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Abstract

This paper investigates the physical layer security of non-orthogonal multiple access (NOMA)

in large-scale networks with invoking stochastic geometry. Both single-antenna and multiple-antenna

aided transmission scenarios are considered, where the base station (BS) communicates with randomly

distributed NOMA users. In the single-antenna scenario, we adopt a protected zone around the BS

to establish an eavesdropper-exclusion area with the aid of careful channel-ordering of the NOMA

users. In the multiple-antenna scenario, artificial noise is generated at the BS for further improving the

security of a beamforming-aided system. In order to characterize the secrecy performance, we derive

new exact expressions of the security outage probability for both single-antenna and multiple-antenna

aided scenarios. To obtain further insights, 1) for the single antenna scenario, we perform secrecy

diversity order analysis of the selected user pair. The analytical results derived demonstrate that the

secrecy diversity order is determined by the specific user having the worse channel condition among the

selected user pair; and 2) for the multiple-antenna scenario, we derive the asymptotic secrecy outage

probability, when the number of transmit antennas tends to infinity. The results derived indicate that

the channels of the eavesdroppers are independent of the number of transmit antennas for sufficiently

large antenna arrays. Monte Carlo simulations are provided for verifying the analytical results derived

and to show that: i) The security performance of the NOMA networks can be improved by invoking

the protected zone and by generating artificial noise at the BS; and ii) The asymptotic secrecy outage

probability is close to the exact secrecy outage probability, when the number of antennas at the BS is

around 20.
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I. INTRODUCTION

The unprecedented expansion of new Internet-enabled smart devices, applications and services

is expediting the development of the fifth generation (5G) networks, which aim for substantially

increasing the throughput of the fourth generation (4G) networks. In addition to the key tech-

nologies such as large-scale multiple-input multiple-output (MIMO) solutions, heterogeneous

networks and millimeter wave, as well as novel multiple access (MA) techniques should be

invoked for improving the spectral efficiency [1]. Non-orthogonal multiple access (NOMA),

which has been recently proposed for 3GPP Long Term Evolution (LTE) [2], is expected to

have a superior spectral efficiency. It has also been pointed out that NOMA has the potential

to be integrated with existing MA paradigms, since it exploits the new dimension of the power

domain. The key idea of NOMA is to ensure that multiple users can be served within a given

resource slot (e.g., time/frequrecy/code), by applying successive interference cancellation (SIC).

Hence NOMA techniques have received remarkable attention both in the world of academia

and industry [3–7]. Ding et al. [3] investigated the performance of the NOMA downlink for

randomly roaming users. It was shown that NOMA is indeed capable of achieving a better

performance than their traditional orthogonal multiple access (OMA) counter parts. By consid-

ering the user fairness of a NOMA system, a user-power allocation optimization problem was

addressed by Timotheou and Krikidis [4]. A cooperative simultaneous wireless power transfer

(SWIPT) aided NOMA protocol was proposed by Liu et al. [5], where a NOMA user benefitting

from good channel conditions acts as an energy harvesting source in order to assist a NOMA user

suffering from poor channel conditions. To further improve the performance of NOMA systems,

multiple antennas were introduced in [6, 7]. More particularly, the application of multiple-input

single-output (MISO) solution to NOMA was investigated by Choi et al. [6], where a two-stage

beamforming strategy was proposed. Power optimization was invoked by Sun et al. [7] for

maximizing the ergodic capacity of MIMO aided NOMA systems.

Given the broadcast nature of wireless transmissions, the concept of physical (PHY) layer

security (PLS), which was proposed by Wyner as early as 1975 from an information-theoretical

perspective [8], has sparked of wide-spread recent interest. To elaborate, PLS has been con-

sidered from a practical perspective in [9–13]. Specifically, robust beamforming transmission

was conceived in conjunction with applying artificial noise (AN) for mitigating the impact
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of imperfect channel state information (CSI) in MIMO wiretap channels was proposed by

Mukherjee and Swindlehurst [9]. Ding et al. [10] invoked relay-aided cooperative diversity for

increasing the capacity of the desired link. More particularly, the impact of eavesdroppers on the

diversity and multiplexing gains was investigated both in single-antenna and multiple-antenna

scenarios. Additionally, the tradeoffs between secure performance and reliability in the presence

of eavesdropping attacks was identified by Zou et al. [12]. Furthermore, the physical layer

security of D2D communication in large-scale cognitive radio networks was investigated by

Liu et al. [13] with invoking a wireless power transfer model, where the positions of the power

beacons, the legitimate and the eavesdropping nodes were modeled using stochastic geometry.

Recently, various PHY layer techniques, such as cooperative jamming [14] and AN [15] aided

solutions were proposed for improving the PLS, even if the eavesdroppers have better channel

conditions than the legitimate receivers. A popular technique is to generate AN at the transmitter

for degrading the eavesdroppers’ reception, which was proposed by Goel and Negi in [15]. In

contrast to the traditional view, which regards noise and interference as a detrimental effect,

generating AN at the transmitter is capable of improving the security, because it degrades the

channel conditions of eavesdroppers without affecting those of the legitimate receivers. An AN-

based multi-antenna aided secure transmission scheme affected by colluding eavesdroppers was

considered by Zhou and McKay [16] for the scenarios associated both with perfect and imperfect

CSI at both the transmitter and receiver. As a further development, the secrecy enhancement

achieved in wireless Ad Hoc networks was investigated by Zhang et al. [17], with the aid of

both beamforming and sectoring techniques.

A. Motivation and Contribution

As mentioned above, PLS has been studied in various scenarios, but not in NOMA, which

motivates this contribution. In this paper, we specifically consider the scenario of large-scale

networks, where a base station (BS) supports randomly roaming NOMA users. In order to avoid

sophisticated high-complexity message detection at the receivers, a user pairing technique is

adopted for ensuring that only two users share a specific orthogonal resource slot, which can

be readily separated by low-complexity SIC. A random number of eavesdroppers are randomly

positioned on an infinite two-dimensional plane according to a homogeneous Poisson point

process (PPP). An eavesdropper-exclusion zone is introduced around the BS for improving
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the secrecy performance of the large-scale networks considered in which no eavesdroppers are

allowed to roam. This ‘disc’ was referred to as a protected zone in [17–19]. Specifically, we

consider both a single-antenna scenario and a multiple-antenna scenario at the base station (BS).

1) For the single-antenna scenario, M NOMA users are randomly roaming in an finite disc (user

zone) with the quality-order of their channel conditions known at the BS. For example, the m-th

NOMA user is channel-quality order of m. In this case, the m-th user is paired with the n-th

user for transmission within the same resource slot; 2) For the multiple-antenna scenario, we

invoke beamforming at the BS for generating AN. In order to reduce the complexity of channel

ordering of MISO channels for NOMA, we partitioned the circular cell of Fig. 1 into an an

internal disc and an external ring. We select one user from the internal disc and another from

the external ring to be paired together for transmission within the same resource slot using a

NOMA protocol. The primary contributions of this paper are as follows:

• We investigate the secrecy performance of large-scale NOMA networks both for a single-

antenna aided and a multiple-antenna assisted scenario at the BS. A protected zone syn-

onymously referred to as the eavesdropper-exclusion area, is invoked in both scenarios for

improving the PLS. Additionally, we propose to generate AN at the BS in the multiple-

antenna aided scenario for further enhancing the secrecy performance.

• For the single-antenna scenario, we derive the exact analytical expressions of the secrecy

outage probability (SOP) of the selected pair of NOMA users, when relying on channel

ordering. We then further extend on the secrecy diversity analysis and derive the expressions

of asymptotic SOP. The results derived confirm that: 1) for the selected pair, the m-th user

is capable of attaining a secrecy diversity order of m; 2) the secrecy diversity order is

determined by the one associated with the worse channel condition between the paired

users.

• For the multiple-antenna scenario, we derive the exact analytical expressions of the SOP

in conjunction with AN generated at the BS. To gain further insights, we assume having a

large antenna array and derive the expressions of SOP, when the number of antennas tends

to infinity. The results derived confirm that increasing the number of antennas has no effect

on the received signal-to-interference-plus-noise ratio (SINR) at the eavesdroppers, when

the BS is equipped with a large antenna array.
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• It is shown that: 1) the SOP can be reduced both by extending the protected zone and by

generating AN at the BS; 2) the asymptotic SOP results of our large antenna array analysis

is capable of closely approximating the exact secrecy outage provability; 3) there is an

optimal desired signal-power and AN power sharing ratio, which minimizes the SOP in the

multi-antenna scenario.

B. Organization

The rest of the paper is organized as follows. In Section II, a single-antenna transmission

scenario is investigated in random wireless networks, where channel ordering of the NOMA

users is relied on. In Section III, a multiple-antenna transmission scenario is investigated, which

relies on generating AN at the BS. Our numerical results are presented in Section IV for verifying

our analysis, which is followed by our conclusions in Section V.

II. PHYSICAL LAYER SECURITY IN RANDOM WIRELESS NETWORKS WITH CHANNEL

ORDERING

As shown in Fig. 1, we focus our attention on a secure downlink communication scenario.

In the scenario considered, a BS communicates with M legitimate users (LUs) in the presence

of eavesdroppers (Es). We assume that the M users are divided into M/2 orthogonal pairs. For

each pair, the NOMA transmission protocol is invoked. It is assumed that BS is located at the

center of a disc, denoted by D, which has a coverage radius of RD (which is defined as the

user zone for NOMA [3]). The M randomly roaming LUs are uniformly distributed within the

disc. A random number of Es is distributed in an infinite two-dimensional plane. The spatial

distribution of all Es is modeled using a homogeneous PPP, which is denoted by Φe associated

with the density λe. It is assumed that the Es can be detected, provided that they are close

enough to BS. Therefore, an E-exclusion area having a radius of rp is introduced. Additionally,

all channels are assumed to impose quasi-static Rayleigh fading, where the channel coefficients

are constant for each transmission block, but vary independently between different blocks.

Without loss of generality, it is assumed that all the channels between the BS and LUs obey

|h1|2 ≤ · · ·|hm|2 ≤ · · ·|hn|2 ≤ · · ·|hM |2. Both the the small-scale fading and the path loss are

incorporated into the ordered channel gain. Again, we assume that the m-th user and the n-th

user (m < n) are paired for transmission in the same resource slot. With loss of generality, we
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Fig. 1: Network model for secure NOMA transmission in single-antenna scenario.

focus our attention on a single selected pair of users in the rest of the paper. In the NOMA

transmission protocol, more power should be allocated to the user suffering from worse channel

condition [1, 2]. Therefore, the power allocation coefficients satisfy the conditions that am ≥ an

and am+an = 1. SIC is invoked for detecting the stronger user first. Based on the aforementioned

assumptions, the instantaneous SINR of the m-th user and the signal-to-noise ratio (SNR) of the

n-th user can be written as:

γBm =
am|hm|2

an|hm|2 + 1
ρb

, (1)

γBn = ρban|hn|2, (2)

respectively. We introduce the convenient concept of transmit SNR ρb =
PT

σ2
b

, where PT is the

transmit power at the BS and σ2
b is the variance of the additive white Gaussian noise (AWGN)

at the LUs, noting that this is not a physically measurable quantity owing to their geographic

separation. In order to ensure that the m-th user can successfully decode the message of the

n-th user, the condition of am ≥
(
2Rm − 1

)
an should be satisfied. Additionally, a bounded path

loss model is used for guaranteeing that there is a practical path-loss, which is higher than one

even for small distances.

We consider the worst-case scenario of large-scale networks, in which the Es are assumed

to have strong detection capabilities. Specifically, by applying multiuser detection techniques,
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the multiuser data stream received from BS can be distinguished by the Es. In the scenario

considered, all the downlink CSIs are assumed to be known at BS. Under this assumption, the

most detrimental E is not necessarily the nearest one, but the one having the best channel to BS.

Therefore, the instantaneous SNR of detecting the information of the m-th user and the n-th

user at the most detrimental E can be expressed as follows:

γEκ = ρeaκ max
e∈Φe,de≥rp

{
|ge|2L (de)

}
. (3)

It is assumed that κ ∈ {m,n}, ρe = PA

σ2
e

is the transmit SNR with σ2
e being the variance of the

AWGN at Es. Additionally, ge is defined as the small-scale fading coefficient associated with

ge ∼ CN (0, 1), L (de) =
1
dαe

is the path loss, and de is the distance from Es to BS. Note that

due to the existence of the E-exclusion area (we assume rp > 1), it is not required to bound the

path loss for Es since de will always be larger than one.

A. New Channel Statistics

In this subsection, we derive several new channel statistics for LUs and Es, which will be

used for deriving the secrecy outage probability in the next subsection.

Lemma 1. Assuming M randomly located NOMA users in the disc of Fig. 1, the cumulative

distribution function (CDF) FγBn
of the n-th LU is given by

FγBn
(x) = φn

M−n∑
p=0

(
M − n

p

)
(−1)p

n+ p

∑
S̃p
n

(
n+ p

q0 + · · ·+ qK

)( K∏
K=0

bqkk

)
e
−

K∑
k=0

qkck
x

ρban , (4)

where K is a complexity-vs-accuracy tradeoff parameter, bk = −ωK

√
1− ϕ2

k (ϕk + 1), b0 =

−
K∑
k=1

bk, ck = 1 +
[
RD

2
(ϕk + 1)

]α
, ωK = π

K
, and ϕk = cos

(
2k−1
2K

π
)
,

S̃p
n =

{
(q0, q1, · · · , qK)|

K∑
i=0

qi = n+ p

}
,
(

n+p
q0+···+qK

)
= (n+p)!

q0!···qK !
and φn = M !

(M−n)!(n−1)!
.

Proof: See Appendix A .

Lemma 2. Assuming M randomly positioned NOMA users in the disc of Fig. 1, the CDF FγBm
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of the m-th LU is given in (5)

FγBm
(x) =U

(
x− am

an

)
+ U

(
am
an

− x

)
φm

×
M−m∑
p=0

(
M −m

p

)
(−1)p

m+ p

∑
S̃p
m

(
m+ p

q0 + · · ·+ qK

)( K∏
k=0

bqkk

)
e
−

K∑
k=0

qkck
x

(am−anx)ρb . (5)

where U (x) =


1, x > 0

0, x ≤ 0
is the unit step function , and S̃p

m =

{
(q0, q1, · · · , qK)|

K∑
i=0

qi = m+ p

}
.

Proof: Based on (1), the CDF of FγBm
(x) can be expressed as

FγBm
(x) =


Pr

{
|hm|2 <

x

(am − anx) ρb

}
︸ ︷︷ ︸

Φm

, x < am
an

1, x ≥ am
an

. (6)

To derive the CDF of FγBm
(x), Φm can be expressed as Φm = F|hm|2

(
x

(am−anx)ρb

)
. Based on

(A.5), interchanging the parameters m → n and applying y = x
(am−anx)ρb

, we obtain

Φm = φm

M−m∑
p=0

(
M −m

p

)
(−1)p

m+ p

∑
S̃p
m

(
m+ p

q0 + · · ·+ qK

)( K∏
k=0

bqkk

)
e
−

K∑
k=0

qkck
x

(am−anx)ρb . (7)

By substituting (7) into (6), with the aid of the unit step function, the CDF of FγBm
(x) can be

obtained. The proof is completed.

Lemma 3. Assuming that the eavesdroppers obey the PPP distribution and the E-exclusion zone

has a radius of rp, the probability density function (PDF) fγEκ
of the most detrimental E (where

κ ∈ {m,n} ) is given by

fγEκ
(x) = µκ1e

−µκ1Γ(δ,µκ2x)

xδ

(
µδ
κ2e

−µκ2x

x
+

δΓ (δ, µκ2x)

xδ+1

)
, (8)

where µκ1 = δπλe(ρeaκ)
δ, µκ2 =

rαp
ρeaκ

, δ = 2
α

and Γ(·, ·) is the upper incomplete Gamma

function.
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Proof: To derive the PDF of fγEκ
(x), we have to compute the CDF of FγEκ

firstly as

FγEκ
(x) =EΦe

 ∏
e∈Φe,de≥rp

F|ge|2

(
xdαe
ρeaκ

) . (9)

By applying the generating function [20], (9) can be rewritten as

FγEκ
(x) = exp

[
−λe

∫
R2

(
1− F|ge|2

(
xdαe
ρeaκ

))
rdr

]
= exp

[
−2πλe

∫ ∞

rp

re−
x

ρeaκ
rαdr

]
. (10)

By applying [21, Eq. (3.381.9)], we arrive at:

FγEκ
(x) = e−

δπλe(ρeaκ)δΓ

(
δ,

xrαp
ρeaκ

)
xδ . (11)

By taking the derivative of the CDF FγEκ
(x) in (11), we obtain the PDF γEκ in (8). The

proof is completed.

B. Secrecy Outage Probability

In the networks considered, the capacity of the LU’s channel for the κ-h user (κ ∈ {m,n}

) is given by CBκ = log2(1 + γBκ), while the capacity of the E’s channel for the κ-th user is

quantified by CEκ = log2(1+γEκ). It is assumed that the length of the block is sufficiently high

for facilitating the employment of capacity-achieving codes within each block. Additionally, the

fading block length of the main channel and of the eavesdropper’s channel are assumed to be

the same. As such, according to [22], the secrecy rate of the m-th and of the n-th user can be

expressed as

Im = [CBm − CEm ]
+, (12)

In = [CBn − CEn ]
+, (13)

for CBm > CEm and CBn > CEn , respectively, where we have [x]+ = max{x, 0}. Here, the

secrecy rates of LUs are strictly positive [23]. Recall that the Es’ CSIs are not known at the BS,

hence the BS can only send information to LUs at a constant rate. Considering the κ-th user as

an example, if Rκ < Iκ, the information with a rate of Rκ is conveyed in perfect secrecy. By

contrast, for the case of Rκ > Iκ the information-theoretic security is compromised. Motivated

by this, the secrecy outage probability is used as our secrecy performance metric in this paper.



10

Given the expected secrecy rate Rκ of the κ-th user, a secrecy outage event is declared, when

the secrecy rate Iκ drops below Rκ. As such, based on (12) and according to [23], the SOP for

the m-th user is given by

Pm (Rm) =

∫ ∞

0

fγEm
(x)FγBm

(
2Rm (1 + x)− 1

)
dx. (14)

Based on the assumption of am ≥
(
2Rm − 1

)
an, we consider the SOP under the condition that

the connection between BS and LUs can be established. Upon using the results of Lemma 2

and Lemma 3, as well as substituting (5) and (8) into (14), after some further mathematical

manipulations, we can express the SOP of the m-th user according to the following theorem:

Theorem 1. Assuming that the LUs position obeys the PPP for the ordered channels of the LUs,

the SOP of the m-th user is given by (15)

Pm (Rm) =1− e
−µm1Γ(δ,τmµm2)

τmδ + φm

M−m∑
p=0

(
M −m

p

)
(−1)p

m+ p

∑
S̃p
m

(
m+ p

q0 + · · ·+ qK

)( K∏
k=0

bqkk

)

×
∫ τm

0

µm1

(
µδ
m2e

−µm2x

x
+

δΓ (δ, µm2x)

xδ+1

)
e
−µm1Γ(δ,µm2x)

xδ
−

K∑
k=0

qkck
2Rm (1+x)−1

(am−an(2Rm (1+x)−1))ρb dx.

(15)

where we have τm = 1
2Rm (1−am)

− 1.

In this treatise, we consider the SOP under the condition that the connection between the BS

and LUs can be established. As such, the SIC has been assumed to be successfully performed

at the n-th user. Based on (13), the SOP is given by

Pn (Rn) =

∫ ∞

0

fγEn
(x)FγBn

(
2Rn (1 + x)− 1

)
dx. (16)

Upon using the results of Lemma 1 and Lemma 3, and substituting (4) and (8) into (16),

after some further mathematical manipulations, we can express the SOP of the n-th user with

the aid of the following theorem:

Theorem 2. Assuming that the LUs position obeys the PPP for the ordered channels of the LUs,
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the SOP of the n-th user is given by

Pn (Rn) =φn

M−n∑
p=0

(
M − n

p

)
(−1)p

n+ p

∑
S̃p
n

(
n+ p

q0 + · · ·+ qK

)( K∏
K=0

bqkk

)

×
∫ ∞

0

µn1

(
µδ
n2e

−µn2x

x
+

δΓ (δ, µn2x)

xδ+1

)
e
−µn1Γ(δ,µn2x)

xδ
−

K∑
k=0

qkck
2Rn (1+x)−1

ρban dx. (17)

In this paper, we consider the secrecy outage occurs in the m-th user and the n-th user are

independent. In other words, the SOP of the m-th user has on effect on the SOP of the n-th user

and vice versa. As a consequence, we define the SOP for the selected user pair as that of either

the m-th user or the n-th user outage. Hence, based on (15) and (17), the SOP of the selected

user pair is given by

Pmn = 1− (1− Pm) (1− Pn) . (18)

C. Secrecy Diversity Order Analysis

In order to derive the secrecy diversity order to gain further insights into the system’s operation

in the high-SNR regime, the following new analytical framework is introduced. Again, as the

worst-case scenario, we assume that Es have a powerful detection capability. The asymptotic

behavior is analyzed, usually when the SNR of the channels between the BS and LUs is

sufficiently high, i.e., when the BS’s transmit SNR obeys ρb → ∞, while and the SNR of

the channels between BS and Es is set to arbitrary values. It is noted that for the E-transmit

SNR of ρe → ∞, the probability of successful eavesdropping will tend to unity. The secrecy

diversity order can be defined as follows:

ds = − lim
ρb→∞

logP∞

log ρb
, (19)

where P∞ is the asymptotic SOP. We commence our diversity order analysis by characterizing

the CDF of the LUs F∞
γBm

and F∞
γBn

in the high-SNR regime. When y → 0, based on (A.3) and

the approximation of 1−e−y ≈ y, we obtain the asymptotic unordered CDF of
∣∣∣h̃n

∣∣∣2 as follows:

F∞
|h̃n|2 (y) ≈

2y

R2
D

∫ RD

0

(1 + rα) rdr = yℓ, (20)

where ℓ = 1 +
2Rα

D

α+2
.
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Substituting (20) into (A.2), the asymptotic unordered CDF of
∣∣∣h̃n

∣∣∣2 is given by

F∞
|hn|2 (y) = φn

M−n∑
p=0

(
M − n

p

)
(−1)p

n+ p
(yℓ)n+p ≈ φn

n
(yℓ)n. (21)

Similarly, based on (A.1), we can obtain F∞
γBn

(x) ≈ φn

n

(
xℓ

ρban

)n
. Based on Φm and (21), we can

arrive at:

Φ∞
m ≈φm

m

(
xℓ

(am − anx) ρb

)m

. (22)

Substituting (22) into (6), the asymptotic CDF of γBm can be expressed as

F∞
γBm

(x) = U

(
x− am

an

)
+ U

(
am
an

− x

)
Φ∞

m , (23)

where Φ∞
m is given in (22).

Based on (16), we can replace the CDF of FγBn
by the asymptotic F∞

γBn
. After some manipu-

lations, we arrive at the asymptotic SOP of the n-th user formulated by the following theorem.

Theorem 3. Assuming that the LUs position obeys the PPP for the ordered channels of the LUs,

the asymptotic SOP of the n-th user is given by

P∞
n (Rn) = Gn(ρb)

−Dn + o
(
ρ−Dn
b

)
, (24)

where we have Q1 =
∫∞
0

µn1e
−µn1Γ(δ,µn2x)

xδ

(
µδ
n2e

−µn2x

x
+ δΓ(δ,µn2x)

xδ+1

)(
(2Rn (1+x)−1)ℓ

an

)n

dx, Gn =

φnQ1

n
, and Dn = n.

Similarly, based on (14), we can replace the CDF of FγBm
by the asymptotic F∞

γBm
of (23).

Additionally, we can formulate the asymptotic SOP of the m-th user by the following theorem.

Theorem 4. Assuming that the LUs position obeys the PPP for the ordered channels of the LUs,

the asymptotic SOP for the m-th user is given by

P∞
m (Rn) = Gm(ρb)

−Dm + o
(
ρ−Dm
b

)
, (25)

where we have Q2 =
∫ τm
0

µm1e
−µm1Γ(δ,µm2x)

xδ

(
µδ
m2e

−µm2x

x
+ δΓ(δ,µm2x)

xδ+1

)(
(2Rm (1+x)−1)ℓ

(am−an(2Rm (1+x)−1))

)m

dx,

Gm = φmQ2

m
and Dm = m.
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Substituting (24) and (25) into (18), the asymptotic SOP for the user pair can be expressed as

P∞
mn =P∞

m + P∞
n − P∞

m P∞
n ≈ P∞

m Gm(ρb)
−Dm . (26)

Based on Theorem 4 and Theorem 3, and upon substituting (24) and (25) into (19), we arrive

at the following proposition.

Proposition 1. For m < n, the secrecy diversity order can be expressed as

ds = − lim
ρb→∞

log (P∞
m + P∞

n − P∞
m P∞

n )

log ρb
= m. (27)

Remark 1. The results of (27) indicate that the secrecy diversity order and the asymptotic SOP

for the user pair considered are determined by the m-th user.

Remark 1 provides insightful guidelines for improving the SOP of the networks considered

by invoking user pairing among of the M users. Since the SOP of a user pair is determined by

that of the one having a poor channel, it is efficient to pair the user having the best channel and

the second best channel for the sake of achieving an increased secrecy diversity order.

III. ENHANCING SECURITY WITH THE AID OF ARTIFICIAL NOISE

In addition to single antenna scenario [24], for further improving the secrecy performance,

let us now consider the employment of multiple antennas at BS for generating AN in order

to degrade the Es’ SNR. More particularly, the BS is equipped with NA antennas, while all

LUs and Es are equipped with a single antenna each. We mask the superposed information of

NOMA by superimposing AN on Es with the aid of the BS. It is assumed that the CSI of LUs

are known at BS. Since the AN is in the null space of the intended LU’s channel, it will not

impose any effects on LUs. However, it can significantly degrade the channel and hence the

capacity of Es. More precisely, the key idea of using AN as proposed in [25] can be described

as follows: an orthogonal basis of CNA is generated at BS for user κ, (where κ ∈ {m,n}) as a

(NA ×NA)–element precoding matrix Uκ = [uκ,Vκ], where we have uκ = h†
κ
/
∥hκ∥ , and Vκ

is of size NA× (NA − 1). Here, hκ is denoted as the intended channel between the BS and user

κ. It is noted that each column of Vκ is orthogonal to uκ. Beamforming is applied at the BS

for generating AN. As such, the transmitted superposed information, which is masked by AN
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Fig. 2: Network model for secure NOMA transmission using AN in multiple-antenna scenario.

at the BS is given by ∑
κ∈{m,n}

√
aκxκ =

∑
κ∈{m,n}

√
aκ (sκuκ + tκVκ) , (28)

where sκ is the information-bearing signal with a variance of σ2
s , and tκ is the AN. Here the

(NA − 1) elements of tκ are independent identically distributed (i.i.d.) complex Gaussian random

variables with a variance of σ2
a. As such, the overall power per transmission is PT = PS + PA,

where PS = θPT = σ2
s is the transmission power of the desired information-bearing signal,

while PA = (1− θ)PT = (NA − 1)σ2
a is the transmission power of the AN. Here θ represents

the power sharing coefficients between the information-bearing signal and AN. To reduce the

complexity of channel ordering in this MISO system when applying the NOMA protocol, as

shown in Fig. 2, we divide the disc D into two regions, namely, D1 and D2, respectively. Here,

D1 is an internal disc with radius RD1 , and the group of user n is located in this region. D2 is an

external ring spanning the radius distance from RD1 to RD2 , and the group of user m is located

in this region. In this scenario, channel ordering is unnecessary at the BS, since in this case the

path loss is the dominant channel impairment. For simplicity, we assume that user n and user m

are the selected user from each group in the rest of this paper. The cell-center user n is assumed

to be capable of cancelling the interference of the cell-edge user m using SIC techniques. User

n and user m are randomly selected in each region for pairing them for NOMA. The combined
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signal at user m is given by

ym =

√
amsmhm√
1 + dαm︸ ︷︷ ︸

Signal part

+

√
ansnhmun√
1 + dαm

+

√
anhmtnVn√
1 + dαm

+ nm︸ ︷︷ ︸
Interference and noise part

, (29)

where nm is a Gaussian noise vector at user m, while dm is the distance between the BS and

user m. Substituting (28) into (29), the received SINR at user m is given by

γAN
Bm

=
amσ

2
s∥hm∥2

anσ2
s

∣∣∣hm
h†
n

∥hn∥

∣∣∣2 + anσ2
a∥hmVn∥2 + 1 + dαm

, (30)

where the variance of nm is normalized to unity. As such, we can express the transmit SNR at

BS as ρt = PT .

Since SIC is applied at user n, the interference arriving from user m can be detected and

subtracted firstly. The aggregate signal at user n is given by

yn =
hn

√
ansn√

1 + dαn︸ ︷︷ ︸
Signal part

+
hn

√
amtmVm√
1 + dαn

+ nn︸ ︷︷ ︸
Interference and noise part

, (31)

where nn is the Gaussian noise at user n, while dn is the distance between the BS and user n.

The received SINR at user n is given by

γAN
Bn

=
anσ

2
s∥hn∥2

amσ2
a∥hnVm∥2 + 1 + dαn

, (32)

where the variance of nn is normalized to unity. The signal observed by Es is given by

ye =
∑

κ∈{m,n}

√
aκxκ

he√
dαe

+ ne, (33)

where ne is the Gaussian noises at Es, while he ∈ C1×NA is the channel vector between the

BS and Es. Similar to the single-antenna scenario, again, we assume that the Es have a strong

detection capability and hence they unambiguously distinguish the messages of user m and user

n. The received SINR of the most detrimental E associated with detecting user κ is given by

γAN
Eκ

= aκσ
2
s max
e∈Φe,de≥rp

{
Xe,κ

IAN
e + dαe

}
, (34)



16

where the variance of ne is normalized to unity, and we have Xe,κ =
∣∣∣he

h†
κ

∥hκ∥

∣∣∣2 as well as

IAN
e = amσ

2
a∥heVm∥2 + anσ

2
a∥heVn∥2.

A. New Channel Statistics

In this subsection, we derive several new channel statistics for LUs and Es in the presence of

AN, which will be used for deriving the SOP in the next subsection.

Lemma 4. Assuming that user m is randomly positioned in the ring D2 of Fig. 2, for the case

of θ ̸= 1
NA

, the CDF of FAN
Bm

is given by

FAN
Bm

(x) =1− e−
νx
an

NA−1∑
p=0

(νx)p

p!

p∑
q=0

(
p

q

)
aq−p
n a1

 Γ (q + 1)(
νx+ 1

PS

)q+1 −
NA−2∑
l=0

(
NA−1
PA

− 1
PS

)l
l!
(
νx+

NA−1

PA

)q+l+1

Γ(q+l+1)


︸ ︷︷ ︸

I(θ)

×

p−q∑
u=0

(
p− q

u

)γ
(
u+ δ, νx

an
Rα

D2

)
− γ

(
u+ δ, νx

an
Rα

D1

)
(

νx
an

)u+δ
, (35)

where γ (·, ·) is the lower incomplete Gamma function, Γ (·) is the Gamma function, a1 =

δ
(
1− PA

(NA−1)PS

)1−NA

/
((
R2

D2
−R2

D1

)
PS

)
, and ν = an

amPS
.

For the case of θ = 1
NA

, the CDF of FAN
Bm

is given by (35) upon substituting I (θ) by I∗ (θ),

where we have I∗ (θ) = a2Γ(q+NA)(
νx+ 1

PS

)q+NA

p−q∑
u=0

(
p−q
u

)
and a2 =

δ

(R2
D2

−R2
D1
)PS

NA (NA−1)!
.

Proof: See Appendix B .

Lemma 5. Assuming that user n is randomly positioned in the disc D1 of Fig. 2, the CDF of

FAN
Bn

is given by

FAN
Bn

(x) = 1− b2e
− ϑx

am

NA−1∑
p=0

ϑpxp

p!

p∑
q=0

(
p

q

)
×

Γ (NA − 1 + q)(
ϑx+ NA−1

PA

)NA−1+q

ap−q
m

p−q∑
u=0

(
p− q

u

)au+δ
m γ

(
u+ δ, ϑx

am
Rα

D1

)
(ϑx)u+δ

, (36)

where we have b2 =
δ

R2
D1

Γ(NA−1)
(

PA
NA−1

)NA−1 and ϑ = am
anPS

.

Proof: See Appendix C.
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Lemma 6. Assuming that the distribution of Es obeys a PPP and that the E-exclusion zone has

a radius of rp, the PDF of fγAN
Eκ

(where κ ∈ {m,n}) is given by

fγAN
Eκ

(x) = −eΘκΨκ1

((
µAN
κ2

)δ
e−xµAN

κ2

x
Ψκ1 +

δΘκΨκ1

x
+ΘκΨκ2

)
, (37)

where Θκ =
Γ(δ,xµAN

κ2 )
xδ , Γ (·, ·) is the upper incomplete Gamma function, Ψκ1 = Ω 1(

x
aκPS

+τi

)j ,Ψκ2 =

Ω 1(
x

aκPS
+τi

)j

(
j(

x
aκPS

+τi

) 1
aκPS

)
, Ω = (−1)NAµAN

κ1

2∏
i=1

τNA−1
i

2∑
i=1

NA−1∑
j=1

aNA−j,NA−1(2τi − L)j−(2NA−2)

, L = τ1 + τ2, τ1 = NA−1
amPA

, τ2 = NA−1
anPA

, aNA−j,NA−1 =
(
2NA−j−3
NA−j−1

)
, µAN

κ1 = πλeδ(aκPS)
δ, and

µAN
κ2 =

rαp
aκPS

.

Proof: See Appendix D.

B. Secrecy Outage Probability

In this subsection, we investigate the SOP of a multiple-antenna aided scenario relying on

AN. Using the results of Lemma 4 and Lemma 6, based on (14), we expressed the SOP of

user m using the following theorem:

Theorem 5. Assuming that the LUs and Es distribution obey PPPs and that AN is generated at

the BS, for the case θ ̸= 1
NA

, the SOP of user m is given by

PAN
m (Rm) =

∫ ∞

0

−eΘmΨm1

((
µAN
m2

)δ
e−xµAN

m2

x
Ψm1 +

δΘmΨm1

x
+ΘmΨm2

)

×

1− a∗1

NA−1∑
p=0

ιpm
p!

p∑
q=0

(
p

q

)
aqn

 Γ (q + 1)(
anιm∗ +

1
PS

)q+1 −
NA−2∑
l=0

1
l!

(
NA−1
PA

− 1
PS

)l
Γ (q + l + 1)(

anιm∗ +
NA−1
PA

)q+l+1

T∗
1


︸ ︷︷ ︸

K(θ)

dx,

(38)

where we have a∗1 =
δe−ιm∗

(
1− PA

(NA−1)PS

)1−NA

(R2
D2

−R2
D1
)PS

, T∗
1 =

p−q∑
u=0

(
p−q
u

)γ(u+δ,ιm∗Rα
D2
)−γ(u+δ,ιm∗Rα

D1
)

ιu+δ
m∗

, and

ιm∗ =
ν(2Rm (1+x)−1)

an
.

For the case of θ = 1
NA

, the SOP for user m is given by (38) upon substituting K(θ) with

K∗ (θ), where K∗ (θ) = 1−a∗2
NA−1∑
p=0

ιpm∗
p!

p∑
q=0

(
p
q

)
Γ(q+NA)aqn(

anιm∗+
1

PS

)q+NA

p−q∑
u=0

(
p−q
u

)
T∗

1, and a∗2 =
δe−ιm∗

(R2
D2

−R2
D1
)PS

NA (NA−1)!
.
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Similarly, using the results of Lemma 5 and Lemma 6, as well as (16), we expressed the

SOP of user n by the following theorem:

Theorem 6. Assuming that the LUs and Es distribution obey PPPs and that AN is generated at

the BS, the SOP of user n is given by

PAN
n (Rn) =

∫ ∞

0

−eΘnΨn1

((
µAN
n2

)δ
e−xµAN

n2

x
Ψn1 +

δΘnΨn1

x
+ΘnΨn2

)

×

1− b2e
−ιn

NA−1∑
p=0

ιn∗
p!

p∑
q=0

(
p

q

)
Γ (NA − 1 + q) aqm(

amιn∗ +
NA−1
PA

)NA−1+q

p−q∑
u=0

(
p− q

u

)
γ
(
u+ δ, ιn∗R

α
D1

)
ιu+δ
n∗

 dx,

(39)

where ιn∗ =
ϑ(2Rn (1+x)−1)

am
.

Based on (38) and (39), the SOP for the selected user pair can be expressed as

PAN
mn = 1−

(
1− PAN

m

) (
1− PAN

n

)
. (40)

C. Large Antenna Array Analysis

In this subsection, we investigate the system’s asymptotic behavior when the BS is equipped

with large antenna arrays. It is noted that for the exact SOP derived in (38) and (39), as

NA increases, the number of summations in the equations will increase exponentially, which

imposes an excessive complexity. Motivated by this, we seek good approximations for the SOP

associated with a large NA. With the aid of the theorem of large values, we have the following

approximations: lim
NA→∞

∥hn∥2 → NA, lim
NA→∞

∥hm∥2 → NA, lim
NA→∞

∥hnVm∥2 → NA − 1, and

lim
NA→∞

∥hmVn∥2 → NA − 1.

We first derive the asymptotic CDF of user n for NA → ∞. Based on (32), we can express

the asymptotic CDF of FAN
Bn,∞ as FAN

Bn,∞ (x) = Pr
{

anPSNA

amPA+1+dαn
≤ x

}
.

After some further mathematical manipulations, we can obtain the CDF of FAN
Bn,∞ for large

antenna arrays in the following lemma.

Lemma 7. Assuming that user n is randomly located in the disc D1 of Fig. 2 and NA → ∞,
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the CDF of FAN
Bn,∞ is given by

FAN
Bn,∞ (x) =


0, x < ζn

1−
(

anPSNA
x

−amPA−1
)δ

R2
D1

, ζn ≤ x ≤ ξn

1, x ≥ ξn

, (41)

where we have ζn = anPSNA

Rα
D1

+amPA+1
and ξn = anPSNA

amPA+1
.

Similarly, based on (30),the CDF of the asymptotic FAN
Bm,∞ is given by

FAN
Bm,∞ (x) = Pr

 amPSNA

anPS

∣∣∣hm
h†
n

∥hn∥

∣∣∣2 + anPA + 1 + dαm

≤ x

 . (42)

After some further mathematical manipulations, we obtain the CDF of FAN
Bm,∞ for large antenna

arrays using the following lemma.

Lemma 8. Assuming that user m is randomly located in the ring D2 of Fig. 2 and NA → ∞,

the CDF of FAN
Bm,∞ is given by

FAN
Bm,∞ (x) =



1, x ≥ ζm1

R2
D2

−t2m+b1e
−amPSNA

xanPS

R2
D2

−R2
D1

∫ tm
RD1

re
rα

anPS dr, ζm2 < x ≤ ζm1

b1e
−amPSNA

xanPS

R2
D2

−R2
D1

∫ RD2

RD1
re

rα

anPS dr, x < ζm2

, (43)

where b1 = 2e
anPA+1

anPS , tm = α

√
amPSNA

x
− anPA − 1, ζm1 = amPSNA

Rα
D1

+anPA+1
, ζm2 = amPSNA

Rα
D2

+anPA+1
, and

ξm = amPSNA

anPA+1
.

Let us now turn our attention to the derivation of the Es’ PDF in a large-scale antenna scenario.

Using the theorem of large values, we have lim
NA→∞

IAN
e,∞ = amσ

2
a∥heVm∥2+anσ

2
a∥heVn∥2 → PA.

The asymptotic CDF of FγAN
Eκ,∞

associated with NA → ∞ is given by

FγAN
Eκ,∞

(x) = Pr

{
max

e∈Φe,de≥rp

{
aκPSXe,κ

IAN
e,∞ + dαe

}
≤ x

}
= EΦe

 ∏
e∈Φe,de≥rp

FXe,κ

(
(PA + dαe )x

aκPS

) .

(44)
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Following the procedure used for deriving (10), we apply the generating function and switch to

polar coordinates. Then with the help of [21, Eq. (3.381.9)], (44) can be expressed as

FγAN
Eκ,∞

(x) = exp

[
−
µAN
κ1 Γ

(
δ, µAN

κ2 x
)

xδ
e
− PAx

aκPS

]
. (45)

Taking derivative of (45), we obtain the PDF of fγAN
Eκ,∞

in the following lemma.

Lemma 9. Assuming that the Es distribution obeys a PPP and that AN is generated at the BS,

the E-exclusion zone has a radius of rp, and NA → ∞, the PDF of fγAN
Eκ,∞

is given by

fγAN
Eκ,∞

(x) =e
−

µAN
κ1 Γ(δ,µAN

κ2 x)e
− PAx

aκPS

xδ
− PAx

aκPS µAN
κ1 x−δ

((
µAN
κ2

)δ
xδ−1e−µAN

κ2 x + Γ
(
δ, µAN

κ2 x
)( PA

aκPS

+
δ

x

))
.

(46)

Remark 2. The results derived in (46) show that the PDF of fγAN
Eκ,∞

is independent of the number

of antennas NA in our large antenna array analysis. This indicates that NA has no effect on

the channel of the Es, when the number of antennas is sufficiently high.

Let us now derive the SOP for our large antenna array scenario. Using the results of Lemma 8

and Lemma 9, based on (14), we can express the SOP for user m in the following theorem.

Theorem 7. Assuming that the LUs and Es distribution obey PPPs, AN is generated at the BS,

and NA → ∞, the SOP for user m is given by

PAN
m,∞ (Rm) = 1− e

−
µAN
κ1 Γ(δ,µAN

κ2 χm1)
(χm1)

δ e
−PAχm1

aκPS

+
µAN
m1 b1Λ1

R2
D2

−R2
D1

∫ χm2

0

e
−

µAN
m1 Γ(δ,µAN

m2 x)e
− PAx

amPS

xδ
− amPSNA
(2Rm (1+x)−1)anPS

− PAx

amPS Ξ1dx

+
µAN
m1

R2
D2

−R2
D1

∫ χm1

χm2

e
−

µAN
m1 Γ(δ,µAN

m2 x)e
− PAx

amPS

xδ
− PAx

amPS

(
R2

D2
− t2m∗ + b1e

− amPSNA
(2Rm (1+x)−1)anPS

)
Ξ1Λ2dx,

(47)

where we have Ξ1 = x−δ
(
µAN
m2

(
µAN
m2 x

)δ−1
e−µAN

m2 x + Γ
(
δ, µAN

m2 x
) (

PA

amPS
+ δ

x

))
, Λ1 =

∫ RD2

RD1
re

rα

anPS dr,

Λ2 =
∫ tm∗
RD1

re
rα

anPS dr, tm∗ = α

√
amPSNA

2Rm (1+x)−1
− anPA − 1, and χm2 =

ζm2+1
2Rm − 1.

Similarly, using the results of Lemma 7 and Lemma 9, as well as (16), we can express the



21

SOP for user n in the following theorem.

Theorem 8. Assuming that the LUs and Es distribution obey PPPs, AN is generated at the BS

and NA → ∞, the SOP for user n is given by

PAN
n,∞ (Rn) =1− e

−
µAN
n1 Γ(δ,µAN

n2 χn2)
(χn2)

δ e
−PAχn2

anPS

+ µAN
n1

∫ χn2

χn1

e
−

µAN
n1 Γ(δ,µAN

n2 x)e
− PAx

anPS

xδ
− PAx

anPS Ξ2

×

(
1− 1

R2
D1

(
anPSNA

2Rn (1 + x)− 1
− amPA − 1

)δ
)
dx, (48)

where χn1 =
ζn+1
2Rn −1, χn2 =

ξn+1
2Rn −1, and Ξ2 = x−δ

((
µAN
n2

)δ
xδ−1e−µAN

n2 x + Γ
(
δ, µAN

n2 x
) (

PA

anPS
+ δ

x

))
.

Based on (47) and (48), the SOP for the selected user pair can be expressed as

PAN
mn,∞ = 1−

(
1− PAN

m,∞
) (

1− PAN
n,∞
)
. (49)

IV. NUMERICAL RESULTS

In this section, our numerical results are presented for characterizing the performance of large-

scale networks. It is assumed that the power allocation coefficients of NOMA are am = 0.6,

an = 0.4. The targeted data rates of the selected NOMA user pair are assumed to be Rm = Rn =

0.1 bit per channel use (BPCU). The complexity-vs-accuracy tradeoff parameter is K = 20.

A. Secrecy outage probability with channel ordering

In Fig. 3, we investigate the secrecy performance in conjunction with channel ordering, which

correspond to the scenario considered in Section II.

Fig. 3(a) plots the SOP of a single user (m-th and n-th) versus ρb for different user zone radii.

The curves represent the exact analytical SOP of both the m-th user and of n-th user derived

in (15) and (17), respectively. The asymptotic analytical SOP of both the m-th and n-th users,

are derived in (25) and (24), respectively. Monte Carlo simulations are used for verifying our

derivations. Fig. 3(a) confirms the close agreement between the simulation and analytical results.

A specific observation is that the reduced SOP can be achieved by reducing the radius of the

user zone, since a smaller user zone leads to a lower path-loss. Another observation is that the

n-th user has a more steep slope than the m-th user. This is due to the fact that we have m < n

and the m-th user as well as n-th user achieve a secrecy diversity order of m and n respectively,

as inferred from (25) and (24).
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Fig. 3: The SOP with channel ordering, which correspond to the scenario considered in Section II

Fig. 3(b) plots the SOP of the selected user pair versus the transmit SNR ρb for different path-

loss factors. The exact analytical SOP curves are plotted from (18). The asymptotic analytical

SOP curves are plotted from (26). It can be observed that the two kinds of dashed curves have

the same slopes. By contrast, the solid curves indicate a higher secrecy outage slope, which is

due to the fact that the secrecy diversity order of the user pair is determined by that of the poor

one. This phenomenon is also confirmed by the insights in Remark 1.

Fig. 3(c) plots the SOP of the selected user pair versus rp for different densities of the Es. We

can observe that as expected, the SOP decreases, as the radius of the E-exclusion zone increases.

Another option for enhancing the PLS is to reduce the radius of the user zone, since it reduces

the total path loss. It is also worth noting that having a lower E density λe results in an improved

PLS, i.e. reduced SOP. This behavior is due to the plausible fact that a lower λe results in having

less Es, which degrades the multiuser diversity gain, when the most detrimental E is selected.

As a result, the destructive capability of the most detrimental E is reduced and hence the SOP

is improved.

B. Secrecy outage probability with artificial noise

In Fig. 4 and Fig. 5, we investigate the secrecy performance in the presence of AN, which

correspond to the scenario considered in Section III.

Fig. 4(a) plots the SOP of user m and user n versus θ for different E-exclusion zones. The solid

and dashed curves represent the analytical performance of user m and user n, corresponding

to the results derived in (38) and (39). Monte Carlo simulations are used for verifying our
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Fig. 4: The SOP with artificial noise, which correspond to the scenario considered in Section III

derivations. Fig. 4(a) confirms a close agreement between the simulation and analytical results.

Again, a reduced SOP can be achieved by increasing the E-exclusion zone, which degrades the

channel conditions of the Es. Another observation is that user n achieves a lower SOP than user

m, which is explained as follows: 1) user n has better channel conditions than user m, owing to

its lower path loss; and 2) user n is capable of cancelling the interference imposed by user m

using SIC techniques, while user m suffers from the interference inflicted by user n. It is also

worth noting that the SOP is not a monotonic function of θ. This phenomenon indicates that

there exists an optimal value for power allocation, which depends on the system parameters.

Fig. 4(b) plots the SOP of user m and user n versus λe for different number of antennas.

We can observe that the SOP decreases, as the E density is reduced. This behavior is caused

by the fact that a lower λe leads to having less Es, which reduces the multiuser diversity gain,

when the most detrimental E is considered. As a result, the distinctive capability of the most

detrimental E is reduced and hence the secrecy performance is improved. It is also worth noting

that increasing the number of antennas is capable of increasing the secrecy performance. This is

due to the fact that ∥hm∥2 in (30) and ∥hn∥2 in (32) both follow Gamma (NA, 1) distributions,

which is the benefit of the improved multi-antenna diversity gain.

Fig. 4(c) plots the SOP of the selected user pair versus NA for different path loss exponents.

In this figure, the curves representing the case without AN are generated by setting θ = 1,

which means that all the power is allocated to the desired signal. In this case, the BS only uses

beamforming for transmitting the desired signals and no AN is generated. The curves in the

presence of AN are generated by setting θ = 0.9. We show that the PLS can be enhanced by
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Fig. 5: The SOP with artificial noise, which correspond to the scenario considered in Section III

using AN. This behavior is caused by the fact that at the receiver side, user m and user n are

only affected by the AN generated by each other; By contrast, the Es are affected by the AN

of both user m and user n. We can observe that the SOP of the selected user pair decreases, as

the E-exclusion radius increases.

Fig. 5(a) plots the SOP of the selected user pair versus ρt and θ. It is observed that the SOP

first decreases then increases as ρt increases, which is in contrast to the traditional trend, where

the SOP always decreases as the transmit SNR increases. This behavior can be explained as

follows. The SOP of the selected user pair is determined by user m. As ρt increases, on the one

hand, the signal power of user m is increased, which improves the secrecy performance; On

the other hand, user m also suffers from the interference imposed by user n (including both the

signal and AN), because when ρt increases, the signal power of user n is also increased, which

in turn degrades the secrecy performance. As a consequence, there is a tradeoff between ρt and

the SOP. It is also noted that the power sharing factor θ also affect the optimal SOP associated

with different values of ρt. This phenomenon indicates that it is of salient significance to select

beneficial system parameters. Furthermore, optimizing the parameters ρt and θ is capable of

further improving the SOP.

Fig. 5(b) plots the SOP of large antenna arrays of the selected user pair versus NA parameter-

ized by different transmit SNRs. The dashed curves represent the analytical SOP of the selected

user pair, corresponding to the results derived in (49). We observe a close agreement between

the theoretical analysis and the Monte Carlo simulations, which verifies the accuracy of our

derivations. We observe that as NA increases, the approximation used in our analysis approaches
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the exact SOP. This phenomenon indicates that the asymptotic SOP derived converges to the

exact values, when NA is a sufficiently large number.

V. CONCLUSIONS

In this paper, the secrecy performance of applying the NOMA protocol in large-scale networks

was examined. Specifically, stochastic geometry based techniques were used for modeling both

the locations of NOMA users and of the Es in the networks considered. Additionally, new

analytical SOP expressions were derived for characterizing the system’s secrecy performance in

both single-antenna and multiple-antenna scenarios. For the single-antenna scenario, the secrecy

diversity order of the user pair was also characterized. It was analytically demonstrated that the

secrecy diversity order was determined by that one of the user pair who had a poorer channel.

For the multiple-antenna scenario, it was shown that the Es’ channel quality is independent of

the number of antennas at the BS for large antenna array scenarios. Numerical results were

also presented for validating the analysis. It was concluded that the secrecy performance can be

improved both by extending the E-exclusion zone and by generating AN at the BS.

APPENDIX A: PROOF OF LEMMA 1

To derive the CDF of FγB , based on (2), we can formulate

FγB (x) = Pr
{
ρban|hn|2 ≤ x

}
= F|hn|2

(
x

ρban

)
, (A.1)

where F|hn|2 is the CDF of the ordered channel gain for the n-th user. Assuming y = x
ρban

, and

using order statistics [26] as well as applying binary series expansion, the CDF of the ordered

channels has a relationship with the unordered channels captured as follows:

F|hn|2 (y) = φn

M−n∑
p=0

(
M − n

p

)
(−1)p

n+ p

(
F|h̃n|2 (y)

)n+p

, (A.2)

where F|h̃n|2 is the CDF of unordered channel gain for the n-th user.

Based on the assumption of homogeneous PPP, and by relying on polar coordinates, F|h̃n|2 is

expressed as

F|h̃n|2 (y) =
2

R2
D

∫ RD

0

(
1− e−(1+rα)y

)
rdr. (A.3)
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However, it is challenging to arrive at an easily implemented insightful expression for F|h̃n|2 (y).

Therefore, the Gaussian-Chebyshev quadrature relationship [27] is invoked for finding an ap-

proximation of (A.3) in the following form:

F|h̃n|2 (y) ≈
K∑
k=0

bke
−cky. (A.4)

Substituting (A.4) into (A.2) and applying the multinomial theorem, the CDF F|hn|2 of ordered

channel gain is given by

F|hn|2 (y) = φn

M−n∑
p=0

(
M − n

p

)
(−1)p

n+ p

∑
S̃p
n

(
n+ p

q0 + · · ·+ qK

)( K∏
k=0

bqkk

)
e
−

K∑
k=0

qkcky
. (A.5)

Substituting y = x
ρban

into (A.5), we can obtain (4). The proof is completed.

APPENDIX B: PROOF OF LEMMA 4

Based on (30), we express the CDF of FAN
Bm

as

FAN
Bm

(x) = Pr
{
γAN
Bm

≤ x
}
= Pr

 amσ
2
s∥hm∥2

anσ2
s

∣∣∣hm
h†
n

∥hn∥

∣∣∣2 + anσ2
a∥hmVn∥2 + 1 + dαm

≤ x

 . (B.1)

It may be readily seen that ∥hm∥2 obeys a Gamma distribution having the parameters of (NA, 1).

Hence the CDF of ∥hm∥2 is given by

FAN
Bm

(x) = 1− e−x

NA−1∑
p=0

xp

p!
. (B.2)

Denoting Xm =
∣∣∣hm

h†
n

∥hn∥

∣∣∣2, Ym = ∥hmVn∥2, based on (B.2), we can re-write (B.1) as

FAN
Bm

(x) = Pr

{
∥hm∥2 ≤ xν

(
IAN
m +

1 + dαm
an

)}

= 1−
∫
D2

∫ ∞

0

NA−1∑
p=0

(
νx
(
zm + 1+dαm

an

))p
p!

(
e−νxzm−νx

1+dαm
an

)
fIAN

m
(zm) fD2 (ωm) dzmdωm,

(B.3)

where ν = an
amPS

, fIAN
m

and fD2 are the PDF of IAN
m and D2, respectively. Here we have

IAN
m = σ2

sXm+σ2
aYm and fD2 (ωm) =

1

π(R2
D2

−R2
D1
)
. Applying a binary series expansion to (B.3),
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we arrive at:

FAN
Bm

(x) = 1−
NA−1∑
p=0

νpxp

p!

p∑
q=0

(
p

q

)
Q1

∫
D2

e−νx
1+dαm
an

(
1 + dαm
an

)p−q

fD2 (ωm) dωm, (B.4)

where Q1 =
∫∞
0

e−νxzmzqmfIAN
m

(zm) dzm. Note that the distance dm is determined by the location

of ωm. Then we change to polar coordinates and applying a binary series expansion again, we

obtain

FAN
Bm

(x) = 1− 2e−
νx
an

R2
D2

−R2
D1

NA−1∑
p=0

νpxp

p!

p∑
q=0

(
p

q

)
Q1

1

ap−q
n

p−q∑
u=0

(
p− q

u

)∫ RD2

RD1

ruα+1e−νxPSr
α

dr.

(B.5)

By invoking [21, Eq. (3.381.8)], we obtain

FAN
Bm

(x) = 1− 2e−
νx
an

R2
D2

−R2
D1

NA−1∑
p=0

νpxp

p!

p∑
q=0

(
p

q

)
Q1

1

ap−q
n

×
p−q∑
u=0

(
p− q

u

)γ
(
u+ δ, νx

an
Rα

D2

)
− γ

(
u+ δ, νx

an
Rα

D1

)
α
(

νx
an

)u+δ
. (B.6)

Let us now turn our attention to the derivation of the integral Q1 in (B.4) – (B.6). Note that

Xm follows the exponential distribution with unit mean, while Ym follows the distribution Ym ∼

Gamma (NA − 1, 1). As such, the PDF of fIAN
m

is given by [17]

fIAN
m

(zm) =


t1

e
zm
PS

(
1−

NA−2∑
l=0

(
NA−1

PA
− 1

PS

)l
zlm

l!e
(NA−1

PA
− 1

PS
)zm

)
, θ ̸= 1

NA

z
NA−1
m e

− zm
PS

PS
NA (NA−1)!

, θ = 1
NA

, (B.7)

where we have t1 =

(
1− PA

(NA−1)PS

)1−NA

PS
. Based on (B.7), and applying [21, Eq. (3.326.2)], we

can express Q1 as follows:

Q1 =


t1Γ(q+1)(
xν+ 1

PS

)q+1 −
NA−2∑
l=0

t1
l!

(
NA−1

PA
− 1

PS

)l
Γ(q+l+1)(

νx+
NA−1

PA

)q+l+1 , θ ̸= 1
NA

Γ(q+NA)

PS
NA (NA−1)!

(
νx+ 1

PS

)q+NA
, θ = 1

NA

. (B.8)

Upon substituting (B.8) into (B.6), the CDF of FAN
Bm

is given by (35).
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APPENDIX C: PROOF OF LEMMA 5

Based on (32), we express the CDF of FAN
Bn

as follows:

FAN
Bn

(x) = Pr

{
∥hn∥2 ≤ xϑ

(
PA

NA − 1
Yn +

1 + dαn
am

)}
= 1−

NA−1∑
p=0

ϑpxp

p!

p∑
q=0

(
p

q

)
Q3

∫
D1

e−
ϑx
am

(1+dαn)

(
1

am
(1 + dαn)

)p−q

fD1 (ωn) dωn, (C.1)

where ϑ = am
anPS

, Q3 =
∫∞
0

e−ϑxznzqnfIAN
n

(zn) dzn, fIAN
n

and fD1 (ωn) are the PDF of IAN
n and

D1. Here IAN
n = PA

NA−1
Yn, Yn = ∥hnVm∥2, and fD1 (ωn) = 1

πR2
D1

. Upon changing to polar

coordinates and applying [21, Eq. (3.381.8)], we arrive at

FAN
Bn

(x) =1− δe−
ϑx
am

R2
D1

NA−1∑
p=0

ϑpxp

p!

p∑
q=0

(
p

q

)
Q3a

q−p
m

p−q∑
u=0

(
p− q

u

)γ
(
u+ δ, ϑx

am
Rα

D1

)
(

ϑx
am

)u+δ
. (C.2)

Finally we turn our attention on Q3. It is readily seen that IAN
n obeys the Gamma distri-

bution in conjunction with the parameter
(
NA − 1, PA

NA−1

)
. Then we can obtain the PDF of

fIAN
n

(zn) = z
NA−2
n e

−
zn(NA−1)

PA(
PA

NA−1

)NA−1
Γ(NA−1)

. Applying [21, Eq. (3.326.2)], we can express Q3 as Q3 =

Γ(NA−1+q)

Γ(NA−1)
(

PA
NA−1

)NA−1(
ϑx+

NA−1

PA

)NA−1+q . Upon substituting Q3 into (C.2), we obtain the CDF of

FAN
Bn

(x) as (36).

APPENDIX D: PROOF OF LEMMA 6

Based on (34), the CDF of FγAN
Eκ

can be expressed as

FγAN
Eκ

(x) = Pr

{
max

e∈Φe,de≥rp

{
aκPSXe,κ

IAN
e + dαe

}
≤ x

}

= EΦe

 ∏
e∈Φe,de≥rp

∫ ∞

0

FXe,κ

(
(z + dαe ) x

aκPS

)
fIAN

e
(z) dz

 . (D.1)

Following a procedure similar to that used for obtaining (10), we apply the generating function

and switch to polar coordinates. Then (D.1) can be expressed as

FγAN
Eκ

(x) = exp

[
−2πλe

∫ ∞

rp

re
− x

aκPS
rα
drQ2

]
, (D.2)
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where Q2 =
∫∞
0

e
−z x

aκPS fIAN
e

(z) dz. Applying [21, Eq. (3.381.9)], we arrive at

FγAN
Eκ

(x) = exp

[
−
µAN
κ1 Γ

(
δ, µAN

κ2 x
)

xδ
Q2

]
. (D.3)

Let us now turn our attention to solving the integral Q2. Note that all the elements of heVm

and heVn are independent complex Gaussian distributed with a zero mean and unit variance.

We introduce the notation Ye,m = ∥heVm∥2 and Ye,n = ∥heVn∥2. As a consequence, both Ye,m

and Ye,n obey the Gamma (NA − 1, 1) distribution. Based on the properties of the Gamma dis-

tribution, we have amσ
2
aYe,m ∼ Gamma (NA − 1, amσ

2
a) , anσ

2
aYe,n ∼ Gamma (NA − 1, anσ

2
a).

Then the sum of these two items IAN
e obeys the generalized integer Gamma (GIG) distribution.

According to [28], the PDF of IAN
e is given by

fIAN
e

(z) =(−1)NA−1
2∏

i=1

τNA−1
i

2∑
i=1

NA−1∑
j=1

aNA−j,NA−1

(j − 1)!
(2τi − L)j−(2NA−2)zj−1e−τiz. (D.4)

Upon substituting (D.4) into (D.3), as well as applying [21, Eq. (3.381.4)], after some further

manipulations, we obtain the CDF of FγAN
Eκ

as

FγAN
Eκ

(x) = exp

Ω Γ
(
δ, xµAN

κ2

)
j∑

p=0

(
j
p

)
(x)p+δ(aκPS)

−pτ j−p
i

 . (D.5)

Upon setting the derivative of the CDF in (D.5), we can obtain (37).
REFERENCES

[1] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA)

for cellular future radio access,” in Proc. Vehicular Technology Conference (VTC Spring), June Dresden, Germany, Jun.

2013, pp. 1–5.

[2] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C.-L. I, and H. V. Poor, “Application of non-orthogonal multiple access

in LTE and 5G networks,” IEEE Commun. Mag., submitted. [Online]. Available: http://arxiv.org/abs/1511.08610

[3] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with

randomly deployed users,” IEEE Signal Process. Lett., vol. 21, no. 12, pp. 1501–1505, 2014.

[4] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple access in 5G systems,” IEEE Signal Process. Lett.,

vol. 22, no. 10, pp. 1647–1651, Oct 2015.

[5] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-orthogonal multiple access with simultaneous wireless

information and power transfer,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, April 2016.

[6] J. Choi, “Minimum power multicast beamforming with superposition coding for multiresolution broadcast and application

to NOMA systems,” IEEE Trans. Commun., vol. 63, no. 3, pp. 791–800, March 2015.



30

[7] Q. Sun, S. Han, C.-L. I, and Z. Pan, “On the ergodic capacity of MIMO NOMA systems,” IEEE Wireless Commun. Lett.,

vol. 4, no. 4, pp. 405–408, Aug. 2015.

[8] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, 1975.

[9] A. Mukherjee and A. Swindlehurst, “Robust beamforming for security in MIMO wiretap channels with imperfect CSI,”

IEEE Trans. Signal Process., vol. 59, no. 1, pp. 351–361, Jan. 2011.

[10] Z. Ding, K. K. Leung, D. L. Goeckel, and D. Towsley, “On the application of cooperative transmission to secrecy

communications,” IEEE J. Sel. Areas Commun., vol. 30, no. 2, pp. 359–368, Feb. 2012.

[11] Y. Liu, L. Wang, T. T. Duy, M. Elkashlan, and T. Duong, “Relay selection for security enhancement in cognitive relay

networks,” IEEE Wireless Commun. Lett., vol. 4, no. 1, pp. 46–49, Feb. 2015.

[12] Y. Zou, X. Wang, W. Shen, and L. Hanzo, “Security versus reliability analysis of opportunistic relaying,” IEEE Trans.

Veh. Technol., vol. 63, no. 6, pp. 2653–2661, Jul. 2014.

[13] Y. Liu, L. Wang, S. Zaidi, M. Elkashlan, and T. Duong, “Secure D2D communication in large-scale cognitive cellular

networks: A wireless power transfer model,” IEEE Trans. Commun., vol. 64, no. 1, pp. 329–342, Jan 2016.

[14] E. Tekin and A. Yener, “The general Gaussian multiple-access and two-way wiretap channels: Achievable rates and

cooperative jamming,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, Jun. 2008.

[15] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp.

2180–2189, Jun. 2008.

[16] X. Zhou and M. R. McKay, “Secure transmission with artificial noise over fading channels: Achievable rate and optimal

power allocation,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 3831–3842, Oct. 2010.

[17] X. Zhang, X. Zhou, and M. R. McKay, “Enhancing secrecy with multi-antenna transmission in wireless ad hoc networks,”

IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1802–1814, Nov. 2013.

[18] P. C. Pinto, J. Barros, and M. Z. Win, “Secure communication in stochastic wireless networksłpart I: Connectivity,” IEEE

Trans. Inf. Forensics Security, vol. 7, no. 1, pp. 125–138, Feb. 2012.

[19] N. Romero-Zurita, D. McLernon, M. Ghogho, and A. Swami, “PHY layer security based on protected zone and artificial

noise,” IEEE Signal Process. Lett., vol. 20, no. 5, pp. 487–490, May 2013.

[20] W. K. D. Stoyan and J. Mecke, Stochastic Geometry and its Applications, 2nd ed. John Wiley and Sons, 1996.

[21] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th ed. New York, NY, USA: Academic

Press, 2000.

[22] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans.

Inf. Theory, vol. 54, no. 6, pp. 2515–2534, June 2008.

[23] N. Yang, H. A. Suraweera, I. B. Collings, and C. Yuen, “Physical layer security of tas/mrc with antenna correlation,” IEEE

Trans. Inf. Forensics Security, vol. 8, no. 1, pp. 254–259, Jan. 2013.

[24] Z. Qin, Y. Liu, Z. Ding, Y. Gao, and M. Elkashlan, “Physical layer security for 5G non-orthogonal multiple access in

large-scale networks,” in Proc. of International Commun. Conf. (ICC), to appear in 2016.

[25] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp.

2180–2189, June 2008.

[26] H. A. David and N. Nagaraja, Order Statistics, 3rd ed. John Wiley, 2003.

[27] E. Hildebrand, “Introduction to numerical analysis,” NewYork, NY, USA: Dover,, 1987.

[28] C. A. Coelho, “The generalized integer Gamma distribution a basis for distributions in multivariate statistics,” Journal of

Multivariate Analysis, vol. 64, no. 1, pp. 86–102, 1998.


