A novel approach for implementing a stable nonorthogonal finite-difference time-domain algorithm is proposed. Instead of representing a vector field with its contravariant and covariant components, this approach only makes use of the covariant components to annihilate any unstable behaviour. The new algorithm is validated by numerical experiments.

Introduction: A number of techniques have been proposed to extend the classical Yee’s finite-difference time-domain (FDTD) algorithm to a grid that is conformal to curved objects. Such methods, including the non-orthogonal FDTD (NFDTD) [1, 2], can accurately represent the curved boundaries without resorting to inefficient staircase orthogonal meshes. However, their significant advantage is offset by the fact that they suffer from late time instabilities. In [3], it is demonstrated that the instability of NFDTD is inherent. Although a ‘time-subgridring’ approach is presented there to reduce the late time instability, an unconditionally stable NFDTD is still not obtained. In this Letter, we introduce a novel approach to discretise Maxwell’s equations using only the covariant components. It is expressed as (for simplicity Ampere’s law is written in the case of a 2D TE mode, be discretised as (for simplicity Ampere’s law is written in the case of a 2D TE mode).

\[\varepsilon \frac{\partial \mathbf{E}}{\partial t} = \frac{1}{\sqrt{g}} \left[\frac{\partial h_1}{\partial u^1} \mathbf{e}_1 + \frac{\partial h_3}{\partial u^1} \mathbf{e}_3 \right] \]

(2)

In the non-orthogonal co-ordinates, these three unitary vectors define its reciprocal basis vectors \(\langle \mathbf{\alpha}_1, \mathbf{\alpha}_2, \mathbf{\alpha}_3 \rangle \) and they satisfy the condition

\[\mathbf{\alpha}_i \cdot \mathbf{\alpha}_j = \delta_{ij} \]

(3)

where \(\delta_{ij} \) is the commonly used symbol denoting unity when \(i=j \) and zero when \(i \neq j \). Also a vector can be presented either by its covariant or contravariant components:

\[\mathbf{\tilde{E}} = \sum_i e_i \cdot \mathbf{\tilde{a}}^i = \sum_i e^i \cdot \mathbf{\tilde{a}}_i \]

(4)

There are two ways to expand (2) as a central difference equation for the purpose of implementing the NFDTD algorithm:

i) Take the dot product of (2) with the reciprocal basis vectors. This, due to (3) and (5), yields:

\[\varepsilon \frac{\partial e_1}{\partial t} = \frac{1}{\sqrt{g}} \left[\frac{\partial h_1}{\partial u^1} \mathbf{e}_1 + \frac{\partial h_3}{\partial u^1} \mathbf{e}_3 \right] \]

(5)

The other equation concerning electric field components is obtained by straightforward index permutation. Equation (5) can be approximated in a central difference manner as usual and in its final form it will be the traditional non-orthogonal FDTD equation for the E-field, associating the contravariant \(e^i \)-component with the covariant \(h_i \)-component.

ii) However, an alternative is to take the dot product of (2) with the unitary basis vectors. This, due to (3), (4) and because \(\mathbf{\alpha}_i \cdot \mathbf{\alpha}_j = g_{ij} \) [2], yields:

\[\varepsilon \frac{\partial e_1}{\partial t} = \frac{1}{\sqrt{g}} \left[\frac{\partial h_1}{\partial u^1} \mathbf{e}_1 + \frac{\partial h_3}{\partial u^1} \mathbf{e}_3 \right] \]

(6)

As usual, (6) can be approximated as a central difference equation on the non-orthogonal grid. To this end, Fig. 1 shows the placement of the various components. They occupy the same places as the standard non-orthogonal FDTD formulation but this time the contravariant components are missing. Owing to the central difference scheme the derivative \(\partial e^i/\partial u^j \) along the \(u^j \)-line will become

\[\frac{\partial h_1}{\partial u^1} = h_1(i,j) - h_1(i,j-1) \]

(7)

The \(\partial/\partial u^1 \) derivative is more complex to discretise since there are no \(h_i \)-components along the \(u^1 \)-line. Therefore an averaging scheme must be employed. The averaging scheme is not expected to affect the stability of the algorithm because no contravariant components are included, but it could influence the accuracy of the method. This is going to be concluded by the simulation results. The chosen scheme must evaluate the \(h_1 \) component at the grid edges between which the electric field flows (for example points A and B) in Fig. 1. For points A and B it can be written as:

\[h_1(A) = (1/4) \cdot (h_3(i,j) + h_3(i-1,j) + h_3(i,j-1) + h_3(i-1,j-1)) \]

Point A:

\[h_3(B) = (1/4) \cdot (h_3(i+1,j) + h_3(i,j) + h_3(i,j-1) + h_3(i-1,j)) \]

Point B:

Owing to these relations the derivative becomes:

\[\frac{\partial h_1}{\partial u^1} = \frac{h_1(B) - h_1(A)}{\Delta t} \]

(8)

The formulation of other field components follows by analogy and a new scheme for the NFDTD algorithm is completed.

\[\mathbf{\tilde{E}} = \sum_i e_i \cdot \mathbf{\tilde{a}}^i = \sum_i e^i \cdot \mathbf{\tilde{a}}_i \]
Results: The new scheme is tested on a perfect electric conductor (PEC) circular resonator of Fig. 2. The resonator radius is 0.15 m and the computational region is 0.38×0.38 m meshed by 12×12 cells. The stability of the new algorithm is demonstrated in Fig. 3, where time samples of the magnetic field inside the resonator are shown. The algorithm remains stable even when the number of the time steps reaches 180 000. In contrast, when the conventional nonorthogonal FDTD method is applied using the same time step, the simulation becomes unstable after 10 000 steps. The proposed technique has also been tested for its accuracy. The simulated resonant frequencies are compared with the theoretical values as well as with the results yielded from a traditional NFDTD algorithm (Table 1). The overall agreement is very good.

![Fig. 3 Stable magnetic field signature in time domain with new method compared to traditional NFDTD scheme](image)

Conclusions: It has been demonstrated that the proposed new algorithm for NFDTD calculations can annihilate the phenomenon of late time instabilities. Moreover, the use of one type of field components (covariants) leads to a new scheme that requires less computer resources in numerical simulations. However, its accuracy is not compromised as it is at the same high level as the traditional NFDTD schemes.

<table>
<thead>
<tr>
<th>Theoretical results (GHz)</th>
<th>NFDTD scheme (GHz)</th>
<th>NFDTD error (%)</th>
<th>New scheme (GHz)</th>
<th>New scheme error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5863</td>
<td>0.588</td>
<td>0.29</td>
<td>0.603</td>
<td>2.8</td>
</tr>
<tr>
<td>1.2198</td>
<td>1.18</td>
<td>-3.27</td>
<td>1.2</td>
<td>-1.65</td>
</tr>
<tr>
<td>1.7</td>
<td>$-$</td>
<td>$-$</td>
<td>1.7</td>
<td>0</td>
</tr>
<tr>
<td>2.043</td>
<td>2.03</td>
<td>-0.64</td>
<td>2.073</td>
<td>1.46</td>
</tr>
<tr>
<td>2.136</td>
<td>2.11</td>
<td>-1.22</td>
<td>2.183</td>
<td>2.2</td>
</tr>
<tr>
<td>2.553</td>
<td>2.53</td>
<td>-0.9</td>
<td>2.545</td>
<td>-0.3</td>
</tr>
<tr>
<td>2.718</td>
<td>2.65</td>
<td>-2.5</td>
<td>2.709</td>
<td>-0.3</td>
</tr>
<tr>
<td>2.732</td>
<td>2.76</td>
<td>1.02</td>
<td>2.726</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

© IEE 2004

Electronics Letters online no: 20040589
doi: 10.1049/el:20040589

V. Douvalis, Y. Hao and C.G. Parini (Department of Electronic Engineering, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom)

E-mail: y.hao@elec.qmul.ac.uk

References