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Brief History of Wireless Standardization
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Orthogonal multiple access: FDMA, TDMA and CDMA
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Intentional DS-CDMA Spreading
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Unintentional Spreading in the FD
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Capacity of OMA vs. NOMA in AWGN channel: (a)
Uplink; (b) Downlink.
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Diverse NOMA contributions

S. Chen, A. Livingstone, H. Q. Du, and L. Hanzo, “Adaptive minimum symbol
error rate beamforming assisted detection for quadrature amplitude modulation,”
IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1140–1145, Apr. 2008.
J. Zhang, S. Chen, X. Mu, and L. Hanzo, “Turbo multi-user detection for
OFDM/SDMA systems relying on differential evolution aided iterative channel
estimation,” IEEE Trans. Commun., vol. 60, no. 6, pp. 1621–1633, Jun. 2012.
J. Zhang, S. Chen, X. Mu, and L. Hanzo, “Joint channel estimation and
multi-user detection for SDMA/OFDM based on dual repeated weighted
boosting search,” IEEE Trans. Veh. Technol., vol. 60, no. 7, pp. 3265–3275,
Jun. 2011.
C.-Y. Wei, J. Akhtman, S.-X. Ng, and L. Hanzo, “Iterative
near-maximum-likelihood detection in rank-deficient downlink SDMA systems,”
IEEE Trans. Veh. Technol., vol. 57, no. 1, pp. 653–657, Jan. 2008.
A. Wolfgang, J. Akhtman, S. Chen, and L. Hanzo, “Iterative MIMO detection
for rank-deficient systems,” IEEE Signal Process. Lett., vol. 13, no. 11, pp.
699–702, Nov. 2006.
L. Xu, S. Chen, and L. Hanzo, “EXIT chart analysis aided turbo MUD designs
for the rank-deficient multiple antenna assisted OFDM uplink,” IEEE Trans.
Wireless Commun., vol. 7, no. 6, pp. 2039–2044, Jun. 2008.

9 / 118



Diverse NOMA contributions
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NOMA Beamforming Example

NOMA Beamforming Example
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Uplink/Downlink Beamforming

Why?
Increase of
capacity
How?
Spatially separated
interfering signals
are suppressed

weight  calculation

y = wHx
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MMSE Based Beamforming

Weights are calculated in order
to minimize:

ε(t)2 =
(

wH x(t)− r(t)
)2

w: Beamformer weights
x(t): Channel output
r(t): Reference symbol
For AWGN channels MMSE
weights can be calculated using
a closed form expression

Realizations: LMS, RLS, SMI reference sequence

calculate weights to 
minimize MSE
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MSE and BER Surfaces at the Output of a [5 x 2] NOMA
Beamformer

Error surfaces at the re-
ceiver’s output calculated
for five BPSK modulated
sources having equal received
power and communicating
over AWGN channels at S-
NR=10 dB.
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The imaginary part of both weights of the 2-element array was fixed.
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MMSE vs MBER NOMA Beamforming

Test case: BPSK modulated
sources having equal
received power and
communicating over AWGN
channels
MMSE solution calculated
analytically

MBER solution obtained
with the aid of conjugate
gradient algorithm
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NOMA SDMA Example

NOMA SDMA Example
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Evolution from CDMA-NOMA to SDMA-NOMA
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Quantum-Search Aided MUD in NOMA

Multiple Access SDMA-OFDM
Number of Users U = 3
Number of AEs at the BS P = 1
Normalized User-Load UL = Uq/P = 3
Modulation 8-PAM M = 8
Eb/N0 0 dB
Channel Code Turbo Convolutional Code,

8 trellis states,
R = 1/2

Channel Model Extended Typical Urban (ETU)
Mobile Velocity v = 130 km/h
Carrier Frequency fc = 2.5 GHz
Sampling Frequency fs = 15.36 GHz (77 delay taps)
Doppler Frequency fd = 70 Hz
Number of Subcarriers Q = 1024
Cyclic Prefix CP = 128
Interleaver Length 10 240 bits per user
Channel Estimation Perfect
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Quantum-Search Aided MUD in NOMA

There are 83 = 512 symbols in the full constellation, while 53
and 46 symbols are obtained by the randomly-initialized and
ZF-initialized DHA, respectively.
The purple circle denotes the random initial input, or the ZF
detector’s output, which may be used as an initial input. The
ZF is as bad as the random one in this rank-deficient scenario.
By using the DHA, we find symbols better than the previously
found symbols, which are denoted by the yellow circles in the
3D figure.
But we also find symbols that are ”worse” than the previously
found symbols, as represented by the blue circles in the 3D
figure.
The red square is the optimal symbol which is eventually
found.
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Dürr-Høyer MUD for CDMA/SDMA NOMA - Userload=2
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Quantum Computing Meets MUD

NOMA CDMA vs SDMA
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DS-CDMA vs SDMA NOMA Systems

System 1 System 2 System 3 System 4
Number of Users U = 14 U = 14 U = 15 U = 15
Multiple Access Scheme DS-CDMA SDMA DS-CDMA SDMA
Number of AEs at the BS P = 1 P = 7 P = 1 P = 15
Spreading Factor SF = 7 N/A SF = 15 N/A
Spreading Codes m-sequences N/A Gold Codes N/A
Normalized User Load UL = 2 UL = 2 UL = 1 UL = 1
Bit-based Interleaver Length 42 000 42 000 40 000 40 000
Number of AEs per User NTx = 1
Modulation BPSK M = 2

Channel Code Turbo Code, R = 1/2, 8 Trellis states
Iinner = 4 iterations

Channel Uncorrelated Rayleigh Channel
Channel Estimation Perfect
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Dürr-Høyer CDMA/SDMA NOMA AT Userload=2
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Iterative Joint Channel & Data Estimation Turbo-Receivers
for NOMA

24 / 118



Future 5G network architecture.
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From OMA to NOMA

1 Question: What is multiple access?
2 Orthogonal multiple access (OMA): e.g., FDMA, TDMA,

CDMA, OFDMA.
3 New requirements in 5G

High spectrum efficiency.
Massive connectivity.

4 Non-orthogonal multiple access (NOMA): to break
orthogonality.

5 Standard and industry developments on NOMA
Whitepapers for 5G: DOCOMO, METIS, NGMN, ZTE, SK
Telecom, etc.
LTE Release 13: a two-user downlink special case of NOMA.
Next generation digital TV standard ATSC 3.0: a variation
of NOMA, termed Layer Division Multiplexing (LDM).
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Introduction to NOMA Systems

The non-orthogonal nature of a multiple access system may
manifest itself in the time-, frequency-, code- or
spatial-domains as well as in their arbitrary combinations;
Even if originally an OMA scheme is used, the deleterious
effects of the wireless channel may erode the orthogonality.
For example, the channel-induced dispersion may ’smear’ the
originally orthogonal time-slots of a TDMA system into each
other, because the transmitted signal is convolved with the
dispersive channel’s impulse response (CIR).
Similarly, the Orthogonal Variable Spreading Factor (OVSF)
codes of the 3G systems rely on orthogonal Walsh-Hadamard
codes, but upon transmission over the dispersive channel their
orthogonality is destroyed.

27 / 118



Introduction to NOMA Systems

This realization has then led to the concept of NOMA based
on the Spatial Division Multiple Access (SDMA) philosophy,
where the unique, user-specific non-orthogonal channel
impulse responses are used for distinguishing the uplink
transmissions of the users - provided that their CIR is
estimated sufficiently accurately.
In simple tangible terms this implies that a NOMA system is
capable of supporting more users than the number of distinct
time-, frequency-, code-domain resources, provided that their
channels can be sufficiently accurately estimated even under
these challenging interference-contaminated conditions.
Naturally, this challenging channel estimation and
user-separation process typically imposes an increased signal
processing complexity.
Many of these NOMA-user-separation techniques are surveyed
in this paper, with a special emphasis on the power-domain
NOMA techniques, which have found favour in the 5G
standardization body known as 3GPP.
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Power-Domain NOMA Basics

User m 
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1 Supports multiple access within a given resource block
(time/frequecy/code), using different power levels for
distinguishing/separating them [1].

2 Apply successive interference cancellation (SIC) at the
receiver for separating the NOMA users [2].

3 If their power is similar, PIC is a better alternative.
[1] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Non-Orthogonal Multiple Access for
5G”, Proceedings of the IEEE ; Dec 2017.

[2] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, Chih-Lin I, and H. V. Poor (2017), “Application of

Non-orthogonal Multiple Access in LTE and 5G Networks”, IEEE Communication Magazine;(Web of Science Hot

paper, Top 5 Most Popular Article on Commun. Mag.).
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NOMA Basics

1 Question: Why NOMA is a popular proposition for 5G?
2 Consider the following two scenarios.

If a user has poor channel conditions
The bandwidth allocated to this user via OMA cannot be used
at a high rate.
NOMA - improves the bandwidth-efficiency.

If a user only needs a low data rate, e.g. IoT networks.
The use of OMA gives the IoT node more capacity than it
needs.
NOMA - heterogeneous QoS and massive connectivity.

[1] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, Chih-Lin I, and H. V. Poor (2017), “Application of

Non-orthogonal Multiple Access in LTE and 5G Networks”, IEEE Communication Magazine;(Web of Science Hot

paper, Top 5 Most Popular Article on Commun. Mag.).
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Research Contributions in NOMA

NOMA for 5G

Security

Compatibility

Sustainability
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Sustainability of NOMA Networks

1 Transmission reliability - cooperative NOMA.
2 Energy consumption - radio signal energy harvesting.

Base Station

User A

User B

Direct Information flow
Cooperative information flow

SIC Procedure

Energy flow

3 Propose a wireless powered cooperative NOMA protocol [1].
4 The first contribution on wirelessly powered NOMA networks.

[1] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor (2016), “Cooperative Non-orthogonal Multiple Access with
Simultaneous Wireless Information and Power Transfer”, IEEE Journal on Selected Areas in Communications
(JSAC). (Web of Science Hot Paper, Top 15 Most Popular Article on JSAC)
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Network Model

Direct Transmission Phase with SWIPT

Cooperative Tansmission Phase

... ...

iAh iBh
i
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Illustration of a downlink
SWIPT NOMA system
with a base station S (blue
circle). The spatial
distributions of the near
users (yellow circles) and
the far users (green circles)
obey a homogeneous
Poisson Point Process
(PPP).
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Network Model

The locations of the near and far users are modeled as
homogeneous PPPs Φκ (κ ∈ {A,B}) with densities λΦκ .
The near users are uniformly distributed within the disc and
the far users are uniformly distributed within the ring.
The users in {Bi} are energy harvesting relays that harvest
energy from the BS and forward the information to {Ai} using
the harvested energy as their transmit powers.
The DF strategy is applied at {Bi} and the cooperative
NOMA system consists of two phases.
It is assumed that the two phases have the same transmission
periods.
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Non-Orthogonal Multiple Access with User Selection

A natural question arises: which specific near NOMA user
should help which particular far NOMA user?
To investigate the performance of a specific pair of selected
NOMA users, three opportunistic user selection schemes may
be considered, based on the particular locations of users to
perform NOMA as follows:

random near user and random far user (RNRF) selection,
where both the near and far users are randomly selected from
the two groups.
nearest near user and nearest far user (NNNF) selection, where
a near user and a far user closest to the BS are selected from
the two groups.
nearest near user and farthest far user (NNFF) selection, where
a near user which is closest to the BS is selected and a far user
which is farthest from the BS is selected.
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Outage Probability of the Near Users of RNRF

An outage of Bi can occur for two reasons.
1 Bi cannot detect xi1.
2 Bi can detect xi1 but cannot detect xi2.

Based on this, the outage probability of Bi can be expressed
as follows:

PBi = Pr
(

ρ|hBi |
2|pi1|2

ρ|hBi |
2|pi2|2 + 1 + dαBi

< τ1

)

+ Pr
(

ρ|hBi |
2|pi1|2

ρ|hBi |
2|pi2|2 + 1 + dαBi

> τ1, γ
xi2
S,Bi

< τ2

)
. (1)
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Outage Probability of the Far Users of RNRF

Outage experienced by Ai can occur in two situations.
1 Bi can detect xi1 but the overall received SNR at Ai cannot

support the targeted rate.
2 Neither Ai nor Bi can detect xi1.

Based on this, the outage probability can be expressed as follows:

PAi = Pr
(
γxi1

Ai,MRC < τ1, γ
xi1
S,Bi

∣∣∣
βi =0

> τ1

)
+ Pr

(
γxi1

S,Ai
< τ1, γ

xi1
S,Bi

∣∣∣
βi =0

< τ1

)
. (2)
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Diversity Analysis of RNRF—Near Users

The diversity gain is defined as follows:

d = − lim
ρ→∞

log P (ρ)

log ρ . (3)

Near users: When ε→ 0, a high SNR approximation with
1− e−x ≈ x is given by

FYi (ε) ≈ 1
2

N∑
n=1

ωN

√
1− φn

2cnεAi (φn + 1). (4)

Substituting (4) into (3), we obtain that the diversity gain for
the near users is one, which means that using NOMA with
energy harvesting will not decrease the diversity gain.
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Diversity Analysis of RNRF—Far Users

Far users: For the far users, we obtain

d =− lim
ρ→∞

log
(
− 1
ρ2 log 1

ρ

)
log ρ

=− lim
ρ→∞

log log ρ− log ρ2

log ρ = 2. (5)

Remarks:
This result indicates that using NOMA with an energy
harvesting relay will not affect the diversity gain.
At high SNRs, the dominant factor for the outage probability
is 1

ρ2 ln ρ.
The outage probability of using NOMA with SWIPT decays at
a rate of ln SNR

SNR2 . However, for a conventional cooperative
system without energy harvesting, a faster decreasing rate of

1
SNR2 can be achieved.
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NNNF Selection Scheme and NNFF Selection Scheme

Advantage of NNNF: it can minimize the outage probability
of both the near and far users.
Advantage of NNFF: NOMA can offer a larger performance
gain over conventional MA when user channel conditions are
more distinct.

Following a procedure similar to that of RNRF, we can obtain the
outage probability, diversity gain, and the throughput of NNNF
and NNFF.
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Numerical Results
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Lower outage probability is
achieved than with RNRF.
All curves have the same
slopes, which indicates the
same diversity gains.
The incorrect choice of
rate results in an outage
probability for the near
users, which is always one.
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Numerical Results
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The outage of the near
users occurs more
frequently as the rate of
the far user, R1, increases.
For the choice of R1, it
should satisfy the condition
(|pi1|2 − |pi2|2τ1 > 0).
For the choice of R2, it
should satisfy the
condition that the split
energy for detecting xi1 is
also sufficient to detect xi2
(εAi ≥ εBi ).
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Numerical Results
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NNFF  analytical-appro

α = 2

α = 3

NNNF achieves the lowest
outage probability.
NNFF achieves lower
outage than RNRF, which
indicates that the distance
of the near users has more
impact than that of the far
users.
All of the curves have the
same slopes, which
indicates that the diversity
gains of the far users are
the same.
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Numerical Results
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Cooperative NOMA has a
steeper slope than that of
non-cooperative NOMA.
NNNF achieves the lowest
outage probability.
NNFF has higher outage
probability than RNRF in
non-cooperative NOMA,
however, it achieves lower
outage probability than
RNRF in cooperative
NOMA.
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NOMA in 5G Networks—HetNets

1 Heterogenous networks (HetNets): meet the requirements
of high data traffic in 5G.

Question: How to support massive connectivity in HetNets?
Question: How to further improve the spectral efficiency of
HetNets?

Pico BS

Marco BS
Femto BS

OMA

2 New framework: NOMA-enabled HetNets.
3 Challenge: Complex co-channel interference environment.

[1] Z. Qin, X. Yue, Y. Liu, Z. Ding, and A. Nallanathan (2017),“User Association and Resource Allocation in

Unified NOMA Enabled Heterogeneous Ultra Dense Networks”, IEEE Communication Magazine;
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NOMA in HetNets I — Resource Allocation

Fig.: System model.

K-tier HetNets: One macro base station (MBS), B small base stations
(SBSs)
M macro cell users (MCUs), M RBs, K small cell users (SCUs) served by
each SBS
Each SBS serves K SCUs simultaneously on the same RB via NOMA

[1] J. Zhao, Y. Liu, K. K. Chai, A. Nallanathan, Y. Chen and Z. Han (2017),“Spectrum Allocation and Power

Control for Non-Orthogonal Multiple Access in HetNets”, IEEE Transactions on Wireless Communications

(TWC).
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Channel Model

Received signal at the k-th SCU, i.e., k ∈ {1, ...,K}, served by
the b-th SBS, i.e., b ∈ {1, ...,B}, on the m-th RB is given by

yn
b,k = f m

b,k
√pbab,kxm

b,k︸ ︷︷ ︸
desired signal

+ f m
b,k
∑K

k′=k
√pbab,k′xm

b,k′︸ ︷︷ ︸
interference from NOMA users

+ ζm
b,k︸︷︷︸

noise

+
∑M

m=1
λm,bhm,b,k

√pmxm︸ ︷︷ ︸
cross-tier interference

+
∑

b∗6=b
λb∗,bgm

b∗,b,k
√pb∗xm

b∗︸ ︷︷ ︸
co-tier interference

.

(6)
Received SINR:

γm
b,k,k =

∣∣∣f m
b,k

∣∣∣2pbam
b,k

Ik,k
N + Ik

co + Ik
cr + σ2

, (7)

where Ik,k
N = |f m

b,k |2pb
∑K

i=k+1 am
b,i
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Problem Formulation

max
λ,a

B∑
b=1

M∑
m=1

Uα (Rm
b (λ, a)), (8a)

s.t.
B∑

b=1
λm,bpb |tb,m|2 ≤ Ithr

m ∀m, (8b)

∆(λ) ≥ 0, ∀m, b, (8c)
λm,b ∈ {0, 1} , ∀m, b, (8d)∑

m
λm,b ≤ 1, ∀b, (8e)∑

b
λm,b ≤ qmax , ∀m, (8f)

ab,k ≥ 0, ab,j ≥ 0, ∀b, (8g)
ab,k + ab,j ≤ 1, ∀b. (8h)
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Matching Model

Solution:
NP-hard =⇒ High complexity
Solution: Many-to-one matching theory

Matching Model:
Two-sided matching between SBSs and RBs
�: “Preference” based on players’ utility
SBSs’ utility: sum-rate of all the serving SCUs minus its cost for
occupying RB m

Ub =

K∑
k=1

Rm
b,k − βpb |gb,m|2 , (9)

RBs’ utility: sum-rate of the occupying SCUs

Um =

B∑
b=1

λm,b

(
K∑

k=1

Rm
b,k + βpb |gb,m|2

)
, (10)
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Matching Algorithm

Step 1: Initialization: GS algorithm to obtain initial matching state

Step 2: Swap operations: keep finding swap-blocking pairs —- until no
swap-blocking pair exists;

Flag SRa,b to record the time that SBS a and b swap their allocated
RBs=⇒ prevent flip flop

Step 3: Final matching result
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Numerical Results
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Fig.: Convergence of the proposed algorithms for different number of RBs and SBSs.
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Numerical Results (cont’)
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Fig.: Sum-rate of the SCUs for different number of small cells, with M = 10.
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Summary

NOMA-enabled HetNets

Novel resource allocation algorithm based on matching
theory

Complexity: O(B2)
Performance: near-optimal performance

NOMA-enabled HetNets outperform OMA-based one
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NOMA in HetNets II — Large-Scale Analysis

Massive MIMO

User 1

SIC of User 
m signal

User n signal 
detection

User n

User m signal 
detection

User m
NOMA

User 2
User N

……

Pico BS

Marco BS

Fig.: System model.

High spectrum efficiency
Low complexity: The complex precoding/cluster design for
MIMO-NOMA systems can be avoided.
Fairness/throughput tradeoff: allocating more power to weak users.

[1] Y. Liu, Z. Qin, M. Elkashlan, A. Nallanathan, JA McCann (2017),“Non-orthogonal Multiple Access in

Large-Scale Heterogeneous Networks”, IEEE Journal on Selected Areas in Communications (JSAC).
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Network Model

K-tier HetNets model: the first tier represents the macro
cells and the other tiers represent the small cells such as pico
cells and femto cells.
Stochastic Geometry: the positions of macro BSs and all
the k-th tier BSs are modeled as homogeneous poisson point
processes (HPPPs).
Hybrid access: massive MIMO transmissions in macro cells
and NOMA transmissions in small cells.
Flexible User association: based on the maximum average
received power.
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Information Signal Model

The signal-to-interference-plus-noise ratio (SINR) that a
typical user experiences at a macro BS is

P1/Nho,1L (do,1)

IM,1 + IS,1 + σ2 . (11)

The SINR that user n experiences at the k-th tier small cell is

γkn =
an,kPkgo,kL (do,kn )

IM,k + IS,k + σ2 . (12)

The SINR experienced by user m in the k-th tier small cell is

γkm∗ =
am,kPkgo,kL (Rk)

Ik,n + IM,k + IS,k + σ2 . (13)
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User Association Probability

The user association probability of a typical user connecting
to the NOMA-enhanced small cell BSs in the k-th tier and to
the macro BSs can be calculated as:

Ãk =
λk

K∑
i=2

λi
(

P̃ik B̃ik
)δ

+ λ1
(

P̃1kGM
Nan,kBk

)δ , (14)

and

Ã1 =
λ1

K∑
i=2

λi

(
an,i P̃i1Bi N

GM

)δ
+ λ1

, (15)

Remark 4.1
By increasing the number of antennas at the macro cell BSs, the
user association probability of the macro cells increases and the
user association probability of the small cells decreases.
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Coverage Probability

A typical user can successfully transmit at a target data rate of Rt .
1 Near User Case: successful decoding when the following

conditions hold.
The typical user can decode the message of the connected user
served by the same BS.
After the SIC process, the typical user can decode its own
message.

Pcov ,k (τc , τt , x0)|x0≤rk
= Pr {γkn→m∗ > τc , γkn > τt} , (16)

2 Far User Case: successful decoding when the following
condition holds

Pcov ,k (τt , x0)|x0>rk
= Pr

{
go,km >

εf
t xαi

0
(
Ik + σ2)

Pkη

}
. (17)
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Spectrum Efficiency

The spectral efficiency of the proposed hybrid Hetnet is

τSE,L = A1Nτ1,L +
∑K

k=2
Akτk , (18)

where Nτ1 and τk are the lower bound spectrum efficiency of
macro cells and the exact spectral efficiency of the k-th tier
small cells.

59 / 118



Energy Efficiency

The energy efficiency is defined as

ΘEE =
Total data rate

Total energy consumption . (19)

The energy efficiency of the proposed hybrid Hetnets is as
follows:

ΘHetnets
EE = A1Θ1

EE +
∑K

k=2
AkΘk

EE, (20)

Here, Ak and A1 are the user association probability of the
k-th tier small cells and macro cell, respectively.
Θk

EE = τk
Pk,total

and Θ1
EE =

Nτ1,L
P1,total

are the energy efficiency of
k-th tier small cells and macro cell, respectively.
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Numerical Results—User Association Probability
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Fig.: User association probability versus
antenna number with different bias
factor.

As the number of antennas
at each macro BS
increases, more users are
likely to associate to macro
cells — larger array gain.
Increasing the bias factor
can encourage more users
to connect to the small
cells — an efficient way to
extend the coverage of
small cells or control the
load balance among each
tier of HetNets.
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Numerical Results — Coverage Probability
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Fig.: Successful probability of typical
user versus targeted rates of Rt and Rc .

Observe the cross-over of
these two surfaces —
optimal power sharing for
the target-rate considered.
For inappropriate power
and target-rate selection,
the coverage probability is
always zero.
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Numerical Results — Spectrum Efficiency
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Fig.: Spectrum efficiency comparison of
NOMA and OMA based small cells.

NOMA-based small cells
outperform the
conventional OMA based
small cells.
The spectral efficiency of
small cells is reduced as
the bias factor is increased
— larger bias factor results
in associating more macro
users having a low SINR to
small cells.
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Numerical Results — Energy Efficiency
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Fig.: Energy efficiency of the proposed
framework.

The energy efficiency of
the macro cells is reduced
as the number of antennas
is increased owing to the
power consumption of the
baseband signal processing
of massive MIMO.
NOMA-assisted small cells
may achieve higher energy
efficiency than the massive
MIMO aided macro cells
as a benefit of densely
deploying the BSs in
NOMA-aided small cells.
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Security in NOMA Networks

1 Question: Is NOMA still secure when there are eavesdroppers
in the networks?

Main Channel

Alice

Bob n

Bob m

Eve

Wiretap Channel 
for Bob m & Bob n 

2 Propose to use Artificial Noise to enhance the security of
NOMA [1].

3 The first work of considering the security in NOMA.

[1] Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo(2017), “Enhancing the Physical Layer Security of
Non-orthogonal Multiple Access in Large-scale Networks”, IEEE Transactions on Wireless Communications
(TWC). (Web of Science Highly Cited Paper, Top 2 Most Popular Article on TWC)
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Network Model

DR

∞

User Eavesdropper

pr

Base station

Network model for the
NOMA transmission
protocol under malicious
attempt of eavesdroppers in
large-scale networks, where
rp, RD, and ∞ are the
radius of the protected zone,
NOMA user zone, and an
infinite two dimensional
plane for eavesdroppers,
respectively.
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Network Model—SINR for NOMA users

Based on the aforementioned assumptions, the instantaneous
signal-to-interference-plus-noise ratio (SINR) for the m-th user and
signal-to-plus-noise ratio (SNR) for the n-th user can be given by

γBm =
am|hm|2

an|hm|2 + 1
ρb

, (21)

and

γBn = ρban|hn|2, (22)

respectively. We denote ρb = PA
σ2

b
as the transmit SNR, where PA is

the transmit power at Alice and σ2
b is the variance of additive

white Gaussian noise (AWGN) at Bobs.
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Network Model—SNR for the Eavesdroppers

The instantaneous SNR for detecting the information of the m-th
user and the n-th user at the most detrimental Eve can be
expressed as follows:

γEκ = ρeaκ max
e∈Φe ,de≥rp

{
|ge |2L (de)

}
. (23)

It is assumed that κ ∈ {m, n}, ρe = PA
σ2

e
is the transmit SNR with

σ2
e is the variance of AWGN at Eves.

In this paper, we assume that Eves can be detected if they are
close enough to Alice. Therefore, a protect zone with radius
rp is introduced to keep Eves away from Alice.
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Secrecy Outage Probability

The secrecy rate of the m-th user and the n-th user can be
expressed as

Im = [log2(1 + γBm )− log2(1 + γEm )]+, (24)

and

In = [log2(1 + γBn )− log2(1 + γEn )]+, (25)

respectively, where [x ]+ = max{x , 0}.
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Exact Secrecy Outage Probability

Given the expected secrecy rate Rm and Rn for the m-th and n-th
users, a secrecy outage is declared when the instantaneous secrecy
rate drops below Rm and Rn, respectively. Based on (24), the
secrecy outage probability for the m-th and n-th user is given by

Pm (Rm) = Pr {Im < Rm}

=

∫ ∞
0

fγEm (x) FγBm

(
2Rm (1 + x)− 1

)
dx . (26)

and

Pn (Rn) = Pr {In < Rn}

=

∫ ∞
0

fγEn (x) FγBn

(
2Rn (1 + x)− 1

)
dx , (27)

respectively.
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Secrecy Diversity Analysis

The secrecy diversity order can be given by

ds = − lim
ρb→∞

log (P∞m + P∞n − P∞m P∞n )

log ρb
= m, (28)

The asymptotic secrecy outage probability for the user pair can be
expressed as

P∞mn =P∞m + P∞n − P∞m P∞n ≈ P∞m Gm(ρb)−Dm . (29)

Remarks: It indicates that the secrecy diversity order and the
asymptotic secrecy outage probability for the user pair are
determined by the m-th user.
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Numerical Results
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The red curves and the
black curves have the same
slopes. While the blue
curves can achieve a larger
secrecy outage slope.
It is due to the fact that the
secrecy diversity order of the
user pair is determined by
the poor one m.
This phenomenon also
consists with the obtained
insights in Remark 1.
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Numerical Results
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The secrecy outage
probability decreases as the
radius of the protected zone
increases, which
demonstrates the benefits of
the protected zone.
Smaller density λe of Eves
can achieve better secrecy
performance, because
smaller λe leads to less
number of Eves, which lower
the multiuser diversity gain
when the most detrimental
Eve is selected.
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Multi-antenna Aided Security Provisioning for NOMA

(a) PLS of NOMA with External Eves (b)  PLS of NOMA with Internal Eves

Main Channel

Alice

Bob n

Bob m

Alice

Bob n

Bob m 
& Eve

Eve

Wiretap Channel 
for Bob m & Bob n Wiretap Channel for Bob n 

1 Artificial Noise for enhancing the security [1].
2 Multi-antenna to create channel differences [2].

[1] Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo(2017), “Enhancing the Physical Layer Security of
Non-orthogonal Multiple Access in Large-scale Networks”, IEEE Transactions on Wireless Communications
(TWC).
[2] Z. Ding, Z. Zhao, M. Peng, and H. V. Poor (2017), “On the Spectral Efficiency and Security Enhancements of
NOMA Assisted Multicast-Unicast Streaming”, IEEE Transactions on Communications (TCOM).
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Other Research Contributions on NOMA

1 MIMO-NOMA design.
2 NOMA in mmWave Networks.
3 Interplay between NOMA and cognitive radio networks.
4 Cross layer design for NOMA — a QoE perspective.
5 NOMA in UAV networks.
6 Full-duplex design for NOMA.
7 Relay-selection for NOMA.
8 A Unified NOMA Network.
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MIMO-NOMA Design - Beamformer Based Structure

1 Centralized Beamforming.
2 Coordinated Beamforming.

BS

User n

mw

nw

Subtract user m’s 
signal

SIC

User m detection
with m mR →

User n detection
with  n nR →

User m detection 
with  n mR →

User m

[1] Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, and L. Hanzo, “Multiple Antenna Assisted
Non-Orthogonal Multiple Access”, IEEE Wireless Communications.
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MIMO-NOMA Design - Beamformer Based Structure

1 Centralized Beamforming.
2 Coordinated Beamforming.

Centric 
Far Cell Edge User

BS Near User

BS
Near User

BSNear User
Unserved

 User

Unserved User

Unserved User

Coordinated 

beamforming link 
Data link for 

near user 
Interference link 

[1] Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, and L. Hanzo, “Multiple Antenna Assisted
Non-Orthogonal Multiple Access”, IEEE Wireless Communications.
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MIMO-NOMA Design - Cluster Based Structure

1 Inter-Cluster Interference Free Design.
2 Inter-Cluster Interference Contaminated Design.

BS
User 1

User 1
User 2

User L1
……

User 1

User 2

User LM

……

User 2
……

User Lm

……

……

[1] Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, and L. Hanzo, “Multiple Antenna Assisted
Non-Orthogonal Multiple Access”, IEEE Wireless Communications.
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MmWave-NOMA Networks

1 Motivation
Directional beams in mmWave communication with
large-scale arrays bring large antenna array gains and small
inter-beam interference.
Support massive connections with high user-overload
scenarios.
Meet the diversified demands of users while enhancing the
spectral efficiency by using SIC techniques

2 Challenges
Accurate channel estimation and CSI feedback to the base
station (BS) induce heavy system overhead particularly in
multi-user mmWave downlink systems.
The inter-beam and intra-beam interference in mmWave
NOMA systems affects the decoding order of NOMA.

[1] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo, “Non-Orthogonal Multiple Access for
5G”, Proceedings of the IEEE ; vol. 105, no. 12, pp. 2347-2381, Dec. 2017.
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MmWave-NOMA System Model

B
aseband  processing

...

M
 superposed data stream
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...

Partial channel information feedback

K users

...

M beams

...
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w1

wM

SIC Procedure

Desired signal 

detection
Desired signal 

detection

Small-cell BS

1 Construct M orthogonal beams at BS in spatial domain.
2 Realize NOMA transmission in each beam and apply

successive interference cancellation (SIC) at users.
[1] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “Optimal User Scheduling and Power Allocation for
Millimeter Wave NOMA Systems,” to appear in IEEE Trans. Wireless Commun.,vol. 17, no. 3, pp. 1502-1517,
Mar. 2018.
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Received Signal Model

1 Based on the NOMA principle, the received SINR of user k to
decode user j on beam m is given by

SINRm
j→k =

gm
k β

m
j

gm
k
∑
π(i)>π(j) β

m
i +

∑
n 6=m gn

k β
n + σ2 (30)

2 Note that the achievable SINR for user j on beam m can be
obtained with k = j .

3 The corresponding decoding rate is
Rm

j→k = log2(1 + SINRm
j→k), for any π(k) ≥ π(j), j , k ∈ Cm.

4 SIC condition of success: Rm
j→k ≥ Rm

j→j for π(k) ≥ π(j),
j , k ∈ Cm.
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Optimization Problem

1 The considered sum rate maximization problem:

max
c,β

M∑
m=1

qm∑
j=1

Rm
j→j (31a)

s.t. Rm
j→k ≥ Rm

j→j ,
M∑

m=1

∑
j∈Cm

βm
j ≤ Ptot , (31b)

K∑
k=1

cm
k = qm,

M∑
m=1

cm
k ≤ 1, Rm

j→j ≥ R̄j , (31c)

πm ∈ Π, π(k) > π(j), j , k ∈ Cm, m ∈M. (31d)

c denotes the index set, where term cm
k indicates the indicators

for user k on beam m, cm
k ∈ {0, 1}.

Π denotes the set of all possible SIC decoding orders.
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Overview of Proposed Solutions

1 Difficulties:
Intra-beam and
inter-beam interference
are jointly considered.
The decoding order of
NOMA is affected by
the inter-beam power
allocation.
Joint user scheduling
and power allocation is
NP-hard.

2 Solutions: Divide the
complicated problem into
some ease of subproblems.
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Overview for Power Allocation Algorithm

Intra-beam and inter-beam
interference is jointly
considered.
The decoding order of
NOMA is affected by the
inter-beam power
allocation.
Joint user scheduling and
power allocation is
NP-hard.
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An example for Branch and Bound (BB) Algorithms

�

�฀

�

�

� �

1 Construct a box
constraint:

Consider a
two-dimension space
denoted by Γ1 and Γ2.
G is the feasible set. D0
is the constructed initial
rectangle.
Point A and point B
correspond to the
minimum and maximum
boundary point in D0,
respectively.

Let f be the objective function with monotonically decreasing.
The optimal objective f ? belongs to the interval between f (A)
and f (B).
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An Example for Branch and Bound (BB) Algorithms

�

�฀

�

�

� �

2 Branch operations:
Split D0 into D1 and D2
along the longest edge.
(A,C) and (D,B) denote
the boundary point of
D1 and D2, respectively.
Calculate the upper and
lower bounds over D1
and D2, respectively.
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An Example for Branch and Bound (BB) Algorithms

�

�฀

�

�

� �

3 Bound operations:
The lower bound
L = min{f (A), f (D)}.
The upper bound
U = min{f (C), f (B)}.
Note that
U − L ≤ f (A)− f (B),
the potential interval for
f ? decreases.
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An Example for Branch and Bound (BB) Algorithms

�

�฀

�

� �

�

�

�

�

4 Pruning operations:
Split D1 and D2 along
its longest edge,
respectively.
Remove D5, which will
not affect the
optimality.
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Subproblem 1: Power Allocation Problem

1 For given the selected users and the corresponding decoding
order, the power allocation subproblem can be formulated as
follows.

min
β̃,Γ
−

M∑
m=1

qm∑
jm=1

log2
(
1 + Γm

jm→jm
)

(32a)

s.t.Γm
jm→jm ≤

gm
jmβ

m
jm

gm
jm
∑qm

im=jm+1 β
m
im +

∑
n 6=m gn

jmβ
n + σ2 , (32b)

M∑
m=1

qm∑
jm=1

βm
jm ≤ Ptot , Rm

jm→jm ≥ R̄jm , (32c)

∑
n 6=m

(
gm

km gn
jm − gm

jm gn
km

)
βn +

(
gm

km − gm
jm
)
σ2 ≥ 0, (32d)

km > jm, jm, km ∈ Cm, m ∈M. (32e)
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Key Steps for Branch and Bound (BB) Algorithms

1 Construct box constraint sets:
The objective function and the feasible set of (32) can be
rewritten as

U(Γ) =−
M∑

m=1

qm∑
jm=1

log2

(
1 + Γm

jm→jm

)
,G =

{
Γ|(32b)− (32e)

}
.

The equivalent reformulation of power allocation problem is given
by

min
Γ

U(Γ) s.t. Γ ∈ G. (33)
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Key Steps for Branch and Bound (BB) Algorithms

�

�฀

�

� �

�

�

�

�

2 Construct bound
functions:

The lower bound function:

g(Γ) =

{
U(Γ), Γ ∈ G
0, o.w.,

,

The upper bound function:

g(Γ) =

{
U(Γ), Γ ∈ G
0, o.w..

Observations:
g(C/G/H) = U(C/G/H), and g(F/A/D) = U(F/A/D), for
D3,D4,D6, respectively.
g(G) = 0 and g(G) = 0 for D5.
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Key Steps for Branch and Bound (BB) Algorithms

Question: How to express the observations in mathematical
problem?

�

�฀

�

� �

�

�

�

�

3 Check the feasibility: Given
a set of SINR values, testing
if it is achievable is
equivalent to solving the
following feasibility problem:

Find PA coefficients
s.t. Γ ∈ G.

(34)

Observations:
Problem (34) is feasible for
A, D and F.
One cannot find a feasible
PA coefficients for D5.
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Subproblem 2: Matching Theory for User Selection

1 Given the user power allocation coefficients, the user
selection problem can be transformed into

max
c

H =
M∑

m=1

qm∑
j=1

Rm
j→j

s.t.
K∑

k=1
cm

k = qm,
M∑

m=1
cm

k ≤ 1,

πm ∈ Π, π(k) > π(j), j , k ∈ Cm, m ∈M.

(35)

Problem (35) is a combinational problem.
Exhaustive search provides an optimal approach but it surfers a
cumbersome computational complexity.
There two objects: users and beams, which motivates us
build a matching model.
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Subproblem 2: Matching Theory for User Selection

1 Preference lists:
The preference value for the user k on beam m is the
achievable rate of user k on beam m:

Hm
k = log2

(
1 + Γm

k

)
. (36)

The preference value of beam m is the sum rate of all users on
beam m:

Hm =
∑

k∈ϕ(m)

log2

(
1 + Γm

k

)
. (37)

The inter-beam interference and the intra-beam interference
exist for each user’s rate.
Users and beams compose a many-to-one matching with
externalities.
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Overview for Matching Algorithms

EDA denotes the extend deferred
acceptance.
The users first propose to the
BSs based on its preference list.
Then each BS accepts the users
with prior preferences.
The goal of swap operation
procedure is to further enhance
the system sum rate.
Two-sided exchange-stable
matching provides the stop
criteria.
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Simulation Results
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The proposed BB
algorithm is converged for
different SNR.
the convergence become
slow when the SNR
increases.

96 / 118



Simulation Results
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Matching+BB achieves a
good balance between the
performance and the
computational complexity.
The application of NOMA
into mmWave can further
improve the spectral
efficiency by appropriate
power and user selection
policies.
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Conclusions

The problem to maximize the sum rate for the mmWave
NOMA system by designing of user selection and power
allocation algorithms has been considered.
BB technique was applied for solving the power allocation
problem optimally.
For the integer optimization of the user selection, a low
complexity algorithm based on matching theory was
developed.
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Exploiting Multiple Access in Clustered Millimeter Wave
Networks: NOMA or OMA?

Base station with 

multi-antennas

NOMA users

Near user

Far user SIC 

procedure
Near user 

signal detection

Far user signal 

detection

Layout of PCP

Beamforming

Fig.: Illustration of the clustered NOMA networks with mmWave communications.
The spatial distributions of the NOMA users follow the Poisson Cluster Processes.
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Interplay between NOMA and cognitive radio networks

PT BS

(a) Conventional CR (b) CR Inspired NOMA

Transmission link Interfernce link

PR

SR PR (User m)

SR (User n)

ST

PT (user m)+ST 
(user n)

1 Cognitive radio inspired NOMA [1].
2 NOMA in cognitive radio networks [2].

[1] Z. Ding, P. Fan, and H. V. Poor (2016), “Impact of User Pairing on 5G Nonorthogonal Multiple-Access
Downlink Transmissions”, IEEE Trans. Veh. Technol. (TVT).
[2] Y. Liu, Z. Ding, M. Elkashlan, and J. Yuan, “Non-orthogonal Multiple Access in Large-Scale Underlay Cognitive
Radio Networks”, IEEE Trans. Veh. Technol. IEEE Trans. Veh. Technol. (TVT).
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D2D Enabled NOMA

BS

Cellular User 

Reuse 

Subchannel

Reuse 

Subchannel

D2D Group Dn

DRk

DR1

DRLn

DTn

D2D Group D1

DT1DR1
DRLn

…

...

...
...

Fig.: System model.

Single-cell uplink scenario
Set of traditional cellular users: C = {C1, ...,CM}
Set of D2D groups: D = {D1, . . . ,Dn, . . . ,DN}

[1] J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan (2017),“Joint Subchannel and Power Allocation for

NOMA Enhanced D2D Communications”, IEEE Transactions on Communications (TCOM), 2017.
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Cross layer design for NOMA — a QoE perspective

1 QoE-Aware NOMA Framework [1].
2 Multi-cell Multi-carrier QoE aware resource allocation [2].

  Content

Codec, bitrate

Clustering,
scheduling

Superposition coding/non-
orthogonal multi-carrier design
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Application 
display
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Transmitter Receiver

212 1

Packet queue

2 1

1 Subtract 
1 221
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w
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e

UserN
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[1] W. Wang, Y. Liu, L. Zhiqing, T. Jiang, Q. Zhang and A. Nallanathan, “Toward Cross-Layer Design for
Non-Orthogonal Multiple Access: A Quality-of-Experience Perspective”, IEEE Wireless Communications.

[2] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “QoE-based Resource Allocation for Multi-cell NOMA

Networks”, IEEE Transactions on Wireless Communications (TWC).
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Multiple antenna aided NOMA for UAV networks

z

x

h

Origin

Rm

Rd

Beamforming

directions

[1] T. Hou, Y. Liu, Z. Song, X. Sun, Y. Chen, “Multiple Antenna Aided NOMA in UAV Networks: A Stochastic
Geometry Approach”, IEEE Transactions on Communications, arXiv available.
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HD/FD Relay Selection for NOMA

0
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1 Network model for the NOMA transmission consisting of one
base station (BS), K relays and two users (i.e., the nearby
user D1 and distant user D2).

2 Assuming that the BS is located at the origin of a disc and
the location of the relays are modeled as homogeneous
poisson point processes (HPPPs).

[1] X. Yue, Y. Liu, S. Kao, A. Nallanathan, and Z. Ding„ “Spatially Random Relay Selection for Full/Half-Duplex

Cooperative NOMA Networks”, IEEE Transactions on Communications.
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Two-Way Relay NOMA

1 Two way relay (TWR) technique is capable of boosting
spectral efficiency, where the information is exchanged
between two nodes with the help of a relay.

2 The existing treaties on cooperative NOMA are all based on
one-way relay scheme, where the messages are delivered in
only one direction, (i.e., from the BS to the relay or user
destinations). Hence the application of TWR to NOMA is
a possible approach to further improve the spectral efficiency
of systems.

3 A two-way relay non-orthogonal multiple access
(TWR-NOMA) system is investigated, where two groups of
NOMA users exchange messages with the aid of one
half-duplex (HD) decode-and-forward (DF) relay.
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Two-Way Relay NOMA

Relay

2A1A

1D

2D

3D

4D
1G 2G

2h

1h 3h

4h

1 System model for TWR-NOMA communication scenario
consisting of one relay R, two pairs of NOMA users
G1 = {D1,D2} and G2 = {D3,D4}.

2 The exchange of information between user groups G1 and G2
is facilitated via the assistance of a (DF) relay with two
antennas, namely A1 and A2.

3 Assume that the direct links between two pairs of users are
inexistent due to the effect of strong shadowing.

[1] X. Yue, Y. Liu, S. Kao, A. Nallanathan, and Y. Chen (2018),“Modeling and Analysis of Two-Way Relay
Non-Orthogonal Multiple Access Systems”, IEEE Transactions on Communications;
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SINRs for NOMA signals

During the first slot, the pair of NOMA users in G1 transmit
the signals to R just as uplink NOMA. Applying the NOMA
protocol, R first decodes Dl ’s information xl by the virtue of
treating xt as IS. Hence the received
signal-to-interference-plus-noise ratio (SINR) at R to detect xl
is given by

γR→xl =
ρ|hl |2al

ρ|ht |2at + ρ$1(|hk |2ak + |hr |2ar ) + 1
, (38)

where ρ = Pu
N0

denotes the transmit SNR. $1 ∈ [0, 1] denotes
the impact levels of interference signal (IS) at R.
(l , k) ∈ {(1, 3) , (3, 1)}, (t, r) ∈ {(2, 4) , (4, 2)}.
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SINRs for NOMA signals

After SIC is carried out at R for detecting xl , the received
SINR at R to detect xt is given by

γR→xt =
ρ|ht |2at

ερ|g |2 + ρ$1(|hk |2ak + |hr |2ar ) + 1
, (39)

where ε = 0 and ε = 1 denote the pSIC and ipSIC employed
at R, respectively. The residual IS is modeled as Rayleigh
fading channels denoted as g with zero mean and variance ΩI .
In the second slot, the information is exchanged between G1
and G2 by the virtue of R.
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SINRs for NOMA signals

According to NOMA protocol, SIC is employed and the
received SINR at Dk to detect xt is given by

γDk→xt =
ρ|hk |2bt

ρ|hk |2bl + ρ$2|hk |2 + 1
, (40)

where $2 ∈ [0, 1] denotes the impact level of IS at the user
nodes. Then Dk detects xl and gives the corresponding SINR
as follows:

γDk→xl =
ρ|hk |2bl

ερ|g |2 + ρ$2|hk |2 + 1
. (41)

Furthermore, the received SINR at Dt to detect xr is given by

γDr→xt =
ρ|hr |2bt

ρ|hr |2bl + ρ$2|hr |2 + 1
. (42)
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Outage probability

Outage Probability of xl

In TWR-NOMA, the outage events of xl are explained as follow: i)
R cannot decode xl correctly; ii) The information xt cannot be
detected by Dk ; and iii) Dk cannot detect xl , while Dk can first
decode xt successfully. The complementary events of x1 are
employed to express its outage probability and is given by

P ipSIC
xl =1− Pr (γR→xl > γthl )

× Pr (γDk→xt > γtht , γDk→xl > γthl ) , (43)

where ε = 1. γthl = 22Rl − 1 with Rl being the target rate at Dk
to detect xl and γtht = 22Rt − 1 with Rt being the target rate at
Dk to detect xt .
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Outage probability

Outage probability of xt

Based on NOMA principle, the complementary events of outage for
xt have the following cases. One of the cases is that R can first
decode the information xl and then detect xt . Another case is that
either of Dk and Dr can detect xt successfully. Hence the outage
probability of xt can be expressed as

P ipSIC
xt =1− Pr (γR→xt > γtht , γR→xl > γthl )

× Pr (γDk→xt > γtht ) Pr (γDr→xt > γtht ) , (44)

where ε = 1.
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Diversity analysis

To gain more insights for TWR-NOMA in the high SNR region,
the diversity order analysis is provided according to the derived
outage probabilities. The diversity order is defined as

d = − lim
ρ→∞

log
(
P∞xi (ρ)

)
log ρ , (45)

where P∞xi denotes the asymptotic outage probability of xi .
Remarks:

1 Due to impact of residual interference, the diversity order of xl
with the use of ipSIC is zero.

2 The communication process of the first slot similar to uplink
NOMA, even though under the condition of pSIC, diversity
order is equal to zero as well for xl .

3 The diversity orders of xt with ipSIC/pSIC are also equal to
zero. This is because residual interference is existent in the
total communication process.
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Numerical Results
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Simulation

Error floor
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x2 − Exact − ipSIC

x2 − Exact − pSIC

pSIC gain

As can be observed from the figure, the
outage behaviors of x1 and x2 for
TWR-NOMA are superior to
TWR-OMA in the low SNR regime.
This is due to the fact that the influence
of IS is not the dominant factor at low
SNR.
It can be seen that the outage behaviors
of x1 and x2 converge to the error floors
in the high SNR regime. The reason can
be explained that due to the impact of
residual interference by the use of ipSIC,
x1 and x2 result in zero diversity orders,
which verifies the conclusion in Remark
3.
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Numerical Results
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It can be seen that the different values
of residual IS affects the performance of
ipSIC seriously.

As the values of residual IS increases,
the preponderance of ipSIC is inexistent.
The outage behaviors of users’ signals
for TWR-NOMA become more worse.

When ΩI = 0 dB, the outage probability
of x1 and x2 will be in close proximity to
one.
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Numerical Results
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One can observe that TWR-NOMA is
capable of achieving a higher
throughput compared to TWR-OMA in
the low SNR regime, since it has a lower
outage probability.

It is worth noting that ipSIC considered
for TWR-NOMA will further degrade
throughput with the values of residual
IS becomes larger in high SNR regimes.
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A Unified NOMA Framework
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[1] Z. Qin, X. Yue, Y. Liu, Z. Ding, and A. Nallanathan (2017),“User Association and Resource Allocation in
Unified Non-Orthogonal Multiple Access Enabled Heterogeneous Ultra Dense Networks”, IEEE Communication
Magazine;
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Research Opportunities and challenges for NOMA

1 Error Propagation in SIC.
2 Imperfect SIC and limited channel feedback.
3 Synchronization/asynchronization design for NOMA.
4 Different variants of NOMA.
5 Novel coding and modulation for NOMA.
6 Hybrid multiple access
7 Efficient resource management for NOMA
8 Security provisioning in NOMA
9 Different variants of NOMA
10 Massive NOMA in IoT Networks
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Thank you!

Thank you!
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