated to users. On this basis, we analyze the instantaneous
transmit rate of users, position prediction of the users, the 3D
trajectory design and power control of the UAVs.

A. Predicted Users’ Positions

Fig. 6 characterizes the prediction accuracy of a user’s
position parameterized by the reservoir size. It can be observed
that increasing the reservoir size of the ESN algorithm leads to
a reduced error between the real tracks and predicated tracks.
Again, the larger the neuron reservoir size, the more precise the
prediction becomes, but the probability of causing overfitting
is also increased. This is due to the fact that the size of the
ESN reservoir directly affects the ESN’s memory requirement
which in turn directly affects the number of user positions that
the ESN algorithm is capable of recording. When the neuron
reservoir size is 1000, a high accuracy is attained.

Table III characterizes the performance of the proposed ESN
model. The so-called historical average (HA) model and the
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(b) Movement of one of the UAVs projected in two-dimensional.

Positions of the users and the UAVs as well as the trajectory design of UAVs both with and with out power control.

long short term memory (LSTM) model are also used as our
benchmarks. It can be observed that the ESN having a neuron
reservoir size of 1000 attains a lower MSE than the HA model
and the LSTM model, even though the complexity of the ESN
model is far lower than that of the LSTM model. Overall, the
proposed ESN algorithm outperforms the benchmarks.

B. Trajectory Design and Power Control of UAVs

Fig. 7 characterizes the throughput vs the number of train-
ing episodes. It can be observed that the UAVs are capable
of carrying out their actions in an iterative manner and learn
from their mistakes for improving the throughput. When three
UAVs are employed, convergence is achieved after about 45000
episodes, whilst 30000 more training episodes are required for
convergence when the number of UAV is four. Additionally, the
learning rate of 0.80 used for the multi-agent Q-learning model
outperforms that of 0.60 and 0.70 in terms of the throughput.
Although the model relying on a learning rate of 0.90 converges
faster than other models, this model is more likely to converge
to a sub-optimal Q* value, which leads to a lower throughput.

Fig. 8 characterizes the throughput with the movement derived
from multi-agent Q-learning. The throughput in the scenario
that users remain static and the throughput with the movement
derived by the GAK-means are also illustrated as benchmarks.
It can be observed that the instantaneous transmit rate decreases
as time elapses. This is because the users are roaming during
each time slot. At the initial time slot, the users (namely the
people who tweet) are flocking together around Oxford Street
in London, but after a few hundred seconds, some of the users
move away from Oxford Street. In this case, the density of users
is reduced, which affects the instantaneous sum of the transmit
rate. It can also be observed that re-deploying UAVs based on
the movement of users is an effective method of mitigating the
downward trend compared the static scenario. Fig. § also illus-
trates that the movement of UAVs relying on power control is
more capable of maintaining a high-quality service than the mo-
bility scenario operating without power control. Additionally,
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it also demonstrates that the proposed multi-agent Q-learning
based trajectory-acquiring and power control algorithm outper-
forms GAK-means algorithm also used as a benchmark.

Fig. 9 characterizes the designed 3D trajectory for one of the
UAVs both in the scenario of moving with power control and
in its counterpart operating without power control. Compared
to only consider the trajectory design of UAVs, jointly consider
both the trajectory design and the power control results in differ-
ent trajectories for the UAVs. However, the main flying direction
of the UAVs remains the same. This is because the interference is
also considered in our model and power control of UAVs is capa-
ble of striking a tradeoff between increasing the received signal
power and the interference power, which in turn increases the
received SINR.

Fig. 10 characterizes the trajectory designed for one of the
UAVs on Google map. The trajectory consists of 16 hevering
points, where each UAV will stop for about 200 seconds. The
number of the hovering points has to be appropriately chosen
based on the specific requirements in the real scenario. Mean-
while, the trajectory of the UAV's may be designed in advance on
the map with the aid of predicting the users’ movements. In this
case, the UAVs are capable of obeying a beneficial trajectory for
maintaining a high quality of service without extra interaction
from the ground control center.

VI. CONCLUSION

The trajectory design and power control of multiple UAVs
was jointly designed for maintaining a high quality of service.
Three steps were provided for tackling the formulated problem.
More particularly, firstly, multi-agent Q-learning based place-
ment algorithm was proposed to deploy the UAVs at the initial
time slot. Secondly, A real dataset was collected from Twit-
ter for representing the users’ position information and an ESN
based prediction algorithm was proposed for predicting the fu-
ture positions of the users. Thirdly, a multi-agent Q-learning
based trajectory-acquisition and power-control algorithm was
conceived for determining both the position and transmit power
of the UAVs at each time slot. It was demonstrated that the pro-
posed ESN algorithm was capable of predicting the movement
of the users at a high accuracy. Additionally, re-deploying (tra-
jectory design) and power control of the UAVs based on the
movement of the users was an effective method of maintaining
a high quality of downlink service.

APPENDIX A
PROOF OF LEMMA 1

The rate requirement of each user is given by 7, (t) > ro,
then, we have

Pk, (t) gk, (1)
<Bj log2 |1+ —"-r=—"~=2. A.l
< B logz (14 P D
Rewrite equation (A.2) as
I, (t) + 0?) (270/Brn — 1
peo (1) > L O F ) ) w

gk, (1)
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Then we have

Prax > | K| Kody, (1) (PlosfiLos + PNLos/NLos)
(I, (1) %) (212 1)

It can be proved that (Prosiiros + PNLoSHNLos) <
N Los and the condition for equality is the probability of NLoS
connection is 1. Following from the condition for equality, the
maximize transmit rate of each UAV has to obey

(A3)

Prax > K| pinroso® Ko (2‘K"“’"°/B - 1)

-max {hi,hy,...hp} (A4)

The proof is completed.

APPENDIX B
PROOF OF THEOREM 1

Two steps are taken for proving the convergence of multi-
agent Q-learning algorithm. Firstly, the convergence of single-
agent model is proved. Secondly, we improve the results from
the single-agent domain to the multi-agent domain.

The update rule of Q-learning algorithm is given by

Qev1(st,a1) = (1 — ) Qr (8¢, ar)
+ oy [re + Bmax Qr (S¢41,a¢)] -

Subtracting the quantity Q*(s;, a; ) from both side of the equa-
tion, we have

At(st,at) = Qt(shat) - Q*<St7at)
= (1 — o) Ag(st, a)

+ ay [re + Bmax Qy (141, ar+1) — Q" (s, ar)] .
(B.2)

(B.1)

We  write  Fi(sy,a¢) = re + Bmax Qy (st 1, arp1) —
Q*(s¢, at), then we have

E[Fi(st,ar) [Ft] = Z P,, (s¢,8¢41)
s€S
X[y + Bmax Q¢ (Se41,ae+1) — Q" (5¢, ar)]
= (HQ¢) (s, a1) — Q" (s¢, ar)- (B.3)

Using the fact that HQ* = Q*, then, E [Fi(s¢,a¢)|Fi] =
(HQ:) (s¢,ar) — (HQ*) (s¢,a¢). It has been proved that
IHQ: —HQ:| < B1Q1 — Q2| [43]. In this case, we have
[E[Fi(st, ae) [Fi]ll < BlQ¢ — Q"lloc = Bl A¢]| - Finally,

VAR [Fi(s¢,a¢) [Fy]

=E {(Tt + Bmax Q; (ser1, arr1) — (HQy) (51, ar))’

= VAR [T’t -+ ﬂmax Qt (st+1,at+1) |Ft] .

Due to the fact that » is bounded, clearly verifies
VAR [Fi(st,a¢) |Fe] < C (1 + ||At||2) for some constant C.
Then, as A, converges to zero under the assumptions in [44],

the single model converges to the optimal Q-function as long as
0<a <1, Y, qy =ccand ), af < oco.

(B.4)
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Then, we improve the results to multi-agent domain. We as-
sume that, there is an initial card which contains an initial value
MQ™ ({s,,0),a,) at the bottom of the multi deck. The @
value for episode O in multi-agent algorithm has the same as
an initial value, which is expressed as M Q™" ((sp,0),a,) =
MQy (s, an).

For episode k, an optimal value is equivalent to the @
value, MQ™ ((sp, k), an) = MQ7} (sn,an). Next, we con-
sider a value function which selects optimal action by using an
equilibrium strategy. At the & level, an optimal value function is
the same as the Q value function.

VI (($nt1, k) = Vi' (8n41)

=EQ} | [ 8 x max MQJ. (sn41,an11)
j=1

(B.5)

One of the agents maintains the previous () value for episode
k + 1. Then, we have

MQZ.A,-] (Sna an) = MQZ (Sru a'n) = MQZ* (<5na k> 7an)
=MQY ((sn,k+1),a,). (B.6)
Otherwise, the () value holds the previous multi-agent () value

with probability of I — ., | and takes two types of rewards with
probability of aj’, ;. Then we have

MQ™ (s k+ 1) .a,)
= (1 - O‘Z—&-I)MQZ* (<5n7 k> 70%)

Tk—i—l + 5 Z Sn—Sn+1 an] an(sn—i-l)

Sn+41

=(1- aZ+I)MQZ (8n,an)

Tepq + 5 Z on syt An) Vi (Sn+1)

Sn+1

n
+ Qg

n
+ Qg

= MQy 4, (sn,an).

In this case, if MQ}., | (s, an) converge to an optimal valve
MQ™ ({sn,k+ 1) ,ay), then a state equation of multi-agent
Q-learning MQ,,,, converges to an optimal state equation
MQ* [k + 1].

The proof is completed.

(B.7)
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