
To Get Started

• Paper sheet
• Online:

http://www.eecs.qmul.ac.uk/~william/CAS-London-2020.html
• Download sample programs
-Create directory
-Unzip
-Recommend copy sample files before editing

http://www.eecs.qmul.ac.uk/~william/CAS-London-2020.html

William Marsh
[Original version co-authored with Melissa Bustamante]

Object Oriented
Programming in A Level

Session Aim and Outline

Outline
• Using classes: the Face
• Attributes and the constructor
• Reflection : Decomposition and

design
• Practical break
• Reflection: How versus Why
• Progression
• Misconceptions
• Python versus java

Aims
• Be able to motivate the use of

classes and objects
• Be able to explain OOP in

relations Abstraction and
Decomposition
• ...progression in OOP
• Be aware of issues for teaching

OOP

A Face Class: Becoming a
User of Objects

There are many examples of classes and object that are
familiar

from turtle import *
from Face import Face

f1 = Face(0, 0)
f1.draw()

f2 = Face(-200, 0)
f2.setSize(80)
f2.draw()

Using the Face Class
• File class is

a familiar
example

• Are we
aware we
use
objects?

This is a variable. What is
the type of its value?

Draw methods:
which face is

drawn?

Objects and Methods

Name Type Description
f1, f2 Variables;

Objects of ‘Face’ class
A drawing of a face

Face Class name; constructor Create a Face object
setSize Method of ‘Face’ class Set size of the face
draw Method of ‘Face’ class Draw the face

‘Method’ is an OO word for function

Summary: Using Objects
• Face representation is hidden
• Method act (read or update) on objects

f2.setSize(80)

The object to be
acted on

The method:
implements the action

A second parameter:
the size to set

Teaching Functional Decomposition
• You have already learnt about functions

-How they work
-How to use them

• Is it easy or hard to learn about functions?
-What aspects are easier?
-What aspects are harder?

Reflection: Abstraction and
Decomposition

Motivation: What are we trying to achieve with classes?

Liskov and Guttag 1986 – Decomposition
• A very small program consisting of no more than a few hundred lines

can be implemented as a single monolithic unit.
• However, as the size of the program increases such a ... structure is no

longer reasonable ...
• Instead the program must be decomposed into ... modules that

together provide the desired function.
• … how to decompose large programming problems into small ones …

what kinds of modules are useful … [how] modules can be combined
to solve the original problem

Two Different Aims for Learning OOP

How
• How to use classes

- Create a new object
-Use objects as variables (e.g. in a

list)
• How to create (declare) new

classes
- Add method and attributes
-… and constructors

• How to create sub-classes
(inheritance)

Why
• Decomposing a problem using

classes
-Which classes to use?
-What makes a good class?

• How to do good abstractions
- Analysis of the problem

• How classes can interact
- Software design

Summary
• Emphasis continuity between OOP and previous programming

-Use of objects and methods explained
- Abstractions implemented using functions

• Program decomposition; problem abstraction
-Distinguish between learning syntax and
-… practicing abstraction and program design

• OOP is a new solution to the goal of decomposition using abstraction
- Comparison with use of functions

Practical Work

Drawing Faces: Exercises 1 and 2

Declaring Your Own Classes
Key concepts

The Faces Example
• Using Python turtle graphics
• Good points

- Visual and ?? Engaging (creative)
- Class versus object distinction
- Incremental

• Limitations
-Not typical of OO design
- Complexity of drawing a

distraction

from turtle import

class Face:

def __init__(self, xpos, ypos):
self.size = 50
self.coord = (xpos, ypos)
self.noseSize = 'normal'

def setSize(self, radius):
self.size = radius

def draw(self):
...
self.drawOutline()
...

Class Declaration
Constructor

Attributes

Method

from turtle import

class Face:

def __init__(self, xpos, ypos):
self.size = 50
self.coord = (xpos, ypos)
self.noseSize = 'normal'

def setSize(self, radius):
self.size = radius

def draw(self):
...
self.drawOutline()
...

Class Declaration
def goHome(self):
penup()
goto(self.coord)
setheading(0)

def drawOutline(self):
penup()
forward(self.size)
left(90)
pendown()
circle(self.size)
self.goHome()

Defining a Constructor
Constructor
• Has a special name
• May have

parameters

• Don’t forget ‘self’

class Face:

def __init__(self, xpos, ypos):
self.size = 50
self.coord = (xpos, ypos)
self.noseSize = 'normal' Constructor

name

Constructor
parameterAlways ‘self’

Initialise
attributes

Attributes – Good Practice
• Attributes are not declared

- In Python, nothing is!

• Good practice to initialise all
attributes in the constructor
-Getters do not fail
- Clear what the attributes are
-Do not add more

class Face:

def __init__(self, xpos, ypos):
self.size = 50
self.coord = (xpos, ypos)
self.noseSize = 'normal'

def setSize(self, radius):
self.size = radius

Practical Work

Drawing Faces: Exercise 3 onwards

Teaching OOP in Python

Program Structure and Complexity

• Program grows more complex
in structure
• Simpler elements remain

- If & loop à part of function
-Method à part of class

If & loops x =
while x > :

y =
print

class Friend:
def __init__()
def m1(a, b):

class Town:
def __init__()
def m1(a, b):

Classes &
objects

Main program
• Create obj
• Call methods

Functions Function def

Function def

Main program
• Initialise vars
• Call functions

OOP
Concepts

Concept Details
Basic
mechanics

• Calling a method of an object
• Class as a template for data
• Class as a collection of methods

Constructors • Definition and use
Interaction • Object as a value (variable, list item, …)

• Object as an attribute value (has-a
relationship)

• Object passed as a parameter
Abstraction
and modelling

• Class as a domain concept
• Methods (and constructor) have parameters

Inheritance • Superclass and subclasses
• Constructor called using super()
• Method inherited or overridden

Prerequisite
knowledge:
functions &
parameters

Prerequisite
knowledge:
basic
mechanisms

Misconception Possible Evidence
Attributes in the wrong scope • Omission of self (assignment or use)
Confusion between class and
object

• No objects created
• Only one instance
• Inheritance rather than instance

Confusion between class and
attribute

• Many classes – all simple

Objects only contain data • No encapsulation
• Only get and set methods

Objects do not interact • All code in single class
• Classes defined but not imported
• Objects not used as attributes
• Objects never passed as parameters

Believing objects are copied
not shared

• Unnecessary copying
• Unexpected sharing

Also lack of
prerequisite
knowledge:
functions &
parameters

Python Issues for Teaching OOP

Usual OOP
• The attributes are declared
• A class has a fixed set of

attributes
• Attributes can be hidden: access

only by methods

Python
• Nothing is declared
• Attributes appear when assigned

to
• Hiding is not enforced

Use Python to teach OOP
• Avoid some Python tricks
• Use only a subset
• … explain later

Python versus Java

• No declarations
• Values are typed
-Variable types are dynamic

• Run time type checking
• Syntax with indentation
• Permissive philosophy

• Declarations
• Static typing of variables

• Compile time type checking
• Syntax with braces { }
• Rigid philosophy

Summary
• Object-oriented programming

- Builds on more basic programming
- A approach to program decomposition (decomposition take practice)
- Previous experience learning decomposition

• Progression: concepts not syntax
- Proficiency with functions essential
- Class versus object
- Classes have attributes and methods
- Constructor
- Relationships between classes; objects as values
- Inheritance

• Python – some disadvantages

