To Get Started

* Paper sheet

* Online:
http://www.eecs.gmul.ac.uk/~william/CAS-London-2020.html|

* Download sample programs
—Create directory
—Unzip
—Recommend copy sample files before editing

W QueenMary paversem oo COMPUTING AT SCHOOL I(N/?S
- ollege
sty o Londen MAYOR OF LONDON LUNIFUTING Al SLAUUL LONDON

http://www.eecs.qmul.ac.uk/~william/CAS-London-2020.html

Object Oriented
Programming in A Level

William Marsh
[Original version co-authored with Melissa Bustamante]

vvvvvvvvvvv

Session Aim and Outline

Outline Aims

* Using classes: the Face * Be able to motivate the use of
« Attributes and the constructor classes and objects

- Reflection : Decompositionand ~ * B€ able to explain OOP in
design relations Abstraction and

Decomposition
* Practical break P

Reflection: H Wh * ...progression in OOP
cTEEHON: HOW VERLS 1Y * Be aware of issues for teaching

* Progression OOP
* Misconceptions

* Python versus java e —

W Queen Mary College
e mavor oF LonpoN COMPUTING AT SCHOOL PN

A Face Class: Becoming a
User of Objects

There are many examples of classes and object that are
familiar

vvvvvvvvvvv

Using the Face Class

* File class is

This is a variable. What is

a familiar '
ol from turtle 1impo the type of its value?
example from j rt Face
* Are we f1 = Face (0, 0)
aware we fl.draw() ——
Use — | Draw methods:
obiects? which face is
J - f2 = Face (=200, 0) drawn?
f2.setSize (80)
2 .draw ()
O ey oo COMPUTNGATSCHOOL LS

LONDON

Objects and Methods
 Name | Type | Descripton

f1, f2 Variables; A drawing of a face
Objects of ‘Face’ class

Face Class name; constructor Create a Face object
setSize Method of ‘Face’ class Set size of the face
draw Method of ‘Face’ class Draw the face

‘Method’ is an OO word for function

MY Queen VA yavon or Lonbon COMPUTING AT SCHOOL

Summary: Using Objects

* Face representation is hidden
* Method act (read or update) on objects

The object to be
acted on

f2.setS1ze (80)

/ _

A second parameter:
the size to set

The method:

implements the action

Y Queen Mary

vvvvvvvvvvv

MAYOR OF LONDON (OMPU‘[WGATES(HOO',-

ING'S
College

LONDON

Teaching Functional Decomposition

* You have already learnt about functions
— How they work
— How to use them

* |s it easy or hard to learn about functions?
— What aspects are easier?
— What aspects are harder?

W QueenMary yavor oF onon COMPUTING AT SCHOOL

ING'S
College

LONDON

Reflection: Abstraction and
Decomposition

Motivation: What are we trying to achieve with classes?

W QueenMary yavor oF onon COMPUTING AT SCHOOL

ING'S
College
LONDON

Liskov and Guttag 1986 — Decomposition

* A very small program consisting of no more than a few hundred lines
can be implemented as a single monolithic unit.

* However, as the size of the program increases such a ... structure is no
longer reasonable ...

* Instead the program must be decomposed into ... modules that
together provide the desired function.

e ... how to decompose large programming problems into small ones ...
what kinds of modules are useful ... [how] modules can be combined

to solve the original problem

S ING'S

W/ Queen Mar College
S) MavorROFLONDON COMPUTINGATSCHOOL BESCHSY

Two Different Aims for Learning OOP

How Why
* How to use classes * Decomposing a problem using
— Create a new object classes
— Use objects as variables (e.g. in a — Which classes to use?
list '
) — What makes a good class?
 How to create (declare) new . q 4 ab .
classes How to do good abstractions
- Add method and attributes — Analysis of the problem
— ... and constructors * How classes can interact
* How to create sub-classes — Software design

(inheritance)

W Queen Mary COMPUTING AT SCHOOL Colage
Q) Jollege
ey Mavor OF LoNDON COMPUTING AT SCHOOL BEpeQiiessid

Summary

* Emphasis continuity between OOP and previous programming

— Use of objects and methods explained
— Abstractions implemented using functions

* Program decomposition; problem abstraction

— Distinguish between learning syntax and
— ... practicing abstraction and program design

* OOP is a new solution to the goal of decomposition using abstraction

— Comparison with use of functions

W QueenMary \avor oF Lonpon COMPUTING AT SCHOOL

ING'S
College

LONDON

Practical Work

Drawing Faces: Exercises 1 and 2

WY QueenMary wavoroF Lonbon COMPUTING AT SCHOOL

Declaring Your Own Classes

Key concepts

W QueenMary wavororLonoon COMPUTING AT SCHOOL

The Faces Example

* Using Python turtle graphics

* Good points

— Visual and ?? Engaging (creative)
— Class versus object distinction
— Incremental

* Limitations
— Not typical of OO design

— Complexity of drawing a
distraction

ING'S
JTING AT SCHOOL College
ST | ONDON

Class Declaration

from turtle import

class Face:

def init (self,

o xpos:/ngﬁff//_
self.size 50
self.coord (Xpos, ypos)
self.noseSize = 'normal'

def setSize(self, radius):
self.size radius

def draw(self) :

self.drawOutline ()

Constructor

Attributes

Method

uuuuuuuuuuu

i/ QueenMary avor OF LONDON C(OMPUTING AT SCHOOL

University of London

Class Declaration

from turtle import
class Face:

def init
self.size = 50
self.coord = (xXpos, ypos)

self.noseSize = 'normal'

def setSize(self, radius):
self.size = radius

def draw(self) :

self.drawOutline ()

(self, xpos, ypos):

def goHome (self) :
penup ()
goto (self.coord)
setheading (0)

def drawOutline (self) :

penup ()
forward(self.size)
left (90)

pendown ()
circle(self.size)
self.goHome ()

vvvvvvvvvvv

/ QueenMary .vor oF LONDON COMPUTING AT SCHOOL

University of London

ING'S
College
LONDON

Defining a Constructor

Constructor
* Has a special name

* May have
parameters

Constructor
name

* Don’t forget ‘self’

class Face:

Initialise
attributes

def 1nit (self, xpos, ypos):
elf.size = 50
self.coord = (xpos|, ypos)
— self.noseSize = 'normal'
/ \ Constructor
{)
/ Always ‘self parameter
D ey wavonorionoon PTG ATschoot [INQUER

Attributes — Good Practice

e Attributes are not declared
— In Python, nothing is!

* Good practice to initialise all
attributes in the constructor
— Getters do not fail
— Clear what the attributes are
— Do not add more

class Face:

def 1nit (self, xpos, ypos):
self.size = 50
self.coord = (xpos, ypos)
self.noseSize = 'normal'

def setSize(self, radius):
self.size = radius
\Q’ Queen Mary R viase

SUPPORTED BY C‘O//CAI’
mavor oF Lonpon COMPUTING AT SCHOOL NN

University of London

Practical Work

Drawing Faces: Exercise 3 onwards

WY QueenMary wavoroF Lonbon COMPUTING AT SCHOOL

Teaching OOP in Python

WY QueenMary wavoroF Lonbon COMPUTING AT SCHOOL

University of London

Program Structure and Complexity

X =
If & loops ey s
y =
print
Functions | [Function def
Function def
Main program
« Initialise vars
 Call functions
Classes &
Ob J ects class Friend:
def __ini| class Town:

Main program |def __init__()
+ Create obj def mi(a, b):

« Call methods

* Program grows more complex
in structure

* Simpler elements remain
— If & loop = part of function
— Method = part of class

M Queen VAY wavor oF Lonbon COMPUTING AT SCHOOL

ING'S
College

LONDON

OOP
Concepts

Prerequisite
knowledge:
basic
mechanisms

I T

Basic
mechanics

Constructors

Interaction

A\

Abstraction
and modelling

Inheritance

* Calling a method of an object Prerequisite
Class as a template for data /_ knowledge:
Class as a collection of methods | fynctions &

Definition and use parameters

Object as a value (variable, list item, ...)
Object as an attribute value (has-a
relationship)

Object passed as a parameter

Class as a domain concept
Methods (and constructor) have parameters

Superclass and subclasses
Constructor called using super()
Method inherited or overridden

Possible Evidence

Attributes in the wrong scope

Confusion between class and
object

Confusion between class and
attribute

Objects only contain data

Objects do not interact

Believing objects are copied
not shared

e Omission of self (assignment or use)

No objects created
Only one instance
Inheritance rather than instance

Many classes — all simple

No encapsulation
Only get and set methods

All code in single class

Classes defined but not imported
Objects not used as attributes
Objects never passed as parameters

Unnecessary copying
Unexpected sharing

Also lack of
/_ prerequisite
knowledge:
functions &
parameters

ING'S
"ING AT SCHOOL College
» » LONDON

Python Issues for Teaching OOP

Usual OOP Python

* The attributes are declared * Nothing is declared

* A class has a fixed set of * Attributes appear when assigned
attributes to

* Attributes can be hidden: access * Hiding is not enforced
only by methods

Use Python to teach OOP
* Avoid some Python tricks
e Use only a subset
* ... explain later

R Colloge
Yollege
noon COMPUTINGATSCHOOL EpaNiarers

Python Versus

* No declarations

* Values are typed
—Variable types are dynamic

* Run time type checking
e Syntax with indentation
* Permissive philosophy

Java

e Declarations
e Static typing of variables

* Compile time type checking
 Syntax with braces { }
* Rigid philosophy

Y gf?ﬁvﬁary mavor of LonponN COMPUTING AT SCHOOL

ING'S
College

LONDON

Summary

* Object-oriented programming
— Builds on more basic programming

— A approach to program decomposition (decomposition take practice)

— Previous experience learning decomposition

* Progression: concepts not syntax
— Proficiency with functions essential
— Class versus object
— Classes have attributes and methods

— Constructor
— Relationships between classes; objects as values

— Inheritance
* Python — some disadvantages W Queen Mary

MavoR OF Lonpon COMPUTING AT SCHOOL

ING'S
College

LONDON

