Cooperative Non-Orthogonal Multiple Access with Simultaneous Wireless Information and Power Transfer

Yuanwei Liu

King's College London

yuanwei.liu@kcl.co.uk

May 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Overview and Motivation

Network Model

Non-Orthogonal Multiple Access with User Selection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Numerical Results

Conclusions

From NOMA to Cooperative NOMA

NOMA can squeeze a user with better channel conditions into a channel that is occupied by a user with worse channel conditions. For example, consider a downlink scenario in which there are two groups of users:

- Near users: close to the base station (BS) and have better channel conditions.
- Far users: close to the edge of the cell controlled by the BS and therefore have worse channel conditions.

While the spectral efficiency of NOMA is superior compared to orthogonal MA, the fact that the near users co-exist with the far users causes performance degradation to the far users. *This motivates us to consider the cooperative NOMA*.

What is Cooperative NOMA?

• **Cooperative NOMA**: the users that are close to the BS are used as relays to help the far users with poor channel conditions.

• Advantages: SIC is used and hence the information of the far users is known by these near users. Then it is natural to consider the use of the near users as DF relays.

SWIPT—Background

Wireless energy Transfer (WET)

- Key Idea: Energy is transmitted from a power source to a destination over the wireless medium.
- Motivation: 1) Ambient radio frequency signals are everywhere; 2) WET could be the only means to increase lifetime of energy constrained networks
- Tesla had already provided a successful demonstration to light electric lamps wirelessly in 1891, but been forgotten for long time due to the low energy efficiency.

What has been changed now?

- More low power devices.
- Advanced smart antenna techniques for better energy efficiency.

SWIPT—Basic receiver achitectures

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Motivation

- To improve the reliability of the far NOMA users without draining the near users' batteries, we consider the application of SWIPT to NOMA, where SWIPT is performed at the near NOMA users.
- Therefore, the aforementioned two communication concepts, cooperative NOMA and SWIPT, can be naturally linked together.
- To propose a new both spectral efficient and energy efficient wireless multiple access protocol, namely, the cooperative SWIPT NOMA protocol, is the main motivation of this paper.

Network Model

 An illustration of a downlink SWIPT NOMA system with a base station S (blue circle). The spatial distributions of the near users (yellow circles) and the far users (green circles) follow homogeneous PPPs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Network Model

- The locations of the near and far users are modeled as homogeneous PPPs Φ_κ (κ ∈ {A, B}) with densities λ_{Φ_κ}.
- The near users are uniformly distributed within the disc and the far users are uniformly distributed within the ring.
- the users in $\{B_i\}$ are energy harvesting relays that harvest energy from the BS and forward the information to $\{A_i\}$ using the harvested energy as their transmit powers.
- \bullet The DF strategy is applied at $\{B_i\}$ and the cooperative NOMA system consists of two phases.
- It is assumed that the two phases have the same transmission periods.

During the first phase, the BS sends two messages $p_{i1}x_{i1} + p_{i2}x_{i2}$ to two selected users A_i and B_i based on NOMA, where p_{i1} and p_{i2} are the power allocation coefficients and x_{i1} and x_{i2} are the messages of A_i and B_i , respectively. The observation at A_i is given by

$$y_{A_{i},1} = \sqrt{P_{S}} \sum_{k \in \{1,2\}} p_{ik} x_{ik} \frac{h_{A_{i}}}{\sqrt{1 + d_{A_{i}}^{\alpha}}} + n_{A_{i},1}.$$
 (1)

Without loss of generality, we assume that $|p_{i1}|^2 > |p_{i2}|^2$ with $|p_{i1}|^2 + |p_{i2}|^2 = 1$. The received signal to interference and noise ratio (SINR) at A_i to detect x_{i1} is given by

$$\gamma_{\rm S,A_{i}}^{x_{i1}} = \frac{\rho |h_{\rm A_{i}}|^{2} |p_{i1}|^{2}}{\rho |p_{i2}|^{2} |h_{\rm A_{i}}|^{2} + 1 + d_{\rm A_{i}}^{\alpha}},$$
(2)

where $\rho = \frac{P_S}{\sigma^2}$ is the transmit signal to noise radio (SNR).

We consider that the near users have rechargeable storage ability and power splitting is applied to perform SWIPT. Thus, the observation at $\rm B_i$ is given by

$$y_{\rm B_{i},1} = \sqrt{P_{\rm S}} \sum_{k \in \{1,2\}} p_{ik} x_{ik} \frac{\sqrt{1 - \beta_i} h_{\rm B_{i}}}{\sqrt{1 + d_{\rm B_{i}}^{\alpha}}} + n_{\rm B_{i},1},$$
(3)

where β_i is the power splitting coefficient. The received SINR at B_i to detect x_{i1} of A_i is given by

$$\gamma_{\rm S,B_{i}}^{x_{i1}} = \frac{\rho |h_{\rm B_{i}}|^{2} |p_{i1}|^{2} (1 - \beta_{i})}{\rho |h_{\rm B_{i}}|^{2} |p_{i2}|^{2} (1 - \beta_{i}) + 1 + d_{\rm B_{i}}^{\alpha}}.$$
 (4)

The received SNR at B_i to detect x_{i2} of B_i is given by

$$\gamma_{\rm S,B_{i}}^{\chi_{i2}} = \frac{\rho |h_{\rm B_{i}}|^{2} |p_{i2}|^{2} \left(1 - \beta_{i}\right)}{1 + d_{\rm B_{i}}^{\alpha}}.$$
(5)

Based on (4), the data rate supported by the channel from the BS to B_i for decoding x_{i1} is given by

$$R_{x_{i1}} = \frac{1}{2} \log \left(1 + \frac{\rho |h_{\mathrm{B}_{i}}|^{2} |p_{i1}|^{2} (1 - \beta_{i})}{\rho |h_{\mathrm{B}_{i}}|^{2} |p_{i2}|^{2} (1 - \beta_{i}) + 1 + d_{\mathrm{B}_{i}}^{\alpha}} \right).$$
(6)

In order to ensure that B_i can successfully decode the information of A_i , we have a rate, i.e., $R_1 = R_{x_{i1}}$. Therefore, the power splitting coefficient is set as follows:

$$\beta_{i} = \max\left\{0, 1 - \frac{\tau_{1}\left(1 + d_{\mathrm{B}_{i}}^{\alpha}\right)}{\rho\left(|p_{i1}|^{2} - \tau_{1}|p_{i2}|^{2}\right)|h_{\mathrm{B}_{i}}|^{2}}\right\},$$
(7)

where $\tau_1 = 2^{2R_1} - 1$. Here $\beta_i = 0$ means that all the energy is used for information decoding and no energy remains for energy harvesting.

Based on (3), the energy harvested at B_{i} is given by

$$E_{\rm B_i} = \frac{T \eta P_{\rm S} \beta_i |h_{\rm B_i}|^2}{2 \left(1 + d_{\rm B_i}^{\alpha}\right)},\tag{8}$$

where T is the time period for the entire transmission including the direct transmission phase and the cooperative transmission phase, and η is the energy harvesting coefficient. We assume that the two phases have the same transmission period, and therefore, the transmit power at B_i can be expressed as follows:

$$P_t = \frac{\eta P_{\rm S} \beta_i |h_{\rm B_i}|^2}{1 + d_{\rm B_i}^{\alpha}}.$$
(9)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Phase 2: Cooperative Transmission

During this phase, B_i forwards x_{i1} to A_i by using the harvested energy during the direct transmission phase. In this case, A_i observes

$$y_{A_{i,2}} = \frac{\sqrt{P_t} x_{i1} g_i}{\sqrt{1 + d_{C_i}^{\alpha}}} + n_{A_{i,2}},$$
 (10)

Based on (9) and (10), the received SNR for A_i to detect x_{i1} forwarded from B_i is given by

$$\gamma_{\rm A_{i},B_{i}}^{x_{i1}} = \frac{P_{t}|g_{i}|^{2}}{\left(1 + d_{\rm C_{i}}^{\alpha}\right)\sigma^{2}} = \frac{\eta\rho\beta_{i}|h_{\rm B_{i}}|^{2}|g_{i}|^{2}}{\left(1 + d_{\rm C_{i}}^{\alpha}\right)\left(1 + d_{\rm B_{i}}^{\alpha}\right)}.$$
 (11)

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Phase 2: Cooperative Transmission

At the end of this phase, A_i combines the signals from the BS and B_i using maximal-ratio combining (MRC). Combining the SNR of the direct transmission phase (2) and the SINR of the cooperative transmission phase (11), we obtain the received SINR at A_i as follows:

$$\gamma_{\rm A_{i},MRC}^{\chi_{i1}} = \frac{\rho |h_{\rm A_{i}}|^{2} |p_{i1}|^{2}}{\rho |h_{\rm A_{i}}|^{2} |p_{i2}|^{2} + 1 + d_{\rm A_{i}}^{\alpha}} + \frac{\eta \rho \beta_{i} |h_{\rm B_{i}}|^{2} |g_{i}|^{2}}{\left(1 + d_{\rm B_{i}}^{\alpha}\right) \left(1 + d_{\rm C_{i}}^{\alpha}\right)}.$$
 (12)

Non-Orthogonal Multiple Access with User Selection

A natural question arises: which near NOMA user should help which far NOMA user?

To investigate the performance of one pair of selected NOMA users, three opportunistic user selection schemes are proposed, based on locations of users to perform NOMA as follows:

- random near user and random far user (RNRF) selection, where both the near and far users are randomly selected from the two groups.
- nearest near user and nearest far user (NNNF) selection, where a near user and a far user closest to the BS are selected from the two groups.
- nearest near user and farthest far user (NNFF) selection, where a near user which is closest to the BS is selected and a far user which is farthest from the BS is selected.

RNRF Selection Scheme—Outline

This selection scheme provides a fair opportunity for each user to access the source with the NOMA protocol.

Advantage: it does not require the knowledge of instantaneous channel state information (CSI).

- 1. Outage Probability of the Near Users of RNRF
- 2. Outage Probability of the Far Users of RNRF
- 3. Diversity Analysis of RNRF
- 4. System Throughput in Delay-Sensitive Transmission Mode of RNRF

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outage Probability of the Near Users of RNRF

An outage of B_{i} can occur for two reasons.

- 1. B_i cannot detect x_{i1} .
- 2. B_i can detect x_{i1} but cannot detect x_{i2} .

Based on this, the outage probability of B_{i} can be expressed as follows:

$$P_{\rm B_{i}} = \Pr\left(\frac{\rho |h_{\rm B_{i}}|^{2} |p_{i1}|^{2}}{\rho |h_{\rm B_{i}}|^{2} |p_{i2}|^{2} + 1 + d_{\rm B_{i}}^{\alpha}} < \tau_{1}\right) + \Pr\left(\frac{\rho |h_{\rm B_{i}}|^{2} |p_{i1}|^{2}}{\rho |h_{\rm B_{i}}|^{2} |p_{i2}|^{2} + 1 + d_{\rm B_{i}}^{\alpha}} > \tau_{1}, \gamma_{\rm S, B_{i}}^{x_{i2}} < \tau_{2}\right).$$
(13)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Outage Probability of the Near Users of RNRF

Theorem 3.1 Conditioned on the PPPs, the outage probability of the near users B_i can be approximated as follows:

$$P_{\rm B_i} \approx \frac{1}{2} \sum_{n=1}^{N} \omega_N \sqrt{1 - \phi_n^2} \left(1 - e^{-c_n \varepsilon_{\rm A_i}}\right) \left(\phi_n + 1\right). \tag{14}$$

Proof.

We first derive the CDF of Y_i as

$$F_{Y_i}(\varepsilon) = \frac{2}{R_{D_{\rm B}}^2} \int_0^{R_{D_{\rm B}}} \left(1 - e^{-(1 + r^{\alpha})\varepsilon}\right) r dr, \qquad (15)$$

With the aid of Gaussian-Chebyshev quadrature, we find the approximation of (15). Applying $\varepsilon_{A_i} \rightarrow \varepsilon$, (14) is obtained.

Outage Probability of the Far Users of RNRF

Outage experienced by A_{i} can occur in two situations.

- 1. B_i can detect x_{i1} but the overall received SNR at A_i cannot support the targeted rate.
- 2. Neither A_i nor B_i can detect x_{i1} .

Based on this, the outage probability can be expressed as follows:

$$P_{A_{i}} = \Pr\left(\gamma_{A_{i},MRC}^{x_{i1}} < \tau_{1}, \gamma_{S,B_{i}}^{x_{i1}}\Big|_{\beta_{i}=0} > \tau_{1}\right) + \Pr\left(\gamma_{S,A_{i}}^{x_{i1}} < \tau_{1}, \gamma_{S,B_{i}}^{x_{i1}}\Big|_{\beta_{i}=0} < \tau_{1}\right).$$
(16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outage Probability of the Far Users of RNRF

Theorem 3.2

Conditioned on the PPPs, and assuming $R_{D_{\rm C}} \gg R_{D_{\rm B}}$, the outage probability of $\rm A_i$ can be approximated as follows:

$$P_{A_{i}} \approx \zeta_{1} \sum_{n=1}^{N} (\phi_{n}+1) \sqrt{1-\phi_{n}^{2}} c_{n} \sum_{k=1}^{K} \sqrt{1-\psi_{k}^{2}} s_{k} (1+s_{k}^{\alpha})^{2}$$

$$\times \sum_{m=1}^{M} \sqrt{1-\varphi_{m}^{2}} e^{-(1+s_{k}^{\alpha})t_{m}} \chi_{t_{m}} \left(\ln \frac{\chi_{t_{m}} (1+s_{k}^{\alpha})}{\eta \rho} c_{n} + 2c_{0} \right)$$

$$+ a_{1} \sum_{n=1}^{N} \sqrt{1-\phi_{n}^{2}} c_{n} (\phi_{n}+1) \sum_{k=1}^{K} \sqrt{1-\psi_{k}^{2}} (1+s_{k}^{\alpha}) s_{k}, \quad (17)$$

< (四)< (四)< (四)< (四)< (四)< (四)< (10)< (

Proof. See Appendix A.

Diversity Analysis of RNRF—Near Users

The diversity gain is defined as follows:

$$d = -\lim_{\rho \to \infty} \frac{\log P(\rho)}{\log \rho}.$$
 (18)

Near users: When $\varepsilon \to 0$, a high SNR approximation with $1 - e^{-x} \approx x$ is given by

$$F_{Y_i}(\varepsilon) \approx \frac{1}{2} \sum_{n=1}^{N} \omega_N \sqrt{1 - \phi_n^2} c_n \varepsilon_{A_i} (\phi_n + 1).$$
(19)

Substituting (19) into (18), we obtain that the diversity gain for the near users is one, which means that using NOMA with energy harvesting will not decrease the diversity gain.

Diversity Analysis of RNRF—Far Users

Far users: For the far users, substituting (17) into (18), we obtain

$$d = -\lim_{\rho \to \infty} \frac{\log\left(-\frac{1}{\rho^2}\log\frac{1}{\rho}\right)}{\log\rho}$$
$$= -\lim_{\rho \to \infty} \frac{\log\log\rho - \log\rho^2}{\log\rho} = 2.$$
(20)

Remarks:

- This result indicates that using NOMA with an energy harvesting relay will not affect the diversity gain.
- At high SNRs, the dominant factor for the outage probability is $\frac{1}{\rho^2} \ln \rho$.
- The outage probability of using NOMA with SWIPT decays at a rate of $\frac{\ln SNR}{SNR^2}$. However, for a conventional cooperative system without energy harvesting, a faster decreasing rate of $\frac{1}{SNR^2}$ can be achieved.

System Throughput in Delay-Sensitive Transmission Mode of RNRF

In this mode, the transmitter sends information at a fixed rate and the throughput is determined by evaluating the outage probability. As a result, the system throughput of RNRF in the delay-sensitive transmission mode is given by

$$R_{\tau_{\rm RNRF}} = (1 - P_{\rm A_i}) R_1 + (1 - P_{\rm B_i}) R_2, \qquad (21)$$

where P_{A_i} and P_{B_i} are obtained from (17) and (14), respectively.

NNNF Selection Scheme and NNFF Selection Scheme

- Advantage of NNNF: it can minimize the outage probability of both the near and far users.
- Advantage of NNFF: NOMA can offer a larger performance gain over conventional MA when user channel conditions are more distinct.

Follow the similar procedure with RNRF, we can obtain the outage probability, diversity gain, and the throughput of NNNF and NNFF.

- Lower outage probability is achieved than with RNRF.
- All curves have the same slopes, which indicates the same diversity gains.
- Incorrect choice of rate make the outage probability of the near users be always one.

(日)

- The outage of the near users occurs more frequently as the rate of the far user, *R*₁, increases.
- For the choice of R_1 , it should satisfy the condition $(|p_{i1}|^2 - |p_{i2}|^2 \tau_1 > 0).$
- For the choice of R₂, it should satisfy the condition that the split energy for detecting x_{i1} is also sufficient to detect x_{i2} (ε_{Ai} ≥ ε_{Bi}).

- NNNF achieves the lowest outage probability.
- NNFF achieves lower outage than RNRF, which indicates that the distance of the near users has more impact than that of the far users.
- All of the curves have the same slopes, which indicates that the diversity gains of the far users are the same.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

-

- Cooperative NOMA has a larger slope than that of non-cooperative NOMA.
- NNNF achieves the lowest outage probability.
- NNFF has higher outage probability than RNRF in non-cooperative NOMA, however, it achieves lower outage probability than RNRF in cooperative NOMA.

- NNNF achieves the highest throughput since it has the lowest outage probability.
- The existence of the throughput ceilings in the high SNR region.
- Increasing R_2 from $R_2 = 0.5$ BPCU to $R_2 = 1$ BPCU can improve the throughput; however, for the case $R_2 = 2$ BPCU, the throughput is lowered.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusions

- The application of SWIPT to NOMA has been considered. A novel cooperative SWIPT NOMA protocol with three different user selection criteria has been proposed.
- Stochastic geometric approach was used to provide a complete framework to model the locations of users and evaluate the performance of the proposed user selection schemes.
- Closed-form results have been derived in terms of outage probability and delay-sensitive throughput to determine the system performance.
- The diversity gain of the three user selection schemes has also been characterized and proved to be the same as that of a conventional cooperative network.
- We conclude that by carefully choosing the parameters of the network, (e.g., transmission rate or power splitting coefficient), acceptable system performance can be