* See paper sheet

* Create a directory using your full name in
documents

* In the directory, use notepad to create a file with
extension .hs

 Start WinGHCI and load the (empty) file

institute of

- COMPUTING AT SCHOOL
CODIIG woveng pienee avcevme

A Level Computer Science

William Marsh
School of Electronic Engineering and Computer Science
Queen Mary University of London

* Flavour of Functional Programming

* how 1t differs from Imperative Programming

(e.g. Python)

e Claim that;:

* It 1s possible to program using functions

e [t 1s useful!

* Better understanding of programming

I hope this 1s
convincing

Only simple examples

-
How This Session Works

1

2. Do

3. Reflect
4. Repeat
S
6

. Stop when times up

FP Topics Reflections
* A first functions * Expressions, statements
* Composing function and variables
e T.ists * Sequence versus
» If time (probably not) composition
. Recursion * How functions work
* Map, Filter and Fold * Recursion and loops

* The best language

Challenge problems

Functional Languages?

* Many programming languages now have

functional features Lisp (programming language)

institute of

VTPl C OOl 1 COMPUTING AT SCHo0L

U“'Vefs'ty Of London Part of BCS -The Chartered Institute for IT

* This function gives the larger of two numbers

Function
[hamme / Argument

bfgger a b/f 1f a > b then a else b

L

Is defined as ...

* Like Python, Haskell 1s layout sensitive

* The following all work

bigger a b =
1f a > b then a else b

bigger a b =
1f a > b
then a
else b

e WinGHC.1 1s a shell

 Use functions interactively

* Use a text editor to edit the program
* Notepad++ 1s better than notepad if you have it

File Edit Actions Tools

sxan ODeEENA

7

| #p1 - Notepad

GHCi, version 8.8.1: http://www.haskell.org/ghc/ :? for help
Prelude> :cd (C:\Users\Dad\Documents\haskell

Prelude> :load "fpl.hs"

[1 of 1] Compiling Main (fpl.hs, interpreted)
Ok, modules loaded: Main.

*Main> :redit

Ok, modules loaded: Main.
*Main>

File Edit Format Viev Help

bigger a b = if a > b then a else b

institute of

VTPl C OOl 1 COMPUTING AT SCHo0L

University of London Part of BCS ~The Cha

Section 1 of exercise sheet

institute of

- COMPUTING AT SCHOOL
CODIIG woveng pienee avcevme

Refection 1: Expressions,
statements and Variables

* Expression =2 value

e Statement 2 command

* Python: statements and expressions

* Haskell: only expressions

-
The Assignment Statement

* The most important statement:

x = x + 1 # This is python

* Update the memory location x’with its current
value plus 1

e ‘X’ 1s a variable

Python program is a sequence | | Haskell has no statements

of assignments * No assignment
 Function may assign, so ... * No variables
* Expressions are not just Is it possible to program

values without variables?

* My Haskell program seems to have variables

bigger a b =
1f a > b then a else b

* ‘a’ and ‘b’ a names for values
* Not memory locations

Maths (and Haskell) Python

* Result of a function * Result of a function may
depends only on its depend on other variables
arguments

* Calling a function does » Calling a function may
not change anything change variables

* Calling a function with » Calling a function a
the same arguments second time with the
always gives the same same arguments may give

result a different result

institute of

VTPl C OOl 1 COMPUTING AT SCHo0L

Unlvers'ty O' London Part of BCS -The Chartered Institute for IT

* One way to write bigger3

bigger3 a b ¢ = bigger (bigger a b) c

/

Pass results to ...

 (G1ven a functions

2 * a
a * a

double a
square a

* Predict the results of

> double (double 5)
> double (square 3)
> square (double 3)

* Surface area of a cylinder

clrcleArea r
circleCircum
rectArea 1 h

= 2 * p1 * r
1 * h

sl

cylinderArea r h = N~
2 * cilrcleArea r +
rectArea (circleCircum r) h

institute of

+
ROTER] CODIl G IR

Section 2 of practical sheet

institute of

- COMPUTING AT SCHOOL
CODIIG woveng pienee avcevme

Refection 2: Sequence versus
Gomposition

-
Python's Invisihle Statement

* Sequence of assignments

...then | ™\

This is python

1
2

—_

il v /i

... then

 Next statements on a new line

* Many languages: S1 ; S2

* Function application

clrcleArea r
clrcleCircum
rectArea 1 h

=

cylinderArea r
—2~* cilrcleArea

appl

ppy rectArea

/

pl1 * r * r

1 * h

-

g

(circleCircum 1)

apply

/

ap]

ly

‘h

apply

/

apply

/

.

apply

Python Haskell

* Sequence of * Expressions
statements * ... with names

* ... with names (functions)
(functions) * Argument and results

* Order of memory
updates

Functional composition # sequencing of statements

o
Python’s Other Invisible Operator

* Function call (application)

def circleArea(r): return math.pi * r * r
def circleCircum(r): return 2 * math.pi * r
def rectArea(l, h): return 1 * h
def cvlinderArea(r, h): call
call h 27* circleAred (r) +-\
rectAreQ(circleCircumfr), h) call

call call

institute of

VTPl C OOl 1 COMPUTING AT SCHo0L

Unlvers'ty of London Part of BCS -The Chartered Institute for IT

e Can the definition of a function use the
function being defined.

 This 1s known as recursion

e [t can 1f

 There 1s a non-recursive base case

e FEach recursive call 1s nearer the base case

* A triangle number
counts the number of
dots 1n an equilateral
triangle (see picture)

* We can define by:
f Base case

trigNﬁm 1 =1
trigNum n = n + trigNum (n-1)

Recursive; smaller n

* The argument can match a pattern

f Pattern
trigNum 1 =1
trigNum n = n + trigNum (n-1)

* Equivalent to:

trigNum n
| n == =1
| otherwise = n + trigNum (n-1)

institute of

+
ROTER] CODIl G IR

Section 3 of practical sheet

nstitute of

VI COOiIG OmPuINGATsaiooL

Comparison with dry running a Python
program

 Variables are:

mark
total
min
average
grade

Enter two marks

7 Save minimum

mark = int(input("Mark 1 > "))
total = mark

min = mark

mark = int(input("Mark 2 > "))
if mark < min:

min = mark
total = total + mark

Calculate average
average = total / 2

Calculate grade
if min < 30 or average < 50:

grade = "fail"
else:
grade = "pass”

e Table has column for each variable

* Row for each step

Step Valjiable
mark |total |min |average |grade
1 35
Memory || 2——_ | 35
—~ 3 35
Sequence | < A 45
5 80
6 40
7 fail

* Replace each call to a function by its definition

* Replace arguments by expressions

1
n + trigNum (n-1)

trigNum 1

trigNum n

trigNum 3
= 3 + trigNum 2
3+ 2 + trigNum 1
3+ 2 +1
0

institute of

VTPl C OOl 1 COMPUTING AT SCHo0L

University of London Part of BCS ~The Charter

nstitute for IT

Lists in Haskell
* Haskell has lists ... similar to Python
* LISP

 First functional language

* ‘List processing’
 Example: [1, 2, 3]
* Equivalent to:

1 : 2 3 : []

e L

Cons Empty list

-
Useful List Functions

elem Member of list Main> elem 4 [1,2,3,4,5]
True
Main> elem 4 [1,3,5]
False

head First element of list Main> head [2,4,6,8]
2

tail List without first Main> tail [3,5,7,9]

element [5,7,9]
++ Concatenate two Main> [1,2,3] ++ [7,9]

liStS [1/2/3/719]

* Similar to Python

First [Last

* Many functions on lists are defined recursively

* Base case: empty list

* Recursive case: apply to tail of list

—— length of aliy— B
len - ase case
(x:xs) = 1 + len xsMT | Recursive call

Pattern
- empty

Pattern — not empty

institute of

+
ROTER] CODIl G IR

Section 4 of practical sheet

nstitute of

VI COOiIG OmPuINGATsaiooL

Refection 4: Recursion
and Loops

How to do without loops

Python Haskell
* While and for statements * No loops!
* Preferred * No statements
* Recursion available * Recursion preferred
* Some overheads * Elegant syntax
[teration & recursio Control value
equally expressive |~ | Result so far

)

Z
forLoop O{ x < x

(n-1) £ (£ n x)

forLoop n fw

Function in loop

sumup n = forLoop n (+) O

institute of

VTPl C OOl 1 COMPUTING AT SCHo0L

University of London Part of BCS ~The Cha

* Functions that abstract common ways of
processing a list

e (alled ‘recursive functions’

-
Two Similar Functions

 Two functions that create a new list from an old one
* The new list 1s the same length

* Each new element 1s derived from the corresponding old
element

-— Add 1 to each entry 1s a 1list
addOne [] = []

addOne (x:xs) = x+1:addOne xs

—-— Square each entry 1n a list
square [] = []
square (x:xs) = X*X:square XS

* A function to apply a function to each element in
a list

inc x = x + 1

-— Add 1 to each entry 1s a 1list
addOne 1ls = map 1nc 1s

square X = X * X

-— Square each entry 1n a list
squares Xs = map sguare Xxs

* Recursive definition of map

map £ [] = []
map f x:xs = f x : map f xs
map inc [1,2,3]
= 1nc 1 : map 1nc [2, 3]
= 1nc 1 : 1nc 2 : map inc [3]
= 1nc 1 : 1nc 2 : 1inc 3 : map inc []
= inc 1 : 1nc 2 : inc 3 : []
= [2, 3, 4]

e Combine the elements of a list

-— length of a list
len [] 0

len (x:xs8) 1 + len xs

—— sum of a list
addUp [] 0

addUp (x:xs) X + addUp xs

e Combine the elements of a list

count x y =y + 1

-— length of a list
len xs = foldr count 0 xs

add x v = x + vy

—-— sum of a list
addUp xs = foldr add 0 xs

e Recursive definition of foldr

foldr £ a [] a
foldr £ a x:xs = £ x (foldr £ a xs)

foldr add 0 [1,2, 3]
= add 1 (foldr add 0 [2,3])
= add 1 (add 2 (foldr add 0 [3]))
= add 1 (add 2 (add 3 (foldr add O [])))
= add 1 (add 2 (add 3 0))
= add 1 (add 2 3)
= add 1 5

4 = 0

e Select items from a list

/ Predicate

moreThan a b = b > a’/

Main> filter (moreThan 3) [3,2,5,1,7,8]
[5,7,8]

-
Man, Foldr, Filter - Summary

map Apply function to each list element

filter Select elements satisfying a
predicate

foldr Combine elements using a function

 These are called recursive function

* foldr 1s more general — it can be used to define
the other two

* Very large datasets can be processed using
the Map Reduce framework

* Divide the list of input
* Map function to each list (separate computers)

* Reduce list of results (from the separate
computers)

institute of

+
ROTER] CODIl G IR

Section 5 of practical sheet

institute of

YTt C OOl G SOMPUTINGAT SCHOOL

University of London Part of BCS ~The Cha

Institute for IT

Refection o: The Best
Language?

-
Programming Language

e Between machine and users

e More abstract

e Haskell 1s ‘declarative’

 Performance

* Functional languages
* LISP — the original one
* Haskell

* Scala — compiles to JVM
* F#— compiles to .NET

* Influences
e Java, Python, C#
* Python has versions of map and fold

Joh Adverts (Febh 2020)

GSA

Software Developer (Market Risk Systems)
£60K - 130K

} Sponsorship

GSA Capital

London, United Kingdom

Programmer role within the Market Risk Systems

team o~ &

Senior Haskell Engineer
£70K - 85K + Equity

Habito

London, United Kingdom

The worlds best digital mortgage broker

moixa

Full Stack Developer
£50K - 75K

London, United Kingdom

Distributed smart energy techr

droit

Knowledge Engineer
£70K - TNIOK + Equity

Droit Financial Technologies
London, United Kingdonn
Transforming finance with Clojure & Haske

droit

Software Developer
£65K - NOK

Droit Financial Technologies

London, United Kingdom

tional law

using

Scala Engineer
£45K - 85K

Quantemplate

London, United Kingdom

Self-service data integration and analytics powered

by machine learning - Scala

institute of

VI COOiIG OmPuINGATsaiooL

sity of Lon

slimmary

.. and teaching FP

* Programming with
eXpressions
* No statements

* Map and fold
 List comprehension

- No assignment = no * Anonymous functions —
variables lambda
* No sequence = no loops * Types
* Composition of functions « Numbers issue
* Possible and practical * Polymorphism
* Programs can be shorter * Input and output

* Map and fold

Teaching FP

e Practical skill?

* ... 1s there knowledge otherwise?
* No types

¢ FOCU.S seems to be on.
 Function definition
* ... UsIng recursion

* Program execution by rewriting

Is using FP to
reflect on
Imperative
programming
useful?

112 In a functional programming language, a recursively defined function named map and

a function named double are defined as follows:

map £ [] = []
map f (x:xs) = £ x : map f xs
double x = 2 * x

The function map has two parameters, a function £, and a list that is either empty
(indicated as []), or non-empty, in which case it is expressed as (x:xs) in which x

is the head and xs is the tail, which is itself a list.

[1 \ 2 | . | 2 \ Calculate the result of making the function call listed in Table 7.

[1 mark]

Table 7
Function Call Result
map double [1, 2, 3, 4]
112 |.|3 | Explain how you arrived at your answer to question 2

steps that you followed.

and the recursive

[3 marks]

In a functional programming language, four functions named fw, £x, fy and £z and
a list named sales are defined as shown in Figure 15.

fw [a,b] = a * Db

fx ¢ = map fw c

fy d = fold (+) 0 d
fz e = fy (fx e)

sales = [[10,2], [2,25], [4,8]]

The sales list represents all of the sales made in a shop in 1 day. It is composed of

sublists.

The values in each sublist indicate the price of a product and the quantity of the
product that was sold. For example, [10, 2] indicates that 10 units of a product
priced at £2 were sold.

Calculate the results of making the function calls listed in Table 5, using the functions

and lists in Figure 15 as appropriate.
Function call

K]

fw [4,3]

fx sales

fz sales

