NOMA-based D2D Communications: Towards 5G

Jingjing Zhao, Yuanwei Liu, Kok Keong Chai, Yue Chen, Maged Elkashlan, Jesus Alonso-Zarate

EECS, Queen Mary University of London

Outline

(1) Background
(2) Network Model
(3) Problem Formulation
(4) Proposed Algorithm
(5) Numerical Results
(6) Conclusions

Background

- D2D communications underlaying cellular networks
- Non-Orthogonal Multiple Access (NOMA) protocol: facilitate the access of multiple users in the power domain
- New framework: NOMA-enhanced D2D, to further improve the spectrum utilization
- Challenge: Complicated co-channel interference environment

Intelligent resource allocation design is needed

System Description

Figure: System model.

- Single-cell uplink scenario
- Set of traditional cellular users: $\mathcal{C}=\left\{C_{1}, \ldots, C_{M}\right\}$
- Set of D2D groups: $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}, \ldots, D_{N}\right\}$

Channel Model

- Received signal at the BS corresponding to subchannel $S C_{m}$:

$$
\begin{equation*}
y_{m}=\underbrace{\sqrt{P_{c}} h_{m, b} x_{m}}_{\text {desired signal }}+\underbrace{\sum_{n} \eta_{n, m} \sqrt{P_{d}} g_{n, b} t_{n}}_{\text {interference from D2D links }}+\underbrace{\zeta_{m}}_{\text {noise }} \tag{1}
\end{equation*}
$$

- Received signal at the k-th receiver in the n-th D2D group:

$$
\begin{align*}
z_{n, k}= & \underbrace{f_{n, k} \sqrt{a_{n, k} P_{d}} s_{n, k}}_{\text {desired signal }}+\underbrace{f_{n, k} \sum_{k^{\prime}=k+1}^{L_{n}} \sqrt{a_{n, k^{\prime}} P_{d}} s_{n, k^{\prime}}}_{\text {interference from NOMA users }}+\underbrace{\zeta_{n, k}}_{\text {noise }} \\
& +\underbrace{\sum_{n * \neq n} \eta_{n *, n} \sqrt{P_{d}} g_{n *, n, k} t_{n *}}_{\text {interference from other D2D groups }}+\underbrace{\sqrt{P_{c}} h_{m, n, k} x_{m}}_{\text {interference from Cu }} \tag{2}
\end{align*}
$$

Problem Formulation

Maximize the sum rate:

$$
\begin{gather*}
\max _{\eta_{n, m}} R_{s u m} \tag{3a}\\
\text { s.t. } \quad \gamma_{n, k}^{k} \geq \gamma_{n, k}^{t h r}, \quad \forall n, k \tag{3b}\\
\gamma_{m} \geq \gamma_{m}^{t h r}, \quad \forall m \tag{3c}\\
\eta_{n, m} \in\{0,1\}, \quad \forall n, m \tag{3d}\\
\sum_{m} \eta_{n, m} \leq 1, \quad \forall n \tag{3e}
\end{gather*}
$$

Solution:

- NP-hard \Longrightarrow High complexity
- Solution: Many-to-one matching theory

Matching Model

- \succ : "Prefer" $\boldsymbol{P L}=\left\{\boldsymbol{P}\left(D_{1}\right), \ldots, \boldsymbol{P}\left(D_{N}\right), \boldsymbol{P}^{\dagger}\left(R B_{1}\right), \ldots, \boldsymbol{P}^{\dagger}\left(R B_{M}\right)\right\}$
- $R B_{m} \succ_{D_{n}} R B_{m^{\prime}} \Leftrightarrow R_{n}^{m}>R_{n}^{m^{\prime}}$
- $\mathcal{S} \succ_{R B_{m}} \mathcal{S}^{\prime} \Leftrightarrow R_{m}^{\mathcal{S}}+\sum_{D_{n} \in \mathcal{S}} R_{n}^{m}>R_{m}^{\mathcal{S}^{\prime}}+\sum_{D_{n} \in \mathcal{S}^{\prime}} R_{n}^{m}$

Matching Algorithm

- Step 1: Initialization: PL
- Step 2: Matching Phase: D2D groups $\xrightarrow{\text { propose to }}$ RBs; RBs $\xrightarrow{\text { accepssreject }}$ D2D groups
- Step 3: Final matching result

:

Numerical Results

Figure: Number of accessed D2D groups versus different number of D2D groups in the network, with $\mathrm{K}=3$.

Numerical Results (cont')

Figure: Total sum rate versus different number of D2D groups in the network, with $\mathrm{K}=3$.

Numerical Results (cont')

Figure: Number of accessed receivers versus different number of D2D groups in the network, with $\mathrm{K}=3$.

Numerical Results (cont')

Figure: Total sum rate versus different number of receivers in each D2D group, with $\mathrm{N}=3$.

Conclusions

- NOMA-enhanced D2D framework
- Novel resource allocation algorithm based on matching theory
- Complexity: $\mathcal{O}\left(N M^{2}\right)$
- Performance: near-optimal performance
- NOMA-enhanced D2D framework outperforms OMA-based D2D framework
- sum rate
- number of accessed users

Thank you!

