
	 Page	1	of	6	

	

CAS	London	Conference:	February	2020		

Practical	Sheet:	Functional	Programming	

This	sheet	is	a	set	of	exercises	for	introducing	functional	programming	using	Haskell.	An	
extended	version	and	answers	are	available	from	
http://www.eecs.qmul.ac.uk/~william/CAS-London-2020.html			

Notes	on	using	WinGHCi	

• Use	a	text	editor	(such	as	notepad)	to	create	a	file.	
• The	file	should	have	extension	.hs	
• Start	WinGHCi	and	load	the	file	
• Add	to	your	program	using	the	editor;	reload	it	in	WinGHCi	

Online	alternative	

You	can	use	Haskell	online	at	https://repl.it/languages/haskell		

• Limited	documentation:	https://repl.it/site/blog/haskell		
• Type	into	the	right	hand	box!	

1 Simple Functions
In	this	section,	you	lean	to	define	some	simple	functions.		

Exercise	1.1:	Enter	a	Simple	Function	

Enter	the	following	function	and	test	it	using	WinGHCi	
-- Find the larger of two numbers
bigger a b = if a > b then a else b

Here	is	an	example	of	running	the	problem:		
*Main> bigger 10 20
20
*Main> bigger 12 6
12
*Main>

Exercise	1.2:	Bigger	of	Three	
Create	a	second	function	that	finds	the	largest	of	three	arguments.	It	starts	like	this:	

True -- Find the largest of three numbers
bigger3 a b c = add	text	here

	 	

CAS	London	Conference	2020	 	 Functional	Programming	Notes	

	 Page 2 of 6	

Exercise	1.3:	More	functions	
Practice	defining	more	functions	(see	the	operators	on	the	next	page).	Here	are	some	
suggestions:	

• Square	a	number	
• Test	whether	a	number	is	odd	
• The	area	of	a	circle	(or	cylinder)	from	the	radius	(using	constant	pi)	

Some	operators	in	Haskell:	

Operators	 Notes	 (Interactive)	Example	
+ * / - ^ Arithmetic	 *Main> 3^27

7625597484987
== /= Equals;	not	equals	 *Main> 3 /= 5

True
&& || not Logic	 *Main> not (3 == 4)

True
*Main> (3 == 1 + 2) && (3 /=
5)
True

< <= > >= Comparison	 *Main> (3 >= 6) || (-1 < -2)
False

`mod` `div` Modulo	 *Main> 27 `mod` 7
6
*Main> 27 `div` 7
3

	

Additional	Exercise	1.4:	Is	it	a	triangle?	

Three	lengths	can	form	a	triangle	provided	that	none	of	them	exceeds	the	sum	of	the	
other	two.	Define	a	function	to	check	that	three	lengths	make	a	triangle.	Here	are	some	
examples	of	the	function	being	used:	

*Main> isTriangle 10 10 10
True
*Main> isTriangle 10 10 100
False
*Main> isTriangle 10 40 10
False

	

CAS	London	Conference	2020	 	 Functional	Programming	Notes	

	 Page 3 of 6	

2 Function Composition
This	section	introduces	combining	(‘composing’)	functions.	This	is	the	way	that	complex	
programs	are	made	from	simple	ones.		

Exercise	2.1:	Given	the	following	function	definition	(add	them	to	your	file):	
-- Simple functions
double a = 2 * a
square a = a * a
inc a = a + 1

Predict	the	result	of	the	following	(and	then	check	your	answers):	
> double (double 5)
> double (square 3)
> square (double 3)
> square (square 3)
> double (double (double 6)))
> square (inc (inc 3))

	

Additional	Exercise	2.2:	Heron's	Formula	

Heron’s	Formula	for	the	area	of	a	triangle	from	the	lengths	of	the	sides	(a,	b,	c)	is:	

𝐴𝑟𝑒𝑎 = 	'𝑝(𝑝 − 𝑎)(𝑝 − 𝑏)(𝑝 − 𝑐)	

where	p	is	half	the	perimeter:	𝑝 = ./0/1
2

	

Define	a	function	to	compute	the	area.	Note	however,	that	the	formula	assumes	a,	b	and	
c	do	define	a	triangle;	use	the	function	‘isTriangle’	to	check	this,	returning	-1	if	the	
lengths	are	not	a	triangle.	

An	outline	of	the	program	is	given	below,	using	a	new	form	of	syntax:	
halfP a b c = add	text	here

area a b c =
 if isTriangle a b c
 then
 let p = halfP a b c in sqrt (add	text	here)
 else -1

The	new	syntax	is	a	Let	expression.	We	can	avoid	repeating	an	expression	multiple	
times	by	giving	it	a	name	and	using	the	name.	Here	‘p’	has	been	used	to	stand	for	the	
value	of	the	half	perimeter.	The	function	could	be	defined	without	using	‘let’	by	‘halfP	a	b	
c’	in	place	of	‘p’.	

	

CAS	London	Conference	2020	 	 Functional	Programming	Notes	

	 Page 4 of 6	

3 Recursions
Function	definitions	can	be	recursive.	Using	recursion	to	define	a	function	is	a	key	
technique	in	Functional	Programming.		

Exercise	3.1:	Enter	and	try	the	trigNum	function.	All	the	forms	below	are	equivalent	–	
try	them	all	out.	

-- Definition using a pattern to distinguish the two cases
trigNum 1 = 1
trigNum n = n + trigNum (n-1)

-- Definition using guard conditions instead of a pattern
trigNum1 n | n == 1 = 1
 | otherwise = n + trigNum1 (n-1)

-- Definition using if expression
trigNum2 n = if n == 1
 then 1
 else n + trigNum2 (n-1)

Note	that	only	one	definition	of	a	function	is	allowed	so	we	have	used	different	names	
for	each	definition.	

Exercise	3.2:	What	happens	if	the	trigNum	function	is	called	with	an	argument	of	zero	
or	less?	

Additional	Exercise	3.3:	The	familiar	factorial	function	can	be	defined	in	a	similar	way	
to	trigNum.	In	mathematical	notation,	the	factorial	is	defined	by:	

𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙	𝑛 = 𝑛	 × 	𝑛 − 1	 × ⋯× 	2	 × 	1	

Define	a	Haskell	function	fact.	Note	that	the	base	case	is	shown	below:	
-- factorial
fact 0 = 1
fact n = add	text	here

4 Lists
Like	Python,	Haskell	has	lists	(but	with	the	important	difference	that	elements	cannot	be	
updated).	Lists	are	often	processed	recursively:	

• The	base	case	is	the	empty	list	
• The	recursive	call	is	applied	to	the	tail	of	the	list.	

Some	useful	functions	on	lists	

Function	 Description	 Example	
: ‘Cons’	an	element	to	a	list	 Main> 42:[4,3,2,1,0]

[42,4,3,2,1,0]
Main> 1:2:[]
[1,2]

elem Member	of	a	list	 Main> elem 4 [1,2,3,4,5]
True
Main> elem 4 [1,3,5]
False

head First	element	of	a	list	 Main> head [2,4,6,8]
2

CAS	London	Conference	2020	 	 Functional	Programming	Notes	

	 Page 5 of 6	

Function	 Description	 Example	
tail List	without	the	first	element	 Main> tail [3,5,7,9]

[5,7,9]
last Last	element	of	a	list	 Main> last [3,5,7,9]

9
init List	without	the	last	element	 Main> init [2,4,6,8]

[2,4,6]
++ Concatenate	two	lists	 Main> [1,2,3] ++ [7,9]

[1,2,3,7,9]
null Test	if	a	list	is	empty	 Main> null []

True
Main> null [1]
False

length Length	of	a	list	 Main> length [1,3,5]
3

reverse Reverse	a	list	 Main> reverse [2, 7, 5]
[5,7,2]

	

Exercise	4.1:	Head	and	tail	of	a	list.	Predict	the	result	of	the	following	expressions.	
Check	your	answers.	

Main> head [1,2,3,4]
Main> tail [4,3,2,1]
Main> head (tail [2,4,6,8])

Exercise	4.2:	Ranges.	Predict	the	result	of	the	following	expressions.	Check	your	
answers.	

Main> [1..5]
Main> [7,11 .. 27]
Main> [7,6 .. 1]
Main> reverse [7,9 .. 21]
Main> length [0 .. 100]

Exercise	4.3:	Sum	of	a	list.	
A	function	to	sum	the	numbers	in	a	list	can	be	defined	recursively.	The	key	ideas	are:	

• The	sum	of	the	elements	of	an	empty	list	is	0	
• The	sum	of	the	elements	of	a	non-empty	list	is	the	head	of	the	list	added	to	the	

sum	of	the	tail.		

Here	is	an	outline	of	the	function.	Complete	the	definition	and	try	it	out.	Note:	the	
function	is	called	‘addUp’	as	there	is	already	a	function	‘sum’	defined.		

-- Add up a list of numbers
addUp [] = 0
addUp (x:xs) = add	text	here

	 	

CAS	London	Conference	2020	 	 Functional	Programming	Notes	

	 Page 6 of 6	

Additional	Exercise	4.4:	Redefining	trigNum	and	fact.	You	may	have	noticed	that		
• trigNum n	is	the	sum	of	the	numbers	from	1	to	n	
• fact n	is	the	product	of	the	numbers	from	1	to	n	

Using	this,	trigNum	can	be	redefined	as	follows	
-- Alternative trigNum
trigNumAlt n = sum [1..n]

Enter	this	new	definition	and	test	it	out.	Make	a	similar	redefinition	of	fact.	(Hint:	you	
need	a	function	product.	This	function	is	already	defined.)

Functional	Programming	–	Additional	Pages	

	 Page 7 of 9	

5 Map, Filter and Fold
The	functions	map,	filter	and	(various	forms	of)	fold	capture	some	common	forms	of	
recursive	operation	on	lists.	Many	recursive	definitions	can	be	written	using	these	
functions	rather	than	explicit	recursion.		

Exercise	5.1:	Map:	applying	a	function	to	each	item	in	a	list.	

Given	the	following	functions	
inc n = n + 1
double n = n * 2
square n = n * n

Predict	the	result	of	the	following.		
Main> map inc [2,4 .. 8]
Main> map double [2,4 .. 8]
Main> map square [1 .. 4]
Main> map double (map inc [1 .. 4])
Main> map double (map square [1 .. 4])
Main> map square (map double [1 .. 4])

	

Exercise	5.2:	Filter:	picking	out	a	subset	of	a	list.	

Given	the	following	function	
even n = n `mod` 2 == 0

Predict	the	result	of	the	following.		
Main> filter even [1,2,3,4]
Main> sum (filter even [1..10])

Exercise	5.3:	Using	Foldr		
The	sum	function	can	be	defined	using	foldr.		

sum xs = foldr (+) 0 xs

Enter	this	function	and	try	using	it.	

Exercise	5.4:	Using	foldr	to	define	product	
The	product	function	can	be	defined	using	foldr,	in	a	similar	way	to	sum.		

Additional	Exercise	5.5:	Any	and	All.	The	functions	‘and’	and	‘or’	are	used	to	combine	
a	list	of	Boolean	values.	Here	are	some	examples	of	their	use:	

Main> and [True, True, True]
True
Main> and [True, True, False]
False
Main> or [True, True, False]
True

• Explain	whether	these	functions	are	defined	using	map	or	foldl.	
• Give	a	definition	of	the	functions	using	map	or	foldl.	

Functional	Programming	–	Additional	Pages	

	 Page 8 of 9	

6 Challenge Problems
These	problems	are	selected	from	https://projecteuler.net	See	if	you	can	solve	any	using	
Haskell.	

6.1 Problem 1: Multiples of 3 and 5
If	we	list	all	the	natural	numbers	below	10	that	are	multiples	of	3	or	5,	we	get	3,	5,	6	and	
9.	The	sum	of	these	multiples	is	23.	

Find	the	sum	of	all	the	multiples	of	3	or	5	below	1000	

Outline	

• Define	a	function	that	test	whether	a	number	is	divisible	by	3	or	by	5	
• Use	the	function	to	filter	a	list	of	numbers	
• Find	the	sum	of	the	filtered	numbers	

6.2 Problem 6: Sum square difference
The	sum	of	the	squares	of	the	first	ten	natural	numbers	is,	

12	+	22	+	...	+	102	=	385	

The	square	of	the	sum	of	the	first	ten	natural	numbers	is,	

(1	+	2	+	...	+	10)2	=	552	=	3025	

Hence	the	difference	between	the	sum	of	the	squares	of	the	first	ten	natural	numbers	
and	the	square	of	the	sum	is	3025	−	385	=	2640.	

Find	the	difference	between	the	sum	of	the	squares	of	the	first	one	hundred	natural	
numbers	and	the	square	of	the	sum.	

6.3 Problem 4: Largest palindrome product
A	palindromic	number	reads	the	same	both	ways.	The	largest	palindrome	made	from	
the	product	of	two	2-digit	numbers	is	9009	=	91	×	99.	

Find	the	largest	palindrome	made	from	the	product	of	two	3-digit	numbers.	

Outline	

• Define	a	function	that	gives	the	digits	of	a	number	as	a	list.	For	example	‘digits
1815’	give	[5,1,8,1].		

• A	palindrome	is	a	number	whose	list	of	digits	is	the	same	when	reversed.	For	
example,	91719	is	a	palindrome.	Define	a	function	to	test	for	palindromes.	

• You	need	to	make	a	list	of	products	of	all	pairs	of	number	from	a	pair	of	lists.	This	
can	be	done	using	the	makeProd	function	shown	below.	

• Filter	the	list	of	products	using	the	palindrome	tester	and	use	the	function	
maximum	to	find	the	largest	number	in	the	list	of	palindromes.	

The	makeProd	function	can	be	defined	like	this:	
makeProd as bs = [a*b | a<-as, b<-bs]

Here	is	an	example	of	its	use:	
Main> makeProd [1..5] [1..5]
[1,2,3,4,5,2,4,6,8,10,3,6,9,12,15,4,8,12,16,20,5,10,15,20,25]

Functional	Programming	–	Additional	Pages	

	 Page 9 of 9	

7 Further Reading
You	can	try	any	of	the	following	to	find	out	more	about	Haskell:	

• https://tryhaskell.org/	An	outline	tutorial.	Simple	Haskell	expressions	can	be	
tried	in	a	browser	interface.		

• An	introductory	book	that	can	be	read	online:	http://learnyouahaskell.com/		
• Download	the	most	popular	Haskell	system:	https://www.haskell.org/platform/		
• Haskell	language	home	page:	https://www.haskell.org/		

	

