
Getting Started
• See paper sheet

• Create a directory using your full name in
documents

• In the directory, use notepad to create a file with
extension .hs

• Start WinGHCi and load the (empty) file

A Level Computer Science

Introduction to Functional
Programming

William Marsh
School of Electronic Engineering and Computer Science

Queen Mary University of London

Aims and Claims
• Flavour of Functional Programming
• …. how it differs from Imperative Programming

(e.g. Python)

• Claim that:
• It is possible to program using functions
• It is useful!

• Better understanding of programming

I hope this is
convincing

Only simple examples

How This Session Works
1. Talk
2. Do
3. Reflect
4. Repeat
5. …
6. Stop when times up

Outline
FP Topics

• A first functions
• Composing function
• Lists
• If time (probably not)
• Recursion
• Map, Filter and Fold

Reflections

• Expressions, statements
and variables

• Sequence versus
composition

• How functions work
• Recursion and loops
• The best languageChallenge problems

Functional Languages?
• Many programming languages now have

functional features

1958

First Function

bigger a b = if a > b then a else b

Function
name

A Simple Function
• This function gives the larger of two numbers

Argument

Is defined as …

Layout
• Like Python, Haskell is layout sensitive
• The following all work

bigger a b =
if a > b then a else b

bigger a b =
if a > b

then a
else b

Getting Started with WinGHCi
• WinGHCi is a shell
• Use functions interactively

• Use a text editor to edit the program
• Notepad++ is better than notepad if you have it

Practical break
Section 1 of exercise sheet

Refection 1: Expressions,
Statements and Variables

Expressions and Statement
• Expression à value
• Statement à command

• Python: statements and expressions
• Haskell: only expressions

The Assignment Statement
• The most important statement:

• Update the memory location ‘x’ with its current
value plus 1

• ‘x’ is a variable

x = x + 1 # This is python

Haskell has no statements
•No assignment
•No variables

Is it possible to program
without variables?

Python program is a sequence
of assignments
• Function may assign, so …
• Expressions are not just

values

No Variables?
• My Haskell program seems to have variables

• ‘a’ and ‘b’ a names for values
• Not memory locations

bigger a b =
if a > b then a else b

Functions
Maths (and Haskell)
• Result of a function

depends only on its
arguments

• Calling a function does
not change anything

• Calling a function with
the same arguments
always gives the same
result

Python
• Result of a function may

depend on other variables

• Calling a function may
change variables

• Calling a function a
second time with the
same arguments may give
a different result

Function Composition

Composing Functions
• One way to write bigger3

bigger3 a b c = bigger (bigger a b) c

Pass results to …

Composing Functions
• Given a functions

• Predict the results of

double a = 2 * a
square a = a * a

> double (double 5)
> double (square 3)
> square (double 3)

Composing Functions – Example
• Surface area of a cylinder

circleArea r = pi * r * r
circleCircum r = 2 * pi * r
rectArea l h = l * h

cylinderArea r h =
2 * circleArea r +
rectArea (circleCircum r) h

Practical break

Section 2 of practical sheet

Refection 2: Sequence versus
Composition

Python’s Invisible Statement
• Sequence of assignments

• Next statements on a new line
• Many languages: S1 ; S2

x = x + 1 # This is python
y = x * 2
x = 12

… then

… then

Haskell’s Invisible Operator
• Function application

circleArea r = pi * r * r
circleCircum r = 2 * pi * r
rectArea l h = l * h

cylinderArea r h =
2 * circleArea r +
rectArea (circleCircum r) happly

apply apply

apply
apply

apply

Decomposition
Python

• Sequence of
statements

• … with names
(functions)

• Order of memory
updates

Haskell

• Expressions
• … with names

(functions)
• Argument and results

Functional composition ≠ sequencing of statements

Python’s Other Invisible Operator
• Function call (application)

def circleArea(r): return math.pi * r * r
def circleCircum(r): return 2 * math.pi * r
def rectArea(l, h): return l * h

def cylinderArea(r, h):
return 2 * circleArea(r) + \
rectArea(circleCircum(r), h)

call

call call

call

call

Recursion

Recursion
• Can the definition of a function use the

function being defined.
• This is known as recursion

• It can if
• There is a non-recursive base case
• Each recursive call is nearer the base case

Recursion – Example
• A triangle number

counts the number of
dots in an equilateral
triangle (see picture)

• We can define by:

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

Base case

Recursive; smaller n

Patterns
• The argument can match a pattern

• Equivalent to:

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

trigNum n
| n == 1 = 1
| otherwise = n + trigNum (n-1)

Pattern

Practical break

Section 3 of practical sheet

Refection 3: How
Functions Work
Comparison with dry running a Python
program

Example Python Program

• Variables are:
• mark
• total
• min
• average
• grade

Enter two marks
Save minimum
mark = int(input("Mark 1 > "))
total = mark
min = mark

mark = int(input("Mark 2 > "))
if mark < min:

min = mark
total = total + mark

Calculate average
average = total / 2

Calculate grade
if min < 30 or average < 50:

grade = "fail"
else:

grade = "pass"

Dry Running a Program
• Table has column for each variable
• Row for each step

Step
Variable

mark total min average grade
1 35
2 35
3 35
4 45
5 80
6 40
7 fail

Memory

Sequence

Rewriting (Reduction)
• Replace each call to a function by its definition
• Replace arguments by expressions

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

trigNum 3
= 3 + trigNum 2
= 3 + 2 + trigNum 1
= 3 + 2 + 1
= 6

Lists

Lists in Haskell
• Haskell has lists … similar to Python
• LISP
• First functional language
• ‘List processing’

• Example: [1, 2, 3]
• Equivalent to:

1 : 2 : 3 : []

Cons Empty list

Useful List Functions
Function Description Example
elem Member of list Main> elem 4 [1,2,3,4,5]

True
Main> elem 4 [1,3,5]
False

head First element of list Main> head [2,4,6,8]
2

tail List without first
element

Main> tail [3,5,7,9]
[5,7,9]

++ Concatenate two
lists

Main> [1,2,3] ++ [7,9]
[1,2,3,7,9]

Ranges
• Similar to Python

[1 .. 10]

First Last

List Recursion
• Many functions on lists are defined recursively
• Base case: empty list
• Recursive case: apply to tail of list

-- length of a list
len [] = 0
len (x:xs) = 1 + len xs Recursive call

Base case

Pattern
- empty Pattern – not empty

Practical break
Section 4 of practical sheet

Refection 4: Recursion
and Loops

How to do without loops

Recursion and Loops
Python

• While and for statements
• Preferred

• Recursion available
• Some overheads

Haskell

• No loops!
• No statements

• Recursion preferred
• Elegant syntax

Iteration & recursion
equally expressive

forLoop 0 _ x = x
forLoop n f x = forLoop (n-1) f (f n x)

sumup n = forLoop n (+) 0

Control value
Result so far

Function in loop

Map, Filter and Fold

• Functions that abstract common ways of
processing a list

• Called ‘recursive functions’

Two Similar Functions
• Two functions that create a new list from an old one
• The new list is the same length
• Each new element is derived from the corresponding old

element

-- Add 1 to each entry is a list
addOne [] = []
addOne (x:xs) = x+1:addOne xs

-- Square each entry in a list
square [] = []
square (x:xs) = x*x:square xs

Using Map
• A function to apply a function to each element in

a list

inc x = x + 1

-- Add 1 to each entry is a list
addOne ls = map inc ls

square x = x * x

-- Square each entry in a list
squares xs = map square xs

How is Map Defined?
• Recursive definition of map

map f [] = []
map f x:xs = f x : map f xs

map inc [1,2,3]
= inc 1 : map inc [2,3]
= inc 1 : inc 2 : map inc [3]
= inc 1 : inc 2 : inc 3 : map inc []
= inc 1 : inc 2 : inc 3 : []
= [2, 3, 4]

Fold – Reducing a list
• Combine the elements of a list

-- length of a list
len [] = 0
len (x:xs) = 1 + len xs

-- sum of a list
addUp [] = 0
addUp (x:xs) = x + addUp xs

Using Fold – Reducing a list
• Combine the elements of a list

count x y = y + 1

-- length of a list
len xs = foldr count 0 xs

add x y = x + y

-- sum of a list
addUp xs = foldr add 0 xs

How is Foldr Defined?
• Recursive definition of foldr

foldr f a [] = a
foldr f a x:xs = f x (foldr f a xs)

foldr add 0 [1,2,3]
= add 1 (foldr add 0 [2,3])
= add 1 (add 2 (foldr add 0 [3]))
= add 1 (add 2 (add 3 (foldr add 0 [])))
= add 1 (add 2 (add 3 0))
= add 1 (add 2 3)
= add 1 5
= 6

Filter
• Select items from a list

moreThan a b = b > a

Main> filter (moreThan 3) [3,2,5,1,7,8]
[5,7,8]

Predicate

Map, Foldr, Filter – Summary

• These are called recursive function
• foldr is more general – it can be used to define

the other two

Function Description
map Apply function to each list element
filter Select elements satisfying a

predicate
foldr Combine elements using a function

Google Map Reduce
• Very large datasets can be processed using

the Map Reduce framework
• Divide the list of input
• Map function to each list (separate computers)
• Reduce list of results (from the separate

computers)

Practical break
Section 5 of practical sheet

Refection 5: The Best
Language?

Programming Language
• Between machine and users

• More abstract
• Haskell is ‘declarative’
• Performance

Machine UserC Java Haskell

Functional Programming in Practice

• Functional languages
• LISP – the original one
• Haskell
• Scala – compiles to JVM
• F♯ – compiles to .NET

• Influences
• Java, Python, C♯
• Python has versions of map and fold

Job Adverts (Feb 2020)

Summary

… and teaching FP

Functional Programming
We Have Covered

• Programming with
expressions

• No statements
• No assignment à no

variables
• No sequence à no loops

• Composition of functions
• Possible and practical
• Programs can be shorter

• Map and fold

.. More Ideas

• Map and fold
• List comprehension
• Anonymous functions –

lambda
• Types
• Numbers issue

• Polymorphism
• Input and output

Teaching FP
• Practical skill?
• … is there knowledge otherwise?

• No types

• Focus seems to be on:
• Function definition
• … using recursion
• Program execution by rewriting

Is using FP to
reflect on
Imperative
programming
useful?

