William Marsh
School of Electronic Engineering and Computer Science
Queen Mary University of London

* Flavour of Functional Programming

* how 1t differs from Imperative Programming

(e.g. Python)

e Claim that:

* It1is possible to program using functions

* Itis useful! | Only simple examples

 Better understanding of programming

I hope this 1s
convincing

e
How This Session Works

Talk
Do
Reflect
Repeat

AN N

Stop when times up — summarise

FP Topics Reflections

e A first functions * Expressions, statements
and variables

* Sequence versus
composition

* Composing function
* Lists
» If time (probably not)

* Recursion
* Map, Filter and Fold

* How functions work
* Recursion and loops
* The best language

Challenge problems

Functional Languages?

* Many programming languages now have

functional features Lisp (programming language)

* This function gives the larger of two numbers

Function
name / Argument

! 7
bigger a b = 1f a > b then a else Db

Is defined as ...

e
Layout

* Like Python, Haskell 1s layout sensitive
* The following all work

bigger a b =
1f a > b then a else b

bigger a b =
1f a > Db
then a
else b

e WinGHC:1 1s a shell

* Use functions interactively

* Use a text editor to edit the program
* Notepad++ is better than notepad if you have it

File Edit Actions Tools Help

|y =00, Fasl b 2ol cll m -
& 1| ll;l ‘m‘ ’@‘ ol | k% ke K8 7 p1 - Notepad

GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help File Edit Format View Help
Prelude> :cd C:\Users\Dad\Documents\haskell
Prelude> :load "fpl.hs"
[1 of 1] Compiling Main (fpl.hs, interpreted)
Ok, modules loaded: Main.
*Main> :edit

bigger a b = if a > b then a else b

Ok, modules loaded: Main.
*Main>

Refection 1: Expressions,
statements and Variables

* Expression = value
 Statement - command

* Python: statements and expressions
» Haskell: only expressions

e
The Assignment Statement

* The most important statement:

x = x + 1 # This is python

* Update the memory location x’with its current

value plus 1

e ‘X’ 1s a variable

Python program is a sequence
of assignments
* Function may assign, so ...
* Expressions are not just
values

Haskell has no statements
* No assignment
* No variables
Is it possible to program
without variables?

* My Haskell program seems to have variables

bigger a b =
1f a > b then a else b

e ‘a”and ‘b’ a names for values

* Not memory locations

“Maths (amd Haskeit] “Python

* Result of a function * Result of a function may
depends only on 1ts depend on other variables
arguments

* Calling a functiOI} does * Calling a function may
not change anything change variables

* Calling a function with e Calling a function a
the same.arguments second time with the
always gives the same same arguments may give

result a different result

* One way to write bigger3

bigger3 a b ¢ = bigger (bigger a b) c

_/

Pass results to ...

 (G1ven a functions

2 * a
a * a

double a
square a

e Predict the results of

> double (double 5)
> double (square 3)
> square (double 3)

* Surface area of a cylinder

clrcleArea r
cilrcleCircum
rectArea 1 h

= 2 * p1 * r
1 * h

s

cylinderArea r h = N
2 * clrcleArea r +
rectArea (circleCircum r) h

Refection 2: Sequence versus
GComposition

e
Python's Invisible Statement

* Sequence of assignments

...then | ™\

This is python

* +

1
2

—_

| V|
= X X

| /i
N

... then

 Next statements on a new line

* Many languages: S1 ; S2

* Function application

clrclelArea r
cilrcleCircum
rectArea 1 h

pL * r * r
= 2 * pi1 * r
1 * h

I

appl
cylinderArea r h —/ PPy
- 2—* circlelArea +/ apﬂoly

apply

rectA;ggz(circleCirqu/r)\h
_— _— _

apply apply apply

—Pythen —Haskel

* Sequence of statements * Expressions

* ... with names (functions) ¢ ... with names (functions)

* Order of memory updates ¢ Argument and results

Functional composition # sequencing of statements

o
Python’s Other Invisihle Operator

* Function call (application)

def circleArea(r): return math.pi * r * r
def circleCircum(r): return 2 * math.pi * r
def rectArea(l, h): return 1 * h
def cvlinderArea (r, h):///////_ call
T~ .
call h 27* circleArea(r) +-\
rectAreq(circleCircum&r), h) call

call call

e Can the definition of a function use the
function being defined?

 This 1s known as recursion

e [t can 1f

 There 1s a non-recursive base case

e Each recursive call 1s nearer the base case

* A triangle number
counts the number of
dots 1n an equilateral
triangle (see picture)

* We can define by:

f Base case

trigNum 1 = 1
trigNum n = n + trigNum (n-1)

Recursive; smaller n

* The argument can match a pattern

f Pattern

|
trigNum 1 = 1

trigNum n = n + trigNum (n-1)

* Equivalent to:

trigNum n
| otherwise = n + trigNum (n-1)

Comparison with dry running a Python
program

e
Example Python Program

 Variables are:

mark

total
min

average
grade

Enter two marks

Save minimum

mark = int(input("Mark 1 > "))
total = mark

min = mark

mark = int(input("Mark 2 > "))
if mark < min:

min = mark
total = total + mark

Calculate average
average = total / 2

Calculate grade
if min < 30 or average < 50:

grade = "fail"
else:
grade = "pass"

Dry Running a Program

e Table has column for each variable

* Row for each step

Memory

Sequence

Step Val.'iable
mark |[total |min |average |grade
1 35
| 2090—— | 35
3 35
N4 |45
5 80
6 40
7 fail

* Replace each call to a function by its definition
* Replace arguments by expressions

1
n + trigNum (n-1)

trigNum 1
trigNum n

trigNum 3
= 3 + trigNum 2
= 3 + 2 + trigNum 1
= 3 + 2 + 1
= 0

LIStS In Haskell
* Haskell has lists ... similar to Python
« LISP

* First functional language

* ‘List processing’
 Example: [1, 2, 3]
* Equivalent to:

1 : 2 :: 3 : []

e L

Cons Empty list

e
Useful List Functions

elem Member of list Main> elem 4 [1,2,3,4,5]
True
Main> elem 4 [1,3,5]
False

head First element of list Main> head [2,4,6, 8]
2

tail List without first Main> tail [3,5,7,9]

element [5,7,9]
4 Concatenate two Main> [1,2,3] ++ [7,9]

lists [1,2,3,7,9]

* Similar to Python

First [ast

e
List Recursion

* Many functions on lists are defined recursively

* Base case: empty list

* Recursive case: apply to tail of list

- length °f @ st —11" Base case
len = 0
(x:xs) =1 + len xs'[| Recursive call

Pattern
- empty

Y

Pattern — not empty

Refection 4: Recursion
and Loops

How to do without loops

Recursion and Loops

Python Haskell
* While and for statements * No loops!
e Preferred * No statements
* Recursion available * Recursion preferred
* Some overheads * Elegant syntax
[teration & recursig Control value
equally expressive |~ | Result so far
Z e
forLoop O/i'x/é/x

rorboop n f-x = forhoop (n-l) F (f n)

Function 1in loop

sumup n = forLoop n (+) O

* Functions that abstract common ways of
processing a list

e (alled ‘recursive functions’

e
Two Similar Functions

 Two functions that create a new list from an old one
* The new list 1s the same length

* Each new element 1s derived from the corresponding old
clement

-— Add 1 to each entry 1s a list
addOne [] = []

addOne (x:xs) = x+1:addOne xs

—-— Square each entry in a list
square [] = []
square (x:xs) = xX*X:square XS

* A function to apply a function to each element in
a list

/| Function as argument.
inc x = x + 1 Map is ‘higher-order’

-— Add 1 to each entry 1is a list
addOne 1ls = map 1nc 1ls

square x = X * X

—-— Square each entry 1in a list
—_|squares Xs = map sguare XS

* Recursive definition of map

map f [] = []
map £ x:xs = f x : map £ xs
map 1inc [1,2,3]
= 1nc 1 : map 1inc [2, 3]
= 1nc 1 : inc 2 : map 1inc [3]
= 1nc 1 : inc 2 : inc 3 : map inc []
= 1inc 1 : inc 2 : 1inc 3 : []
= [2, 3, 4]

e Combine the elements of a list

-— length of a 1list
len [] 0

len (x:x83) 1 + len xs

—— sum of a list

addUp [] 0
addUp (x:xs) X + addUp xs

e Combine the elements of a list

count x y =y + 1

-— length of a list
len xs = foldr count 0 xs

add x vy = x + vy

—— sum of a list
addUp xs = foldr add 0 xs

e Recursive definition of foldr

foldr £ a
foldr £ a x:xs

[

]

a
= f x (foldr f a xs)

add
add

= add
= add

add
add
0

foldr add

e R R e

[1,

2, 3]

foldr add 0 [2,3])
add 2 (foldr add 0 [3]))

2 (add 3 (foldr add O
2 (add 3 0))
2 3)

[1)))

e Select items from a list

/ Predicate

moreThan a b = b > a’/

Main> filter (moreThan 3) [3,2,5,1,7,8]
[5,7,8]

e
Man, Foldr, Filter - Summary

map Apply function to each list element

filter Select elements satisfying a
predicate

foldr Combine elements using a function

Often called reduce

* These are called recursive operators

e Patterns of recursion

* foldr 1s more general — it can be used to define
the other two

* Very large datasets can be processed using
the Map Reduce framework

* Divide the list of mput
* Map function to each list (separate computers)

* Reduce list of results (from the separate
computers)

map and reduce (fold) available in many languages

Refection o: The Best
Language?

* Between machine and users

C Java Haskell

e More abstract

e Haskell 1s ‘declarative’

* No explicit memory locations

* Performance: requires a good compiler

e
Functional Programming in Practice

* Functional languages
* LISP — the original one
* Haskell
* Scala — compiles to JVM
* F# — compiles to .NET

* Influences
e Java, Python, C#

* Python has versions of map and fold (reduce)

siimmary

... and teaching FP

We Have Govered . More ldeas
* Programming with * Map and fold
expressions * List comprehension

No statements

Anonymous functions —
e No assignment = no lambda
variables

Types

* No sequence = no loops .
e Numbers issue

Composition of functions

Polymorphism

Possible and practical

* Programs can be shorter

Map and fold

Input and output

Teaching FP

* Practical skill?
* ... 1s there knowledge otherwise?

* No types

* Focus seems to be on:
 Function definition
* ... using recursion

* Program execution by rewriting

Is using FP to
reflect on
Imperative
programming
useful?

112 In a functional programming language, a recursively defined function named map and

a function named double are defined as follows:

map £ [] = []
map f (x:xs) = f x : map £ xs
double x = 2 * X

The function map has two parameters, a function £, and a list that is either empty
(indicated as []), or non-empty, in which case it is expressed as (x:xs) in which x

is the head and xs is the tail, which is itself a list.

| 1] 2 | . | 2 | Calculate the result of making the function call listed in Table 7.

[1 mark]

Table 7
Function Call Result
map double [1, 2, 3, 4]
112 |.|3 | Explain how you arrived at your answer to question 2

steps that you followed.

and the recursive

[3 marks]

Functional Programmer Scala ML Haskell Compilers Fintech

£80000 - £140000 per annum, Benefits: to 50K Bonus | City Of London (+1
more) | Permanent

Functional Programmer - Scala Developer - Haskell Programmer or ML or OCAML
Big Data Developer - Brand new platform / Team - Well Funded - Excellent Salaries / Package
Rapidly growing team 4 open positions - Different Levels of experience - Thus salary range

We currently seek Functional Programmers to work on a brand new software platform for a
leading fintech and we seek very bright developers with experience of using a functional
language e.g. Haskell, ML / OCAML, F# or the functional elements of a broader language e.g.
Scala / Python.

The role would be working on the orchestration layer of a brand new platform which is using the
Haskell like functional elements of Scala and ML or a version of for the Domain Specific
Language (DSL). The front end is being developed by another team. This is a great opportunity to
join a very experienced intelligent team working and learning leading edge tech.

