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Abstract—Quality of experience (QoE) is an important in-
dicator in the fifth generation (5G) wireless communication
systems. For characterizing user-base station (BS) association,
subchannel assignment and power allocation, we investigate
the resource allocation in multi-cell multicarrier non-orthogonal
multiple access (MC-NOMA) networks. An optimization prob-
lem is formulated with the objective of maximizing the sum
mean opinion score (MOS) of users in the networks. To solve
the challenging mixed integer programming problem, we first
decompose it into two subproblems, which are characterized by
combinational variables and continuous variables, respectively.
For the combinational subproblem, a three-dimensional (3D)
matching problem is proposed for modelling the relation among
users, BSs and subchannels. A two-step approach is proposed to
attain a suboptimal solution. For the continuous power allocation
subproblem, the branch and bound (BB) approach is invoked
to obtain the optimal solution. Furthermore, a low complexity
suboptimal approach based on successive convex approximation
(SCA) techniques is developed for striking a good computational
complexity-optimality tradeoff. Simulation results reveal that: i)
the proposed NOMA networks is capable of outperforming con-
ventional orthogonal multiple access (OMA) networks in terms of
QoE; and ii) the proposed algorithms for sum-MOS maximization
can achieve significant fairness improvement against the sum-rate
maximization scheme.

Index Terms—Multi-cell multicarrier non-orthogonal multiple
access (MC-NOMA), quality of experience (QoE), resource allo-
cation, three-dimensional (3D) matching, the branch and bound
(BB) approach.

I. INTRODUCTION

Multicarrier transmission techniques such as orthogonal fre-
quency division multiple access (OFDMA), have been widely
adopted in broadband wireless communication systems such
as LTE and LTE-Advanced [2]. In conventional multicarrier
systems, a given radio frequency band is divided into mul-
tiple orthogonal subcarriers and each subcarrier is allocated
to at most one user to avoid multiuser interference (MUI).
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However, the fifth generation (5G) wireless communication
system is expected to provide high data rates and massive
connectivity to meet the rapid growth of wireless data services
and requirements. Non-orthogonal multiple access (NOMA) is
recognized as a promising candidate that provides an effective
solution to address the challenging requirements of 5G mobile
networks, such as massive connectivity, high data speed and
low latency [3, 4]. Compared to the conventional orthogonal
multiple access (OMA), NOMA allows multiple users com-
plexed in the same orthogonal resources (e.g., time/frequency)
by exploiting superposition coding in the power domain at
transmitters and successive interference cancellation (SIC)
techniques at receivers. The advantages behind this approach
lies in the fact NOMA can opportunistically explore users’
channel conditions [5].

Driven by the requirements of high quality video services
such as embedded video contents in the webpages, video calls,
online TVs, etc, an appropriate level of quality of experience
(QoE) in 5G mobile networks is desired. QoE is a subjective
assessment of media quality of users and has recently become
an essential indicator in 5G wireless communication systems
[6, 7]. Due to the various video characteristics, the users may
experience different QoE even if the data rates are same,
which implies that effective QoE-based resource allocation is
essential to provide better user satisfaction with limited radio
resources. By taking advantage of NOMA features, this paper
establishes the potential of QoE-based resource allocation in
multi-cell NOMA networks.

A. Related Works

1) Studies on NOMA: Prior research contributions have
studied the advantages of NOMA over OMA in different
scenarios. In [8], the authors investigate the performance of
NOMA in a cellular downlink cell with randomly deployed
users. The impact of user pairing on the sum rate perfor-
mance was studied in NOMA systems [5]. Sparked by the
characteristics of CR, the application of NOMA in large-scale
CR networks was studied in [9] with carefully considering
the channel ordering issue. To address the power allocation
problem, a general power allocation scheme was studied
in [10], which designed the power allocation based on the
channel state information. In [11], the cooperative NOMA
scheme was investigated by invoking simultaneous wireless
information and power transfer (SWIPT) technique, where a
nearby user is regarded as an energy harvesting relay to assist
a distant user. Driven by the partial CSI feedback, a power
allocation strategy for downlink NOMA systems based on the



2

average CSI was developed in [12] and an optimal decoding
order is considered in [13]. In [14], a dynamic user clustering
and power allocation for uplink and downlink NOMA systems
was investigated.

Regarding the resource allocation works in multicarrier
NOMA (MC-NOMA), the authors developed a joint subcarrier
and power allocation algorithm in [15], where a near optimal
solution was developed based on Lagrangian duality and dy-
namic programming. In [16], the authors took the user-specific
rate characteristics, which are calculated for each subchannel,
as the preference and build a many to many matching game
with externalities model to solve the user scheduling and
subchannel assignment problem. On the other hand, for full-
duplex MC-NOMA systems, the authors in [17] exploited
the monotonic optimization theory for the power allocation
and user scheduling problem, and an optimal solution was
developed to maximize the weighted sum system throughput.
Furthermore, in [18], the energy efficiency of MC-NOMA
was considered, where a low-complexity suboptimal algorithm
based on matching theory was developed.

2) Studies on QoE-based resource allocation: In [19], a
QoE-based evaluation methodology is proposed to assess the
LTE systems video capacity, where the proposed QoE-based
radio resource allocation (RRA) scheme can enhance the video
capacity. The authors in [20], proposed a user-oriented joint
subcarrier and power allocation algorithms for the downlink
of a heterogeneous OFDMA system, where the best possible
QoE for each user is optimized. Sparked by the game theory,
a QoE-oriented strategy for OFDMA RRA was studied in
[21], where the goal is to achieve the best possible QoE by
search a satisfactory equilibria through market-like resource
exchanges. To satisfy the heterogeneous service requirements
in multi-cell OFDMA networks, a QoE-based proportional
fair (PF) scheduling was investigated in [22],which considered
the network-wide users QoE maximization as well as fairness
among users. To mitigate the co-tiered interference, a joint
matching-coalition game theoretical scheme was proposed
to solve a QoE-based multichannel allocation problem in
heterogeneous cellular networks in [23]. On the other hand, in
[24], the QoE oriented resource allocation problem in OFDMA
based multi-cell networks was investigated, where the multiple
BSs cooperated for interference mitigation. In addition, a
game based joint spectrum sharing, power allocation and
user scheduling approach was developed in [25], where the
objective is to maximize the users satisfaction across the
network for providing better QoE.

B. Motivations and Contributions

As mentioned above, NOMA has received remarkable atten-
tion both in the world of academia and industry. However, so
far few works consider the resource allocation for MC-NOMA
in multi-cell networks. Moreover, there is still a paucity of
research contributions on investigating the QoE issues of NO-
MA, which motivates this treatise. Note that the employment
of NOMA on the BS, multiple users can be multiplexed on
a specific subchannel, which makes the resource allocation of
MC-NOMA different from that of OMA. The motivation and
the challenges of this work is concluded as follows:

• Multi-cell MC-NOMA is not well investigated, especially
for the problem both considering user association and
resource allocation. In this treatise, we specifically con-
sider the multi-cell networks, where the BS cooperation
is performed to reduce the inter-cell interference.

• QoE is not considered for NOMA, especially for user-
BS cooperation. Most existing work addresses fairness
issue only by using network-level criteria like max-min
but neglects the specific requirements of individual users.
Note that the QoE is a user-centric measure demon-
strating the user satisfaction, which has received many
attentions from many enterprises and researchers. QoE-
driven techniques will bring about the improvement of
fairness and efficiency, but it does not add any cost of
additional resource investment [24].

Therefore, we model the problem of resource allocation for
MC-NOMA in multi-cell networks to improve the user QoE
instead of throughput, which can provide potential perfor-
mance gains satisfying the user demands [26]. Specifically, in
this paper, we employ BS cooperation to solve the QoE-based
resource allocation problem in the multi-cell MC-NOMA
networks, which consists of user-BS association, subchannel
assignment and power allocation. It involves a joint opti-
mization decision by BSs. Furthermore, in the aggressive fre-
quency reuse deployment, the co-channel interference makes
the resource allocation among cells coupled and correlated.
In addition, the non-convexity of QoE makes the problem
more complicated. The primary contributions of this paper are
concluded as follows:

1) We investigate the application-oriented QoE in multi-
cell MC-NOMA networks. We use the mean opinion
score (MOS) to evaluate the QoE of users. With this
aim, we formulate the sum MOS maximization problem
by jointly designing user-BS association, subchannel as-
signment and power allocation, which is a combinatorial
optimization problem.

2) To solve the challenging optimization problem, we de-
compose the joint resource allocation problem into two
subproblems as : i) the problem of user-BS associa-
tion and subchannel assignment; and ii) power alloca-
tion optimization. We construct a three-dimensional (3D)
matching problem to model the allocation among users,
BSs and subchannels. Then, we also propose a two-step
approach by solving two two-dimensional (2D) matching
subproblems: UE-BS matching problems and (UE,BS)-
SC matching problems, which provides a low-complexity
solution of the user-BS association and subchannel as-
signment.

3) For the non-convex power allocation problem, we propose
a global optimal power allocation strategy based on the
branch and bound (BB) approach, which provides an
upper bound for power allocation. Moreover, we also
propose a low-complexity suboptimal solution based on
successive convex approximation (SCA) techniques.

4) We demonstrate that the proposed low-complexity solu-
tion by leveraging the matching theory based two-step
approach and the SCA algorithm is capable of achieving
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Fig. 1: An exemplary user-BS association and subchannel assign-
ment in downlink multi-cell NOMA scenarios.

a good performance comparing with the global optimal
solution with exhaustive search and the BB algorith-
m. Moreover, we demonstrate that the proposed multi-
cell MC-NOMA framework outperforms the conventional
multi-cell MC-OMA framework with the aid of both of
the proposed algorithms.

C. Organization

The rest of the paper is organized as follows. In Section II,
we present network model consists of the problem formulation
for the QoE-based resource allocation. In Section III, we
propose a low complexity algorithm for user-BS association
and subchannel assignment using matching theory. Solution
to power allocation optimization problem is presented in
Section IV, where a global optimal solution based on BB is
provided and a low complexity power allocation based SCA
are proposed. Simulation results are presented in Section V,
which is followed by conclusions in Section VI.

II. NETWORK MODEL

A. System Description

Consider a multi-cell downlink NOMA transmission sce-
nario as shown in Fig. 1, where multiple T base stations
(BSs) communicate with K cellular users, denoted by T =
{1, · · · , T} and K = {1, · · · ,K}, respectively. We assume
that each cell is served by a BS and BSs are temporally
synchronized 1. Both BSs and users equip with one trans-
mit and one receive antenna. The entire bandwidth W is
partitioned into N subchannels, each with W

N . The index
set of all subchannels is denoted by N = {1, · · · , N}. We
consider the universal frequency reuse deployment in which
every cell is available to the whole bandwidth. Invoked by the
NOMA protocol, each subchannel can be shared by multiple

1It is assumed that a user can be associated to one BS. If a user can connect
to multiple BS simultaneously, then the BSs can serve the user cooperatively.
The cooperation between the BSs may further enhance the sum MOS of the
system considered, hence our future research would consider investigating
cooperative multi-cell NOMA systems.

users associated to the same BS. Considering the detection
complexity of SIC receiver, we assume that the maximum
number of users allocated in the n-th subchannel, denoted by
SCn, of BS t , denoted by BSt, is Lt. Particularly, inspired
by spectral aggregation, we consider that each cellular user
k ∈ K, denoted by UEk, can potentially aggregate data from
all available subchannels of the connected BS. Moreover, we
assume that the BSs cooperate to jointly serve the users where
the CSI of the direct link and the cross link channels are
available at the BSs. This is employed to design the user
scheduling and power allocation strategies, which enhances
the reliability of data reception at each user by exploiting
the multiple-base-station diversity. In this paper, we consider
a quasi-static channel, that is the channel condition remains
constant within a time slot and varies independently from
one to another. In the following, we introduce the following
sets: Ktn, N t

k, and T nk denote the sets of users associated
to BSt on SCn, the set of subchannels occupied by UEk
associated to BSt and the set of BSs associated to UEk on
SCn, respectively.

B. Signal Model
Denote νt,k and ξn,t as the user-BS indicator and the

subchannel-BS indicator, respectively. νt,k = 1 indicates the
k-user is served by the t-th BS, νt,k = 0 if otherwise; ξn,t = 1
indicates that the n-th subchannel is allocated to the t-th BS;
ξn,t = 0 if otherwise. Note that νt,kξn,t = 1 indicates UEk
is connected to BSt and allocated with SCn, and νt,kξn,t = 0
if otherwise. Thus, the superposition coded symbol xtn to be
transmitted at BS t on channel n is given by

xtn =

K∑
k=1

νt,kξn,t
√
P tn,kx

t
k,n, (1)

where xtn,k is the transmit signal of BSt in SCn, P tn,k is the
allocated power of UEk associated with BSt on SCn. In SCn,
UEk, k ∈ K receives interference from other users in the same
subchannel. As a consequence, the received signals of UEk
associated with BSt on SCn is given by

ytn,k = f tn,kx
t
n + Itn,k + ηtn,k, (2)

where ηn,k is the additive white Gaussian noise (AWGN) at
UEk on SCn with variance σ2, f tn,k is the channel coefficients
between BSt and UEk on SCn. And Itn,k is the accumulative
interference to UEk from other BSs on SCn except BSt ,
which is given by

Itn,k =

T∑
s=1,s6=t

fsn,k
√
P snx

s
n, (3)

and P sn is the total power consumption of BSs on SCn,

P sn =

K∑
k=1

νs,kξn,sP
s
n,k, (4)

To proceed further, we introduce an auxiliary term gtn,k as

gtn,k =
νt,kξn,th

t
n,k∑T

s=1,s6=t h
s
n,kP

s
n + σ2

, k, j ∈ Ktn, (5)

where htn,k = |f tn,k|2 is the channel gain coefficient and gtn,k
can be viewed as an equivalent channel gain between BSt and
UEk on SCn.

In each subchannel, NOMA protocol is invoked. Specifical-
ly, consider a pair of two users (k, j) served by BSt, in which
UEk wants to decode and remove UEj’s signal by SIC on
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SCn, then the inequality holds: gtn,k ≥ gtn,j .
In fact, in NOMA, SIC can be carried out at the users with

stronger equivalent channel gains. Without loss of generality, it
is assumed that all the channels on SCn of BSt follows the or-
der as gtn,π(1) ≤ g

t
n,π(2) ≤ · · · ≤ g

t
π(|Ktn|)

, where π(k) denotes
the k-th decoded user’s index and |Ktn| denotes the cardinality
of Ktn. Therefore, UEπ(k) first decodes the messages of all the
(k− 1) users, and then successively subtracts these messages
to decode its own information. Following the principle above,
the received signal-to-interference-plus-noise-ratio (SINR) for
the k-th decoded user on SCn is given by

γtn,π(k) =
νt,π(k)ξn,th

t
n,π(k)P

t
n,π(k)

|Kt
n|∑

i=k+1

νt,π(k)ξn,th
t
n,π(k)P

t
n,π(i) +

∑
s 6=t

hsn,π(k)P
s
n + σ2

.

(6)

Then we focus on the data rate of UEπ(k) on SCn at BSt,
which is given by Rtn,π(k) = W

N log
(
1 + γtn,π(k)

)
. Hence, the

overall data rate of user k can be computed as

Rk =
T∑
t=1

N∑
n=1

Rtn,π(k). (7)

C. MOS Model for Web Browsing
Inspired by the widely used QoE metric, MOS model is

used as a measure of the user’s QoE for the services like
video streaming, file download, or web browsing. As one of
the most popular application in wireless networks, we focus on
web browsing applications in this paper. It maps the subjective
human perception of quality for web browsing applications
to the objective metrics 2. In [27], the MOS model for web
browsing applications is defined as follows:

MOSweb = −C1 ln(d(Rweb)) + C2, (8)
where Rweb is the data rate. MOSweb represents the real score
ranging from 1 to 5, which reflects the user perceived quality.
The higher score means that the human perception quality is
the better. C1 and C2 are constants determined by analyzing
the experimental results of the web browsing applications,
which are set to be 1.120 and 4.6746, respectively. d(Rweb)
is the delay time between a user sent a request for a web page
and the entire web contents displayed. The delay time depends
on multiple factors such as the web page size (e.g. the round
trip time (RTT)) and the effects of the protocols (e.g., TCP and
HTTP). In this paper, we adopt TCP and HTTP protocols for
the multi-cell NOMA systems, where the function d(Rweb) in
[28] is modelled as

d(Rweb) =3RTT +
FS

Rweb

+ L(
MSS

Rweb
+ RTT)− 2MSS(2L − 1)

Rweb
,

(9)

where RTT [s] is the round trip time, FS [bit] is the web
page size and MSS [bit] is the maximum segment size. The
parameter L = min{L1, L2} represents the number of slow
start cycles with idle periods. L1 denotes the number of cycles
the congestion window takes to reach the bandwidth-delay
product and L2 is the number of slow start cycles before the
web page size is completely transferred, which are defined as
follows [28].

L1 = log2

(RwebRTT

MSS
+ 1
)
− 1, and

L2 = log2

( FS

2MSS
+ 1
)
− 1.

(10)

2Note that the relationship between the data rate and the QoE for different
applications were modelled by different MOS models [20–22]. The proposed
algorithm is capable of being extended to other applications with necessary
modifications, which we may include in our future work.

As discussed in [27], the impact of the RTT on the MOS
function is minor compared to the data rate and the file size
of web pages, especially for short ranges of RTT. In addition,
as the 3GPP technical specification of the LTE release 8
proposed, it is expected that the future advanced LTE systems
achieve even lower RTT [29] than the currently supported 10
ms. Thus, it is reasonable to assume RTT = 0 ms3. Based
on this assumption (9) is simplified as d(Rweb) = FS

Rweb
. Then

the mapping for user π(k) from the user data rate to the MOS
function can be simplified as

MOS
π(k)
web = C1 ln

( T∑
t=1

N∑
n=1

Rtn,π(k)

)
+ C

π(k)
3 , (11)

where Cπ(k)
3 = C2 + C1 ln

(
W

N×FSπ(k)

)
is a constant.

D. Problem Formulation
In this section, we formulate the problem to optimize the

cross-layer QoE aware resource allocation based on designing
the user-BS association, subchannel assignment and power
allocation. The optimization problem can be expressed as
follows:

max
{{νt,π(k)},

{ξn,t},{P tn,π(k)}}

U =
∑

π(k)∈K

MOS
π(k)
web (12a)

s.t. gtn,π(k) ≥ gtn,π(j), k > j,∀(k, j),∀t, ∀n, (12b)∑
π(k)∈K

∑
n∈N

νt,π(k)ξn,tP
t
n,π(k) ≤ P t,∀t, (12c)

2 ≤
∑

π(k)∈K

νt,π(k) ≤ Lt,
∑
t∈T

νt,π(k) ≤ 1, ∀t, ∀k, (12d)

∑
n∈N

ξn,t ≤ St,
∑
t∈T

ξn,t ≤ Tn, ∀t, ∀n, (12e)

P tn,π(k) ≥ 0, π ∈ Π, νt,π(k), ξn,t ∈ {0, 1},∀n,∀k, ∀t, (12f)

where Π represents the set of total possible decoding orders.
Constraints (12b) is to guarantee that SIC can be performed
successfully for a specific order. (12c) is a power constraint
for BSt with the maximum power allowance P t. Constraints
(12d) is a NOMA multiplexing constraint where Lt indi-
cates the maximum number of multiplexed users connected
to BSt. Moreover, we consider each each user is capable
of connect one BS at each subchannel. Constraints (12e)
represent each BS can occupy St subchannels at maximum
and each subchannel can be shared by Tn BSs at maximum
In this paper, we assume that the NOMA scheme is applied
among the users in the same frequency band and time slot,
which has been studied in [24] and [30]. The use of more
sophisticated reuse schemes may further enhance the attainable
performance of the systems considered, but this is beyond the
scope of this treatise. In addition, regarding the case where
we allow a BS sometimes serves only one user, the multi-cell
network will work in a hybrid multiple access method. In this
case, the performance of the hybrid network maybe improved
by optimizing resource allocation. However, the performance
optimization of the hybrid network becomes more challenging
especially in selecting the multiple access method. Our future
work will investigate the resource allocation of the hybrid

3In this paper, we assume that the nodes are static, or slow moving in the
considered networks. Therefore, the channels might stay the same for a quite
long time period, and hence we can use the assumption that the channels are
quasi-static such as in [24–27], or sometimes termed block-fading.
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network, perhaps with the aid of the results derived in this
work.

The sum MOS optimization problem (12) by jointly de-
signing user-BS association, subchannel assignment and power
allocation for a multi-cell NOMA network is a combinato-
rial optimization task, which generally yields unacceptable
computation burden with brute-force search. Note that the
optimization problem (12) includes the binary optimization
variables for the user-BS association and subchannel assign-
ment and the continuous variables for the power allocation
coefficients. To solve problem (12) effectively, we propose to
decompose it into two subproblems: 1) the problem of the
user-BS association and subchannel assignment and; 2) the
problem of power allocation among users.

Fig. 2 gives an overview of the development in the pa-
per, particularly the connections between key optimization
problems and the algorithms. In Fig. 2, the key reformulated
problems and the algorithm studied in this paper are illustrated
in different boxes: The ones with solid boundaries are the
reformulated problems, the ones with dotted boundaries are
the designed algorithms, and the ones with rounded rectangle
are the generated solutions. Due to the combinatorial features
of the user-BS association, subchannel assignment, exhaustive
search provides a straightforward method to find the globally
optimal combination for a small-scale network when the power
allocation coefficients are fixed. In addition, we propose a
low-complexity matching theory based algorithm which will
be discussed in Section III. Furthermore, when the user-
BS association, subchannel assignment are fixed, finding the
optimal solution is still nontrivial due to the non-convex
property of problem (12) in terms of the power allocation
coefficients. BB techniques provide an efficient approach to
solve the non-convex optimization problem [31–33], which
motivates us the application of the BB algorithm to obtain
the optimal power allocation coefficients. Moreover, an low-
complexity power allocation algorithm is also developed to
avoid the huge complexity of the BB algorithm. The proposed
optimal and suboptimal power allocation algorithm will be
discussed in Section IV.

III. USER-BS ASSOCIATION AND SUBCHANNEL
ASSIGNMENT USING 3D MATCHING

In this section, we focus on solving the user-BS association
and subchannel assignment problem in (12), which can be
expressed as

max
{νt,k},{ξn,t}

K∑
k=1

MOSkweb

s.t. (12d)− (12f).

(13)

Problem (13) is a combinational optimization problem a-
mong users, BSs and subchannels. From the point of the
graphical, the mutual relationship among among users, BSs
and subchannels can be represented in the left top part of
Fig. 3. To further present the relationship among users, BSs
and subchannels, a bi-partite graph based representation is
shown in the left bottom part of Fig. 3. As illustrated in Fig. 3,
UEk is associated to BSt, they compose an association unit
(UEk,BSt). When SCn is allocated to the association unit
(UEk,BSt), we say UEk, BSt and SCn are matched with

Fig. 2: Overview of the proposed approach to the sum MOS maxi-
mization problem. We obtain both the global optimal and suboptimal
algorithms.

Fig. 3: Graphical expressions of 3D matching among users, BSs and
subchannels.

each other, denoted by a matching triple (UEk,BSt,SCn).
Next, we first introduce the definition of 3D matching.

Definition 1. An instance of 3D matching involves three dis-
joint finite sets K, T and N , where the cardinalities are K,T
and N , correspondingly, which are the size of the problem
instance. A matching triple is denoted by (UEk,BSt,SCn) ∈
K
⋃
T
⋃
N . A matching is a set of user-BS-subchannel as-

signment.

It is proved that 3D matching is NP-hard and there is no
polynomial-complexity algorithm to find the optimal solution
[34]. To solve the challenging problem, we propose a low-
complexity suboptimal algorithm by decomposing the 3D
matching problem into two 2D matching subproblems-UE-
BS matching problems and (UE,BS)-SC matching problems.
Then, we solve the two subproblems individually as shown in
the right part of Fig. 3. Specifically, the first subproblem is to
select a served BS for each user to transmit desired signals,
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which is a many-to-one matching problem between users and
BSs, i.e, multiple users can be served by one BS using the
NOMA protocol. Then, subchannel sharing for each BS is
considered in the second subproblem, which is a many-to-
many matching problem between BSs and subchannels, i.e.,
one BS to St subchannels and one subchannel to Tn BSs.

A. Preliminaries for Matching Theory

In a 2D matching, there are two finite and disjoin-
t sets denoted by M = {m1,m2, · · · ,mn} and W =
{w1, w2, · · · , wp}, respectively. Each mi ∈ M has a pref-
erence list over the set of W In this paper, we build the
preferences by the rate rather than the MOS value. Since the
MOS value is a user-centric measure, it cannot be calculated in
the formulated (UE,BS)-SC matching problem for subchannel
assignment. In addition, in the formulated user-BS association
matching problem, the preference built by the rate value is
equivalent to that based on the MOS value, since a user’s
MOS value is the logarithm of the user’s sum rate over all
subchannels. Analogously, each wj ∈ W has preferences over
M. The individual preferences represent the priorities of its
selection among different alternatives. If mi prefers w1 to w2,
we express it as w1 �mi w2. In this paper, we assume that
the preference list of each player has the following properties:
1) complete ordering: each player will never confront with
an indeterminable choice, i.e., any two alternatives can be
compared for an player to get a preferred one. 2) transitive:
it can be express as if w1 �mi w2 and w2 �mi w3 then
w1 �mi w3. Based on the above descriptions, we give the
following definitions:

Definition 2. A many-to-many (one) matching ϕ is a function
from the set M

⋃
W into the set of unordered families of

elements of M
⋃
W
⋃
{0} such that

1) |ϕ(m)| ≤ qw for every m ∈M;
2) |ϕ(w)| = qm for every w ∈ W;
3) ϕ(m) ∈ W if and only if ϕ(w) ∈M;
4) m = ϕ(w)⇔ w = ϕ(m);

where qw and qm are positive integer quotas.

The notation ϕ has different meanings depending on the
parameter. If the parameter is m, then ϕ(m) maps to the
matchedW set. If the parameter is w, then ϕ(w) gives the set
of matched player of M. Note that is qw = 1, one can obtain
the definition of many-to-one matching.

In a many-to-many (one) matching with externalities, it
is not straightforward to define a stability concept because
the gains from a matching pair depends on which players
the other agents have. Sparked by the definition of exchange
stable stability, it is convenient to define a swap matching
[35]. Specifically, a swap matching is defined as ϕji =
{ϕ \ {(i,m), (j, n)}

⋃
{(j,m), (i, n)}}, where ϕ(i) = m and

ϕ(j) = n. Based on the swap operation, we introduce the
two-sided exchange stability [35] as follows.

Definition 3. A matching ϕ is two-sided exchange-stable if
and only if there does not exist a pair of players (i, j) with
m = ϕ(i) and n = ϕ(j), such that

1) ∀x ∈ {i, j,m, n}, Um(ϕji ) ≥ Um(ϕ);

2) ∃x ∈ {i, j,m, n}, such that Um(ϕji ) > Um(ϕ), then the
swap matching ϕji is approved, and (k, j) is called a
swap-blocking pair in ϕ.

where Um(ϕ) denotes the utility for player m under matching
ϕ. In general, the pair of players satisfying condition 1) and
condition 2) is called a swap-blocking pair.

The features of the swap-blocking pair ensure that if a
swap matching is approved, the achievable rates of any user
involved will not decrease and at least one of the user’s rate
will increase. Furthermore, the definition indicates that a swap
matching is two-sided exchange-stable when all players are
indifferent.

B. User-BS Association Problem

As discussed above, the user-BS association problem is a
many-to-one matching problem. Due to the interference in (6),
the SINR of user UEtn,k over each subchannel is related to the
set of users sharing with the same subchannels. Furthermore,
each BS not only considers which users to match with, but
also that the inner-relationship among the subset of users due
to the power domain multiplexing. Thus, more specifically,
the formulated user-BS association problem is a many-to-one
matching problem with externalities.

To model the externalities, the preference can be formulated
as the rate of each user over all subchannels, where the rate
of UEk associated to BSt can be expressed as

Ptk =
∑
n∈N

log2(1 + γtn,π(k)). (14)

Then the preference of BSt on a set of users ϕ(t) can be
defined as

Pt =
∑
k∈ϕ(t)P

t
k. (15)

Specifically, for a given UEk, any two BSt and BSt′ , any two
matchings ϕ and ϕ′, we have the following relations,

(t, ϕ) �UEk (t′, ϕ′)⇔ Ptk(ϕ) > Ptk(ϕ′), (16)
which indicates that UEk prefers BSt in ϕ to BSt′ in ϕ′ only if
UEk can achieve a higher rate on BSt than BSt′ . Analogously,
for any BSt, t ∈ T , its preference over the user set can be
described as follows. For any two subsets of users K1 and K2
with K1 6= K2, any two matchings ϕ and ϕ′ with K1 = ϕ(t)
and K2 = ϕ′(t) are defined as

(K1, ϕ) �t (K2, ϕ
′)⇔ Pt(ϕ) > Pt

′
(ϕ′). (17)

It implies that BSt prefers the set of users K1 to K2 only when
BSt can get a higher rate from K1.

Based on the established preference lists, we utilize a
extend deferred acceptance (EDA) based algorithm proposed
in [36] to construct a initial matching state between users
and BSs. Then, the swap operation procedure is employed
to further enhance the utility. In the EDA based initialization
procedure, the BS first allocates the transmit power equally to
the users. Hence, the users and the BSs can construct their own
preference lists based on (16) and (17), respectively. Then each
user proposes to the most preferred BS based on its preference
list. At the BS acceptance phase, each BS accepts the users
with prior preferences and rejects the others. The algorithm
terminates when all users are matched to the BSs or every
unmatched users has been rejected by every BS.
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C. Subchannel Assignment

As discussed above, the problem to assign subchannels to
(UE,BS) units is a many-to-many matching problem. Due to
one subchannel can assign multiple BSs, the rate of each
(UE,BS) unit over each subchannel is related to the other
BSs sharing with the same subchannels. Thus, the formulated
subchannel assignment problem is a many-to-many matching
problem with externalities.

Similar to Subsection III-B, we formulate the preference
as the sum rate of the users associated to the BSs on each
subchannels. Specifically, the sum rate of users associated to
BSt on SCn can be expressed as

Pnt =
∑
k∈Kt

log2(1 + γtn,π(k)). (18)

Analogously, suppose φ and φ′ are two different matchings,
for a given BSt, any two subchannels SCn and SCn′ , we have
the following relations,

(n, φ) �BSt (n′, φ′)⇔ Pnt (φ) > Pnt (φ′), (19)
which indicates that BSt prefers SCn in φ to SCn′ in φ′ only if
BSk can achieve a higher rate on SCn than SCn′ . For any SCn,
n ∈ N , its preference over the user set can be described as
follows. For any two subsets of BSs T1 and T2 with T1 6= T2,
any two matchings φ and φ′ with T1 = φ(n) and T2 = φ′(n)
are defined as

(T1, φ) �t (T2, φ
′)⇔ Pn(φ) > Pn

′
(φ′). (20)

It implies that SCn prefers the set of BSs T1 to T2 only when
SCn can get a higher rate from T1.

Now based on the established preference lists, an initial
matching state can be obtained by utilizing EDA based al-
gorithm between (UE,BS) units and subchannels, where we
assume that the (UE,BS) unit propose to subchannels. Specifi-
cally, similar to the process of EDA based user-BA association,
the subchannels and the (UE,BS) units can construct their own
preference lists based on (19) and (20), respectively. Then
each (UE,BS) unit proposes to the most preferred subchannel
based on its preference list. At the subchannel acceptance
phase, each subchannel accepts the (UE,BS) unit with prior
preferences and rejects the others. The algorithm terminates
when all (UE,BS) units are matched to the subchannels or
every unmatched users has been rejected by every subchannel.

Furthermore, we can conclude the complete procedure
for solving user-BS association and subchannel assignment
problem in Algorithm 1. In Step-I, user-BS association is
performed, which consists of an initialization procedure in
line 1 and a swap procedure in line 2 to line 9. EDA based
algorithm is adopted for the initialization procedure. Then, all
possible swap operations between users and BSs are checked
to further enhance the system utility. A two-sided stable
matching will be reached between users and BSs. In Step-
II, the matching between (UE,BS) units and subchannels are
performed. Similar to Step-I, the initialization algorithm can
be realized by EDA based algorithm, where the preference lists
for (UE,BS) units and subchannels are constructed from (18).
We assume that (UE,BS) units propose to subchannels in the
initialization algorithm. Then the swap procedure is conducted
in line 12 to line 19 to further improve the utilities.

Algorithm 1 Two-step Algorithm Based User-BS Association
and Subchannel Assignment
Step-I: Many-to-one matching based UE-BS association

1: Construct the initial UE-BS matching set A by EDA based
algorithm. Let AI = A.

2: repeat
3: For any user k ∈ AI , it searches for another user j ∈ AI \

AI(ϕ(k)).
4: if k, j is a swap-blocking pair then
5: ϕ = ϕjk
6: else
7: Keep the current matching state
8: end if
9: until No swap-blocking pair is found

10: Output the stable matching denoted as ϕI and the corresponding
objective value U0 = U(ϕI).

Step-II: Many-to-many matching based SC assignment
11: Construct the initial (UE,BS)-SC matching set AII = A by EDA

based algorithm.
12: repeat
13: For any (UE,BS) unit t ∈ AII , it searches for another (UE,BS)

unit s with s ∈ AII \ AII(ϕ(t)). Let U = {U0}.
14: For a given t, calculate the candidate Ust for the swapping

pair (t, s) .
15: if t, s is a swap-blocking pair then
16: U = U ∪ {Ust }.
17: end if
18: Keep the swapping-blocking pair with t, s∗ = arg maxUst U ,

then ϕ = ϕs
∗
t . Set U0 = Us

∗
t .

19: until No swap-blocking pair is found.
20: Output the stable matching ϕII .

D. Analysis of the Proposed Two-Step Algorithm

1) Complexity: The computational complexity of the pro-
posed two-step algorithm based user-BS association and sub-
channel assignment in Algorithm 1 is relied on the two 2D
matching procedures. In the following, we will analyze the
computational complexity of each 2D matching procedure.

• The initialization algorithm in Step-I requires each user
to propose to one BSs and each BS can accept multiple
users based on its preference list. Assume that the worst
case that the proposing number of each user is T . The
complexity is O(KT 2).

• For the swap procedure in Step-I, there are at most TLt
users can perform swap operation. In each iteration, for
UEtk, the maximum swap operation number is Lt(T−1),
since each user associates with one BS. Therefore, a swap
operation for K users in each iteration is 1

2KLt(T − 1).
For a given number of total iteration V , the complexity
can be presented as O(V KLtT ).

• The initialization algorithm in Step-II requires (UE,BS)
units to propose to multiple subchannels and each sub-
channel makes a decision to accept multiple (UE,BS)
units based on its preference list. The worst case that
the proposing number of (UE,BS) unit is N − St. The
complexity is O(N2T 2).

• For the swap procedure in Step-II, there are T (UE,BS)
units at N subchannels can perform swap operation. We
consider the worst case that each (UE,BS) unit occupies
St subchannels and each subchannel is shared by Tn
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(UE,BS) units. Therefore, in each iteration, for (UE,BS)t
the maximum swap operation number is St(N − St).
In each iteration, T (UE,BS) units require at most
1
2TTnSt(N − St) swap operations. For a given number
of total iteration V ′, the complexity is approximated as
O(V ′TTnStN).

As a result, the complexity of Algorithm 1 can be calculated
as O((K +N2)T 2 + (V KLt + V ′TnStN)T ).

2) Stability and Convergence: After performing Step-I in
Algorithm 1, any user UEk with k ∈ K cannot find another
BS BSt, t ∈ T to form a swap-blocking pair under the current
matching. Hence, a two-sided exchange-stable matching is
formed between users and BSs. Then, by performing Step-II
in Algorithm 1 while treating the matched user and BS as a
complete (UE,BS) unit, one can obtain a two-sided exchange-
stable matching among (UE,BS) units and subchannels based
on Definition 2 . Since the utility function will increase
monotonically by the swap operation in Algorithm 1 and
the utility function is bounded due to the transmit power
constraint, Algorithm 1 will terminate to a local solution after
finite swap operation. Since the formulated two 2D matching
subproblems are many-two-one matching with externalities
and many-to-many matching with externalities, respectively,
the proposed approaches in Step-I and Step-II converge to a
two-sided exchange-stable status [35]. Note that not all two-
sided exchange-stable matching are local optimal. The reason
can be given by a simple example for Step-I: In a two-
sided exchange-stable status, there exists possibility that user k
associated to BS t refuses a swap as its utility would decrease,
but user j associated to BS t′ involved will benefit a lot from
this swap operation and the utility of BS t and BS t′ will
increase. In this case, a forced swap will further increase the
total utility compared to an approved swap matching. A similar
case also exist for Step-II.

IV. SOLUTIONS FOR POWER ALLOCATION OPTIMIZATION
PROBLEM

In this section, we try to solve the power allocation problem
for given user-BS association and subchannel assignment. In
this case, Ktn, N t

k, and T nk is known to BSs. For notation
simplicity, we assume that π(k) = k in the following. We
first propose an optimal power allocation strategy based on
BB approach. To obtain some useful insights, we derived the
optimal power strategy when the power equally distributed
among subchannels.

Based on (12), power allocation optimization problem can
be formulated as:

max
{P t
n,k
}

∑
k∈K

MOSkweb (21a)

s.t. gtn,k ≥ gtn,j , k > j,∀(k, j) ∈ Ktn, ∀t,∀n, (21b)

P tn,k ∈ P, ∀t,∀n,∀k, (21c)

where P = {P tn,k|
∑
n∈N t

∑
k∈Ktn

P tn,k ≤ P t, P tn,k ≥
0,∀n, ∀t}, N t denotes the set of subchannels allocated to BSt.
Note that (21b) can be equivalently expressed as∑

s 6=t

(
htn,kh

s
n,j − htn,jhsn,k

)
P sn

+
(
htn,k − htn,j

)
σ2 ≥ 0, k > j,∀(k, j), ∀t, ∀n.

(22)

Though the constraint (22) is linear and thus convex. How-
ever, problem (21) is still non-convex due to the non-convex
objective function.

A. Optimal Power Allocation Strategy Using BB

In this subsection, we try to solve problem (21) over a M -
dimensional simplex, where M =

∑K
k=1

∑T
t=1

∑N
n=1 νt,kξn,t

is the total number of variables. The key idea of BB approach
can be described as follows: 1) transform the constraint sets
into a multi-dimensional simplex; 2) compute upper and lower
bounds.

First we introduce a set of variables Γ = {Γtn,k,∀t, ∀n,∀k}
such that Γtn,k ≤ γtn,k in (6). Then, problem (21) can be
transformed as

max
{P t
n,k
}{Γt

n,k
}

U(Γ) s.t. Γ ∈ D, (23)

where U(Γ) =
∑
k∈KC1 ln

(∑
t∈Tk

∑
n∈N tk

log2

(
1 + Γtn,k

))
.

In addition, the constraints D is defined as

D =

{
Γ ∈ RM

∣∣∣∣ Γtn,k ≤ γtn,k, ∀k, ∀n,∀t,
(21c) & (22)

}
. (24)

Lemma 1. U(Γ) is an monotonically increasing function.
More specifically, U(Γ) a concave function.

Proof: See Appendix A.

Proposition 1. Problem (23) have the same optimal solution
to the optimization problem in (21).

Proof: See Appendix B.

Let Γ̆ be the largest possible SINR set. Note that U(Γ) ∈
(−∞, U(Γ̆)], where the minimum of U(Γ) is unbounded. To
tackle the difficulty, we introduce a new function Ũ(Γ)

Ũ(Γ) =
∏
k∈K

(
C1

∑
t∈Tk

∑
n∈N t

k

log2

(
1 + Γtn,k

))
, (25)

which such that Ũ(Γ) ∈ [0, Ũ(Γ̆] and U(Γ) = ln
(
Ũ(Γ)

)
.

Then, the transformation of problem (23) is
max

{P t
n,k
}{Γt

n,k
}

Ũ(Γ) s.t. Γ ∈ D, (26)

Problem (26) and problem (23) has the same optimal
solution due to the monotonicity of logarithm function. Next
we try to solve problem (26) using BB algorithm.

1) Construction of multi-dimensional simplex S: Let
S = [v1, v2, · · · , vM+1] be an M -simplex in RM satisfying
D
⋂
S 6= ∅. The initial S should be a simple polytope tightly

enclosing D with a small number of vertices. Because the
feasible set D in (24) is an rectangular with removing some
margins, a simple method to construct S is given as follows

S = {Γ ∈ RM |0 ≤ Γtn,k ≤ Γ̆tn,k} (27)

with Γ̆tn,k =
htn,kP

t

σ2 denoting the largest possible SINR for
UEk on SCn associated to BSt. The vertex set of S is V (S) =
{v1, v2, · · · , vM+1} with v1 = 0, vj = Γ̆tn,kej , where ej is
the j-th basis vector of RM .

By constructing the multi-dimensional simplex, problem
(23) has been transformed into a maximization of non-convex
function U(Γ) over an M -simplex S.

2) Compute lower and upper bounds: To compute lower
and upper bound, we first construct a bounding function, which
is defined as

g(Γ) =

{
−Ũ(Γ), if Γ ∈ D,
0, otherwise.

(28)
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Note that for the feasible set D and the M -simplex S with
D ⊆ S, we have

ψmin(S) = inf
Γ∈S

g(Γ) = inf
Γ∈D
−Ũ(Γ). (29)

which implies that the function −Ũ(Γ) is a lower bound of
g(Γ).

For S ′ = {Γ̂ ≤ Γ ≤ Γ̆}, we now have the lower bound and
upper bound functions as

ψlb(S ′) =

{
−Ũ(Γ̆), if Γ̂ ∈ D,
0, otherwise.

ψub(S ′) =

{
−Ũ(Γ̂), if Γ̂ ∈ D,
0, otherwise.

(30)

From the definition of (28), one can know that ψlb(S ′) =
ψmin(S ′) = ψub(S ′) = 0, if Γ̂ /∈ D. Consequently, for any
S ′ ⊆ S, we have ψlb(S ′) ≤ ψmin(S ′) ≤ ψub(S ′).

Based on the definition of lower and upper bounding func-
tions in (30) and (30), the key step to compute the bounding
functions is to check Γ̂ ∈ D. It can be formulated as

Find {P tn,k} (31a)

s.t. γtn,k ≥ Γ̂tn,k, (31b)∑
s 6=t

(
htn,kh

s
n,j − htn,jhsn,k

)
P sn +

(
htn,k − htn,j

)
σ2

≥ 0, k > j,∀(k, j) ∈ Ktn, ∀t,∀n,
(31c)

P tn,k ∈ P, ∀n,∀t,∀k. (31d)

which is a convex problem on power allocation coefficients
{P tn,k}.
Proposition 2. Problem (31) can be transformed into a
compact matrix form as follows:

Find pn, n ∈ N (32a)

s.t. Anpn � bn, H̄npn � θn, P tn,k ∈ P,∀n,∀t, ∀k, (32b)

where An = I− (Λn + DnGn) and bn = Dnσ
2.

Proof: See Appendix C.

Problem (32) is a linear programming (LP) feasibility, which
can be described as follows. Define two sets P1 = {Anpn �
bn, P

t
n,k ∈ P,∀n,∀t, ∀k} and P2 = {H̄npn � θn, P

t
n,k ∈

P,∀n, ∀t, ∀k}. The distance of the two sets is defined as
dist(P1,P2) = inf{‖x1 − x2‖|x1 ∈ P1,x2 ∈ P2}. (33)

If the two sets intersect, the distance is zero. To find the
distance between P1 and P2, we can solve the following QP

min ‖x1 − x2‖ s.t. (32b). (34)

The optimal value is zero if and only if the two sets intersect.
This problem is infeasible if and only if one of the sets is
empty. Otherwise, the problem will return the optimal points
x1 and x2 in P1 and P2, respectively, that are close to each
other.

One can verify that the matrix Λn + DnGn is irreducible
nonnegative matrix. As in [37], a positive solution to pn
that satisfies Anpn = bn exists if and only if the Perron-
Frobeniuous eigenvalue of Λn + DnGn, denoted as ρ(Λn +
DnGn) < 1. Therefore, we can check if Γ̂ ∈ D by the
following proposition.

Proposition 3. For any Γ̂, the following statements hold:
i) If it exists one n ∈ N with ρ(Λn + DnGn) ≥ 1 or
ρ(I + H̄n) ≥ 1, we have Γ̂ /∈ D;

ii) If ∀n ∈ N with ρ(Λn+DnGn) < 1 or ρ(I+H̄n) < 1,
but ∃n ∈ N such that

∑
k∈Kt

∑
n∈Nt pn,ik > P t, we

have Γ̂ /∈ D;
iii) If ∀n ∈ N with ρ(Λn+DnGn) < 1, one need to check

the LP feasibility problem in (34).

3) Optimal power allocation based on BB algorithms:
Based on the above discussions, the procedures of the pro-
posed BB algorithm for optimal power allocation is described
as follows. Let S(v) = {A1

n,k(v), · · · , · · · ATN,K(v)} denote
the set of box subsetsAtn,k(v) = {Γ̂tn,k(v) ≤ Γtn,k ≤ Γ̆tn,k(v)}
for all n, k and t at the v-th iteration. S(0) is the initial
rectangular constraint set, on the root node of the binary tree,
which is define (27). At the v-th iteration, we spilt S(v)
into two subsets QI and QII along one of its longest edges,
removing S(v) and adding the two new subsets to R(v).
Next, we solve (31) based on Proposition 3 over each subset
Ql, l ∈ {I, II}. A lower bound and an upper bound can be
obtained. Then, we choose the minimum over all upper bounds
as fub(v) and choose the minimum over all lower bounds as
flb(v), i.e., taking the minimum over all the upper and lower
bounds at each leaf node across all the levels in the binary
tree. Removing the leaf node S ′ such that ψlb(S ′) ≥ fub(v),
which will not affect the optimality of the BB tree. Repeat
the above procedures until it satisfies the accuracy ε which is
the difference between the global upper bound and the global
lower bound. In the procedure of generating the BB tree, a
sequence of subsets will be generated from S(0). The details
are given in Algorithm 2 that captures the global optimal
solution of (12).

Algorithm 2 The optimal power allocation algorithm based
on BB

1: Initialization for BB:
1) Construct the initial simplex S(0) such that D ⊆ S(0), which
was described in Section IV-A1.
2) Compute flb(1) = ψlb (S0) and fub(1) = ψub (S(0)), by
(30) and (30), respectively.
3) SetR(1) = {S0}, optimal upper bound U∗ = U(1), tolerance
ε > 0 and v = 1.

2: while fub(v)− flb(v) > ε do
3: Pick S ′ ∈ R(v) for which φlb(S ′) = flb(v) and set S(v) =

S ′.
4: Subdivide S(v) along one of its longest edges into QI and

QII .
5: Compute ψlb

(
QI
)
, ψub

(
QII

)
by solving problem (31).

6: Update the upper bound fub(v) and the lower bound flb(v)
as follows:

flb(v) = min
S′∈R(v+1)

ψlb(S ′);

fub(v) = min
S′∈R(v+1)

ψub(S ′) ;

update f∗ub = min(f∗ub, fub(v)).
7: Update R(v + 1) by removing all S ′ for which ψlb(S ′) ≥

fub(v + 1).
8: v := v + 1.
9: end while

10: Output the value Ũ∗ = f∗ub and the optimal power allocation
P ∗.

Remark 1. At the v-th iteration of Algorithm 2, fub(v) and
flb(v) are the minimums over all the upper bounds and lower
bounds at each leaf nodes in the BB tree, respectively, which
give a global upper bound and lower bound on the optimal
value of (25). The stopping criterion for Algorithm 2 can be
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fub(v)−flb(v) ≤ ε for given a small ε. Accordingly, it means
that U∗ − ln ε ≤ Uopt.

The overall complexity of Algorithm 2 is determined by
the complexity of each iteration and the number of iterations
required for achieving the desired tolerance. During each
iteration, it requires to solve a LP problem for the worst case.
Since the formulated LP problem in (32) can be solved using
an interior-point method, the computational complexity of LP
is upper bounded by O((NKT )2(NKT +T +NTLt)) [32],
where term NKT denotes the number of variables and term
NKT + T +NTLt is the number of constraints. In addition,
the worst case computational complexity of Algorithm 2 is
exponential in the number of variables. Assume that 2KNT

is the total number of iterations required to obtain the ε-
approximation solution. The complexity of BB algorithm can
be approximated as O(2(KNT )4).

B. Low-Complexity Power Allocation Strategies

Though BB approaches can find the optimal power alloca-
tion, the high computational complexity makes it difficult to
realize. In this subsection, we proposed a suboptimal power
allocation strategy based on the SCA techniques.

We first consider the MOS function in (12a), which can be
rearranged as follows.∑

k∈K

C1 ln(

T∑
t=1

N∑
n=1

Rtn,k) +
∑
k∈K

Ck3

(a)

≥
∑
k∈K

C1

T∑
t=1

N∑
n=1

ln(Rtn,k) +
∑
k∈K

Ck3

(b)
=

N∑
n=1

∑
t∈T n

∑
k∈Ktn

C1 ln(Rtn,k) +
∑
k∈K

Ck3 ,

(35)

where (a) follows the Jenssen’s inequality [32] and (b) is based
on the property of polynomials.

As a result, problem (21) can be equivalently reformulated
as

max
{P t
n,k
}{Rt

n,k
}

N∑
n=1

∑
t∈T n

∑
k∈Ktn

C1 ln(Rtn,k) (36a)

s.t. Rtn,k ≤ log
(

1 +
htn,kP

t
n,k

|Kt
n|∑

i=k+1
ht
n,k

P tn,i+
∑
s 6=t

hs
n,k

Psn+σ2

)
,

(21b) & (21c) & (22).

(36b)

where the relax rate constraint in (36b) will be strictly equal
at the optimal solution. Problem (36) is non-convex due to
the the constraint in (36b). To solve it, we propose a convex
approximation method in the following.

To illustrate the approximation, let us first consider the
following change of variables:

ey
t
n,k = 2R

t
n,k − 1, ez

t
n,k = P tn,k, (37)

for ∀k ∈ K, ∀n ∈ N , and ∀t ∈ T , where xtn,k and ytn,k are
slack variables. By substituting (37) into (36), one can obtain
the following problem:

max
{P tn,k},{R

t
n,k},

{xtn,k},{y
t
n,k}

N∑
n=1

∑
t∈T n

∑
k∈Ktn

C1 ln(Rtn,k) (38a)

s.t. ey
t
n,k−z

t
n,k

( |Ktn,k|∑
i=k+1

ez
t
n,i +

∑
s 6=t

hsn,k
htn,k

P sn(z) +
σ2

htn,k

)
≤ 1,

(38b)∑
n∈N t

∑
k∈Ktn

P tn,k(z) ≤ P t, (38c)

Rtn,k ≤ log2(1 + ey
t
n,k ), (38d)∑

s 6=t

htn,jh
s
n,kP

s
n(z) + (htn,j − htn,k)σ2 ≤

∑
s6=t

htn,kh
s
n,jP

s
n(z),

(38e)
∀k ∈ K, ∀n ∈ N , ∀t ∈ T , (38f)

where P sn(z) =
∑|Ksn|
i=1 ez

s
n,k . Notice that we have replaced the

equalities in (36b) and (37) with inequalities as in (38b) and
(38d). Due to the monotonicity of the objective function, all
inequalities in (38b) and (38d) would hold with equalities at
the optimal solution. It is observed that the objective function
is concave and the constraints in (38b) and (38c) are convex.
Constraints (38d) and (38e) are not convex. Next, we use
the first-order Taylor approximation to approximate the lower
bound of the non-convex parts in (38d) and (38e). Let {P̃ tn,k}
and {R̃tn,k} be a set of feasible solution of (38). Then, we
have

ỹtn,k = ln 2R̃
t
n,k − 1, z̃tn,k = ln(P tn,k). (39)

As a result, the lower-bound approximation for (38d) and
(38e) can be given by

log2(1 + ey
t
n,k ) = log2(1 + eỹ

t
n,k ) +

eỹ
t
n,k (ytn,k − ỹtn,k)

ln(2)
(
1 + e

yt
n,k
) , (40a)∑

s 6=t
htn,kh

s
n,jP

s
n(z) =

∑
s 6=t

htn,kh
s
n,jP

s
n(z̃)

+
∑
s 6=t h

t
n,kh

s
n,j

∑Ksn
i=1 e

z̃sn,i(zsn,i − z̃sn,i),
(40b)

Consequently, by replacing (38d) and (38e) with (40a) and
(40b), we obtain the following approximation of problem (38):

max
{P tn,k},{R

t
n,k},

{xtn,k},{y
t
n,k}

N∑
n=1

∑
t∈T n

∑
k∈Ktn

C1 ln(Rtn,k) (41a)

s.t. (38b) & (38c) & (38f),

Rtn,k ≤ log2(1 + ỹtn,k) +
ỹt
n,k

(yt
n,k
−ỹt

n,k
)

ln(2)
(

1+e
yt
n,k
) , (41b)

∑
s 6=t
htn,jh

s
n,kP

s
n(z) + (htn,j − htn,k)σ2 ≤

∑
s 6=t

htn,kh
s
n,jP

s
n(z̃)

+
∑
s 6=t h

t
n,kh

s
n,j

∑Ksn
i=1 e

z̃sn,i(zsn,i − z̃sn,i).
(41c)

Problem (41) is a convex optimization problem; it can be
efficiently solved by standard convex solvers such as CVX
[38].

Problem (41) is formulated by approximating (38) at a
feasible solution ({Rtn,k}, {P tn,k}), as described in (39). Note
that for a fixed point ({Rtn,k}, {P tn,k}), the obtained objective
of (41) is no less than that obtained in the fixed point.
Therefore, the approximation can be improved by successively
approximating problem (38) based on the optimal solution
({Rtn,k}, {P tn,k}) obtained by solving (41) in the previous
approximation. The completed procedure of the proposed
successive approximation approach is described in Algorithm
3. In particular, in each iteration of Algorithm 3, the objective
function of problem (41) will be improved successively. How-
ever, due to the total power constraint, the generated sequence
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is bounded, which implies the convergence of Algorithm 3.

Algorithm 3 SCA algorithm for solving (38)

1: Given a set of solution ({R̃tn,k[0]}, {P̃ tn,k[0]}), which is
feasible to (38).

2: Compute the optimal objective value of problem (38),
denoted as Φ(0). Set v = 1.

3: while |Φ[v]−Φ[v−1]|
Φ[v−1] ≤ ε′, where ε′ is a given stopping

criterion, do
4: v := v + 1.
5: Obtain ỹtn,k(v − 1) and z̃tn,k(v − 1) by (39), and

solve problem (41) to obtain the optimal solution
({R̃tn,k[v]}, {ỹtn,k(v)}, {z̃tn,k[v]}).

6: end while
7: Output the optimal {Rt∗n,k} and {P tn,k = ln(zt∗n,k)}.

Due to the relaxation in (35), (38) provides a lower bound
of problem (21). Furthermore, problem (41) is a lower bound
approximation of problem (38) because of the approximation
in (40). Consequently, the solution obtained is suboptimal.
However, the complexity of Algorithm 3 is lower than Algo-
rithm 2. Assume that the number of iterations of Algorithm
3 is V̄ , then V̄ is less than O((NKT )2) [39].

V. SIMULATION RESULTS

In this section, the simulation and the performance results
are evaluated to the performance of the multi-cell NOMA
system with proposed resource allocation scheme. In the
simulations, the locations of the BSs are assumed to be
fixed, and the locations of the users to be uniformly and
independently distributed in a disk space with radius R = 500
m, if it is not specified. The bandwidth of each subchannel is
W
N = 75 kHz. htn,k = |f tn,k|2 is the channel power gain from
BS t to user UEk on subchannel SCn, which is expressed
as htn,k = (dt,k)−αχtn,k, where dt,k is the distance between
BS t and user UEk, α is the path loss exponent and χtn,k
is the fading coefficient with χtn,k ∼ CN (0, 1). We assume
that the small scale fading parts of all channels follow from
independent identically distributed (i.i.d) Rayleigh distribution.
A total of 100 different channel realizations were used in the
simulations, if it is not specified. The path loss exponent is
3.7 [24] and the noise experienced at each user is assumed
identical. The noise power is σ2 = −174 + 10 log 10(WN )
dBm. Moreover, we consider that the system consists of K = 6
users, T = 3 BSs and N = 3 subchannels, if it is not specified.

For a web browsing application, the web page sizes are
determined according to the web traffic statistics collected and
analyzed in the previous study [40]. In simulations, web users
typically access the web page size with the average average
web page size of 320 KB [27], if it is not specified.

To investigate the performance of the proposed multi-cell
NOMA system, three different algorithms are simulated for
the multi-cell NOMA system and the multi-cell OMA system,
respectively. Firstly, we consider the global optimal resource
allocation algorithm called ’Exhaust+BB’. In ’Exhaust+BB’,
for each combination among users, BSs and subchannels,
the BB approach is invoked to attain the optimal power

allocation scheme; Then, an exhaust search is exploited over
all combinations of the user-BS association and subchan-
nel assignment. Furthermore, for the suboptimal algorithm-
’Match+BB’, the proposed matching approach is firstly in-
voked to obtain a suboptimal scheme of user-BS association
and subchannel assignment; Then, the power allocation pro-
cedure is performed by applying BB approaches. In addition,
for the low-complexity suboptimal algorithm-’Match+SCA’,
the proposed SCA-based power allocation scheme is applied
after performing the proposed matching approach. Moreover,
we also consider an multi-cell OMA system with TDMA,
where an BS communicates with at most one user in one time
slot. Since the BS applying NOMA can serve multiple users
simultaneously in the same subchannel, the BS applying OMA
requires multiple time slots to serve the same number of users
in NOMA.

In Fig. 4, we investigate the sum MOS versus the maximum
transmit power at each BS, P t, for different algorithms men-
tioned above where Lt = 2, Tn = 2, and Sn = 2. As it can
be observed from Fig. 4, the sum MOS attained by different
algorithms increases with the maximum transmit power of BSs
P t. This is because the received SINR at the users can be
improved by optimally allocating the transmit power via the
proposed algorithms which leads to an improvement of the
system sum MOS. However, there is a diminishing trend in
the sum MOS when P t is higher than −10 dBm. In fact,
as the P t increases, the inter-cell interference becomes more
severe, which degrades the received SINR at users. As a result
the sum MOS of the systems will decrease. Besides, it can
be observed from Fig. 4, the sum MOS of the global opti-
mal algorithm-’Exhaust+BB’ grows faster than ’Match+SCA’
and ’Match+BB’. Table I compares various algorithms from
the perspective of computational complexity. It shows that
the complexity of ’Match+SCA’ is greatly less than that of
’Exhaust+BB’ and ’Match+BB’. From Fig. 4 and Table I, we
can observe that though some performance is suffered in the
proposed low-complexity suboptimal algorithm-’Match+SCA’,
its computational complexity will be reduced greatly compared
to ’Exhaust+BB’ and ’Match+BB’, which indicates that the
proposed ’Match+SCA’ is efficient to solve the optimization
problem (12). Furthermore, note that the proposed multi-cell
NOMA system outperforms the conventional multi-cell OMA
system in terms of the sum MOS.

In Fig. 5, we study the performance of the system sum
MOS and the system sum rate over different P t with K =
6. We assume the 6 users run page applications with the
FS = [50, 100, 200, 320, 400, 500] KB. For comparison, we
consider the fixed power allocation scheme in NOMA, called
as FNOMA, as a baseline, which has been widely adopt-
ed in [5, 41]. Correspondingly, we term the proposed low-
complexity suboptimal power allocation scheme based on
SCA as DNOMA. To validate the effectiveness, we compare
the proposed ’Match+DNOMA’ with the corresponding OMA
scheme, termed as ’Match+DOMA’, and ’Match+FNOMA’. In
’Match+FNOMA’, we assume that the BS allocates its power
uniformly over the occupied subchannels. Besides, Lt = 2
is assumed and the power allocation coefficients between the
users associated the BS on a specific subchannel is assumed to
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TABLE I: Comparison of various algorithms

Algorithm Complexity Optimality

Exhaust+BB O(2(NKT )2(KNT )2

) Global optimal
Match+BB O((K + N2)T 2 + (V KLt + V ′TnStN)T ) + O(2(KNT )2 )) Suboptimal
Match+SCA O((K + N2)T 2 + (V KLt + V ′TnStN)T ) + O(V̄ (NKT )3) Suboptimal

be p̄t1 and p̄t2 for the users with the better equivalent channel
gain and the poorer equivalent channel gain, respectively. As
can be observed from Fig. 5, both the performance of sum
MOS can be greatly enhanced by ’Match+DNOMA’ compared
with ’Match+FNOMA’ and ’Match+DOMA’. Moreover, the
curves of sum MOS and sum rate have similar increasing
trends. It is because that one user’s MOS function is a
monotonically increasing function with its rate. In particular,
as can be observed in (11), one user’s MOS function is related
with the logarithm of its rate and the applied web page size,
which results in ’Match+FNOMA’ can obtain a better sum-rate
performance compare to ’Match+DNOMA’.

In Fig. 6, we investigate the sum-MOS performance of
the proposed multi-cell NOMA networks for K = 6, T =
3 and N = 4. Three different schemes are illustrat-
ed in Fig. 6: ’Match+DNOMA’, ’Match+FNOMA’ and ’P-
Match+DNOMA’. The impact of the subchannel assignment
is studied, where matching operation only performed for user-
BS association and the subchannels randomly assigned to
the BS satisfying the constraints in problem (12). It can
be termed as ’P-Match+DNOMA’ for simplicity. In addition,
for completeness, the corresponding OMA schemes are also
simulated. As can be observed from Fig. 6, ’Match+DNOMA’
is capable of increasing the sum MOS compared to the
other schemes. Moreover, the sum-MOS performance of ’P-
Match+DNOMA’ is worse than that of ’Match+DNOMA’ and
’Match+FNOMA’, which indicates that the subchannel assign-
ment has important impact on the network utilities. Combined
with the observations from Fig. 4, it can be concluded that
’Match+SCA’ strikes a balance between the performance gain
and the computational complexity.

In Fig. 7, we investigate the performance of the proposed
multi-cell MC-NOMA networks versus different number of
users in the system. Here the number of users associated with
one BS is defined as the average number of the total users
over the number of BSs, Lt = K

T . Moreover, three differ-
ent NOMA-based schemes are compared: ’Match+DNOMA’,
’Match+FNOMA’, and ’P-MAtch+DNOMA’. For compar-
ison, two OMA schemes are also compared in Fig. 7:
’Match+DOMA’ and ’P-Match+DOMA’. As can be observed
from Fig. 7, for all schemes, the sum-MOS performance will
be enhanced with increasing the number of the number of
users in the system. Besides, ’Match+DNOMA’ is capable of
outperforming the other schemes.

To illustrate the impact of sum MOS on the us-
er fairness of multi-cell NOMA systems, we investi-
gate the fairness of the proposed schemes and the base-
line schemes based on Jain’s fairness index (JFI) [42],
which is an important indicator of measuring the perfor-
mance metric. In particular, JFI is calculated as JQOE =
(
∑
k∈KMOSkweb)

2/K
∑
k∈K(MOSkweb)

2. Note that the JFI
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2]T = [1/4, 3/4]T .

translates a set of MOS vector {MOS1
web, · · · ,MOSKweb} into

a score in the interval of [ 1
K , 1] and higher JFI means the

resource allocation is fairer.
Fig. 8 illustrates the evaluation of JFI versus the num-

ber of users in the network. Here, the JFIs in terms of
the optimization objective with sum-MOS based maximiza-
tion and sum-rate based maximization, where the proposed
’Match+DNOMA’ scheme was employed. The JFI of sum-
MOS based maximization is higher than that of sum-rate
based, because the sum MOS function reduces the gap between
users’ rates. Moreover, the JFIs in terms of the two schemes
decrease with the total number of users since the competition
among users becomes more tenser when there are more users
in the system.
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VI. CONCLUSIONS

In this paper, we studied the QoE-based resource allocation
algorithm design of an multi-cell MC-NOMA system in terms

of user-BS association, subchannel assignment and power allo-
cation. The algorithm design was formulated as a combinato-
rial non-convex optimization problem of maximizing the sum
MOS of the system. By formulating the user-BS association
and subchannel assignment as a 3D matching problem, we
proposed a low-complexity two-step approach based on 2D
matching. Then, we developed an optimal power allocation
strategy based on BB approaches to derive an upper bound for
the sum MOS of the system. Besides, a suboptimal algorithm
based on SCA was also developed to achieve a trade-off be-
tween computational complexity and performance. Simulation
results has revealed that the proposed suboptimal algorithm
obtain a good performance compared to the optimal algorithm.
In addition, a substantial improvement of the sum MOS can
be achieved by employing the proposed MC-NOMA scheme
in multi-cell networks. Furthermore, the proposed QoE-based
multi-cell MC-NOMA scheme was shown to provide a good
balance between improving the sum MOS and maintaining
fairness among users. In addition, it is promising direction
to investigate a general algorithm to improve the user QoE
for various services such as web browsing, voices, streaming
audio and video, and so on. Therefore our future work will
consider a general algorithm for MOS models with various
services with the aid of the algorithms developed in this work.

APPENDIX A: PROOF OF LEMMA 1
Since {Γ} is continuous on RM , U(γ) is differentiable on

Γtn,k, ∀n ∈ N t
k, t ∈ Tk and ∀k ∈ K. The first-order derivatives

on Γt
′

n′,k′ can be derived as
∂U(Γ)

∂Γt
′
n′,k′

=
C1∑

t∈T k′
∑
n∈N t

k′
log2

(
1 + Γtn,k′

) · 1

1 + Γt
′
n′,k′

,

(A.1)

Note that
∑
t∈T k′

∑
n∈N t

k′
log2

(
1 + Γtn,k′

)
is the effective

rate for UEk. In the system, we assume that all users are
scheduled where each user k such that Rk > 0. Note that the
gradient of ∇U(Γ) � 0, U(Γ) is an monotonically increasing
function. Then we can compute the second-order derivatives
of U(Γ) as

∂2U(Γ)

∂
(

Γt
′
n′,j′

)2 =
−C1

(∑
t∈T k′

∑
n∈N t

k′
log2

(
1 + Γtn,k′

)
+ 1
)

((
1 + Γt

′
n′,k′

)∑
t∈T k′

∑
n∈N t

k′
log2

(
1 + Γtn,k′

))2

(A.2)

Obviously, ∂
2U(Γ)

∂(Γ)2
� 0, which implies that U(Γ) is concave

[32].

APPENDIX B: PROOF OF PROPOSITION 1
The objective function in problem (21) can be written as∑

k∈K

MOSkweb

=
∑
k∈K

(
C1 ln

(∑
t∈T

∑
n∈N

log2

(
1 + Γtn,k

))
+ Ck3

)

=
∑
k∈K

C1 ln

(∑
t∈T

∑
n∈N

log2

(
1 + Γtn,k

))
︸ ︷︷ ︸

U′(Γ)

+
∑
k∈K

Ck3︸ ︷︷ ︸
Constant

(B.1)

Note that
∑
k∈KC

k
3 is constant, which will not affect the

optimal solution. In addition, based on Lemma 1, we have
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proved that U ′(Γ) is a monotonically increasing function of
Γ. Based on the property, at the optimum the strict equality
will be satisfied for Γtn,k ≤ γtn,k, ∀n, ∀k, and ∀t. Therefore,
the relaxation is tight. Problem (23) will have the same optimal
solution with problem (21).

APPENDIX C: PROOF OF PROPOSITION 2

By rearranging (31b) as

P tn,k−Γtn,k

|Ktn|∑
i=k+1

P tn,i −
Γtn,k
htn,k

∑
s 6=t

|fsn,k|2P sn ≥
Γtn,k
htn,k

σ2. (C.1)

For any subchannel SCn, (C.2) can be expressed as(
I− (Λn + DnGn)

)
pn � Dnσ

2, (C.2)
where

Λn =diag
([

Λ1
n,Λ

2
n, · · · ,ΛTn

n

])
,

Dn =diag
([
D1
n,D

2
n, · · · ,DTn

n

])
,

pn =[p1
n,p

2
n, · · · ,pTnn ]′,Gn =

[
G1
n,G

2
n, · · · ,GTn

n

]′
.

and Λt
n is an upper triangle matrix with the element in the

i-th row and the j-th column Λt
n[i, j] = Γtn,i with j > i.

Dt
n =diag

([
Γtn,1
htn,1

,
Γtn,2
htn,2

, · · · ,
Γtn,Lt
ht
n,Lt

])
, (C.4a)

ptn =
[
P tn,1, P

t
n,2, · · · , P tn,Lt

]′
, (C.4b)

Gt
n =

[
h1
n,11

′
Lt , · · · , h

t−1
n,1 1′Lt ,0

′
Lt , h

t+1
n,1 1′Lt , · · · , h

Tn
n,Lt

1′Lt
]

(C.4c)
For example, we assume that Lt = 2 and Tn = 3, for t = 2,
we have

Λ2
n =

[
0 Γ2

n,1

0 0

]
,D2

n =

[
Γtn,1
htn,1

0

0 0

]
,p2

n =
[
P tn,1, P

t
n,2

]′
,

Gt
n =

[
h1
n,1, h

1
n,2, 0, 0, h

3
n,1, h

3
n,2

]
Analogously, for a pair of users UEk and UEj , with k > j,

we can rewritten constraints in (31c) as follows.
Hnp̄n ≥ θn (C.6)

where
H̄n =

[
H̄1
n, H̄

2
n, · · · , H̄Tn

n

]
,θn =

[
θ1
n, θ

2
n, · · · , θTnn ,

]
,

p̄n =
[
P 1
n , P

2
n , · · · , PTnn

]′
,Ht

n =
[
h̄1
n, · · · , h̄t−1

n , 0, h̄t+1
n , · · · , h̄Tnn

]
h̄sn =|f tn,k|2|fsn,j |2 − |f tn,j |2|fsn,k|2, s 6= t,

θtn =(|f tn,k|2 − |fsn,k|2)σ2.

Substituting (C.2) and (C.6) into optimization problem (31),
we can attain problem (32).
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