
Will Admins Cope? Decentralized Moderation in the Fediverse
Ishaku Hassan Anaobi

Queen Mary University of London
Aravindh Raman
Telefonica Research

Ignacio Castro
Queen Mary University of London

Haris Bin Zia
Queen Mary University of London

Damilola Ibosiola
Queen Mary University of London

Gareth Tyson
Hong Kong University of Science and

Technology (GZ)

ABSTRACT
As an alternative to Twitter and other centralized social networks,
the Fediverse is growing in popularity. The recent, and polemi-
cal, takeover of Twitter by Elon Musk has exacerbated this trend.
The Fediverse includes a growing number of decentralized social
networks, such as Pleroma or Mastodon, that share the same sub-
scription protocol (ActivityPub). Each of these decentralized social
networks is composed of independent instances that are run by
different administrators. Users, however, can interact with other
users across the Fediverse regardless of the instance they are signed
up to. The growing user base of the Fediverse creates key challenges
for the administrators, who may experience a growing burden. In
this paper, we explore how large that overhead is, and whether
there are solutions to alleviate the burden. We study the overhead
of moderation on the administrators. We observe a diversity of ad-
ministrator strategies, with evidence that administrators on larger
instances struggle to find sufficient resources. We then propose a
tool, WatchGen, to semi-automate the process.

CCS CONCEPTS
• Networks→ Network measurement; • Information systems
→World Wide Web.

KEYWORDS
Fediverse, Content Moderation, Federation policies, Decentralized
Web, Decentralized Social Networks

ACM Reference Format:
Ishaku Hassan Anaobi, Aravindh Raman, Ignacio Castro, Haris Bin Zia,
Damilola Ibosiola, and Gareth Tyson. 2023. Will Admins Cope? Decentral-
ized Moderation in the Fediverse. In Proceedings of the ACMWeb Conference
2023 (WWW ’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3543507.3583487

1 INTRODUCTION
The Fediverse encompasses a group of increasingly popular plat-
forms and technologies that seek to provide greater transparency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583487

and openness on the web. [13, 18, 30, 34]. Well known Fedi-
verse platforms include microblogging services (e.g. Pleroma [38],
Mastodon [33]) and video sharing platforms (e.g. PeerTube [37]).
The acquisition of Twitter by Elon Musk [11] has exacerbated this
popularity with a large migration of Twitter users to the Fedi-
verse [8].

In Fediverse social networks, individuals or organisations can in-
stall, own, and manage their own independent servers, also known
as instances [15, 54]. For these instances to interact, they rely
on federation [41], whereby instances interconnect in a peer-to-
peer fashion to exchange posts. Note that this allows for users to
exchange content across platforms. This results in a physically de-
centralized model that is logically interconnected where users can
interact globally. Unfortunately, this creates challenges for instance
administrators, as activities on one instance impact others via fed-
eration. For example, recent work has shown that hateful material
generated on one instance can rapidly spread to others [53].

To overcome this, most Fediverse social network implementa-
tions have in-built federation policies. These policies enable ad-
ministrators to create rules to ban or modify content from instances
that matches certain rules, e.g. banning content from a particular in-
stance or associating it with warning tags. Although a powerful tool,
this imposes an additional overhead on administrators [6, 14, 26].
Thus, we argue it is vital to better understand this process, and
propose ways to improve it.

This paper examines administrator activities in the Fediverse. We
focus on Pleroma, a federated microblogging platform with similar
functionality to Twitter. We collect a large-scale dataset covering
10 months: this includes 1,740 instances, 133.8k users, 29.9m posts,
associated metadata, and importantly, the policies setup by the
administrators. We find that instances are often “understaffed”, with
the majority of instances only having a single administrator, and
recruiting no other moderators to assist, despite many having over
100K posts. This leads us to conjecture that some administrators
may be overwhelmed. Indeed, we find that instance administrators
often take many months before applying policies against other
instances, even in cases where they exhibit clearly controversial
traits (e.g. posting a large number of hate words).

We therefore turn our attention to the policy configurations em-
ployed. We observe a growing number of instances enacting a wide
range of policy types. Common are ‘maintenance’ policies, such as
those which automatically delete older posts (ObjectAgePolicy),
as well as those aimed at preventing the spread of certain content
(e.g. HashtagPolicy, which flags up posts with certain hashtags).
We further observe a range of bespoke policies created by adminis-
trators, via the SimplePolicy, which can be configured to trigger a
range of actions based on certain rules (e.g. blocking all connections

1

https://doi.org/10.1145/3543507.3583487
https://doi.org/10.1145/3543507.3583487

WWW ’23, May 1–5, 2023, Austin, TX, USA Anaobi et al.

from certain instances). The laborious nature of this moderation
work leads us to explore automated techniques to assist administra-
tors. We build a set of models to predict administrator actions. We
embed them in WatchGen, a tool that can propose a set of instances
for administrators to focus their moderation efforts on. To the best
of our knowledge, this is the first study of Fediverse administrators.
We make the following observations:

(1) We find a diverse range of 49 policies used by administrators,
capable of performing various management and moderation
tasks. Despite this, we see that 66.9% of instances are still
running, exclusively, on the default policies alone (Section 4).

(2) The number of administrators does not grow proportionately
with the number of posts (Section 5). This seems to impact
moderation. For example, it takes an average of 82.3 days
for an administrator to impose a policy against an instance
after it first encounters it, even for well-known and highly
controversial ones (e.g. gab.com [5]).

(3) Intuitive features, such as the number of mentions and fre-
quent use of hate words, are good indicators that an instance
will later have a policy applied against it (Section 6). This
suggests that there are key traits that garner more attention
by moderators.

(4) We show that it is possible to predict (F1=0.77) which in-
stances will have policies applied against them (Section 6)
and designWatchGen, a tool that flags particular instances
for administrators to pay special attention to.

2 PLEROMA: OVERVIEW
Pleroma is a lightweight decentralized microblogging server imple-
mentation with user-facing functionality similar to that of Twitter.
In contrast to a centralized social network, Pleroma is a federation
of multiple independently operated servers (aka instances). Users
can register accounts on these instances and share posts with other
users on the same instance, or on different instances. Through these
instances, users are able to register accounts and share posts (called
statuses) to other users on the same instance, other Pleroma in-
stances, or instances from other Fediverse platforms, most notably
Mastodon.
Federation. We refer to users registered on the same instance as
local, and users on different instances as remote. A user on one
instance can follow another user on a separate instance. Note that a
user registered on their local instance does not need to register with
the remote instance to follow the remote user. When the user wants
to follow a user on a remote instance, the local instance subscribes
to the remote user on behalf of the local user using an underlying
subscription protocol (ActivityPub [2]). This process of peering
between instances in the Fediverse is referred to as federation.

The federated network includes instances from Pleroma and
other platforms (e.g. Mastodon) that support the same subscription
protocol (ActivityPub). Accordingly, Pleroma instances can federate
and target their policies at non-Pleroma instances. The resulting
network of federated instances is referred to as the Fediverse (with
over 23k servers [16]).
Policies. Policies affect how instances federate with each other
through different rule-action pairs. These allow certain actions to
be executed when a post, user, or instance matches pre-specified

criteria. For example, the SimplePolicy can perform a range of
actions when a remote instance matches certain criteria such as
rejecting connections. Note, there are numerous in-built policies,
but tech-savvy administrators can also write their own bespoke
policies.
Administrators. Instances are hosted and managed by specialized
users called administrators. By default, the creator of an instance
will take on the role of the administrator, however, it is also pos-
sible to delegate such responsibilities to multiple others. Instance
administrators are responsible for carrying out the day-to-day ad-
ministrative tasks on the instances. These include managing the
front-end, users, uploads, database, emoji packs and carrying out
administrative email tasks. The instance administrator is also re-
sponsible for accepting new user registrations and removing users
where necessary. The administrator updates and backs-up the in-
stance, set the terms of service and retains the ability to shutdown
the instance. One essential responsibility of the instance adminis-
trator is the moderation of content (although they can also assign
the role to other users called moderators). This can make instance
administration a cumbersome task, and administrators a very im-
portant part of the Fediverse.

3 DATA COLLECTION
Instance & Administrator Dataset. Our measurement campaign
covers 16th Dec 2020 – 19th Oct 2021. We first compile a list of
Pleroma instances by crawling the directory of instances from
distsn.org and the-federation.info. We then capture the list of in-
stances that each Pleroma instance has ever federated with using
each instance’s Peers API.1 Note, this includes both Pleroma and
non-Pleroma instances. In total, we identify 9,981 instances, out of
which 2,407 are Pleroma and the remainder are non-Pleroma (e.g.
Mastodon).

We then collect metadata for each Pleroma instance every 4
hours via their public API.2 We record the list of administrators and
any delegated moderators. We also obtain the number of users on
the instance, the number of posts, the enabled policies, the applied
policies as well as the instances targeted by these policies, and other
meta information.

From the 2,407 Pleroma instances, we are able to gather data from
a total of 1,740 instances (72.28%). For the remaining 667 instances:
65.1% have non existent domains, 17.9% are not found (404 status
code), 6.4% instances has private timelines (403), 4.5% result in Bad
Gateway (502), 1.3% in Service Unavailable (503), and under 1%
return Gone (410).
User Timelines. Users in Pleroma have three timelines: (i) a home
timeline, with posts published by the accounts that the user follows
(local and remote); (ii) a public timeline, with all the posts generated
within the local instance; and (iii) the whole known network, with all
posts that have been retrieved from remote instances that the local
users follow. Note, thewhole known network is not limited to remote
posts that a particular user follows: it is the union of remote posts
retrieved by all users on the instance. We use the public Timeline

1<instance.uri>/api/v1/instance/peers
2<instance.uri>/api/v1/instance/

2

distsn.org
the-federation.info
<instance.uri>/api/v1/instance/peers
<instance.uri>/api/v1/instance/

Will Admins Cope? Decentralized Moderation in the Fediverse WWW ’23, May 1–5, 2023, Austin, TX, USA

0 10 20 30 40 50 60 70 80
Percentage (%)

NormalizeMarkup
EnsureRePrepended

ActivityExpirationPolicy
ForceBotUnlistedPolicy

AntiLinkSpamPolicy
KeywordPolicy

MediaProxyWarmingPolicy
AntiFollowbotPolicy

Others
HellthreadPolicy
StealEmojiPolicy

NoOpPolicy
SimplePolicy

HashtagPolicy
TagPolicy

ObjectAgePolicy

Po
lic

ie
s

Users
Posts
Instances

Figure 1: The top 15 policies and percentage of instances that
use each policy (sorted by the percentage of instances).

API3 to gather posts data from 819 instances (the remaining 912
instances have either no posts or unreachable public timelines).
Ethics. Our dataset covers Pleroma instances and their administra-
tors. We exclusively focus on the policies that these administrators
set, and do not investigate other aspects of administrator behav-
ior (e.g. the posts they share). All data is available via public APIs.
We emphasize that administrators, themselves, are the ones who
control access to these APIs. Hence, the administrators covered in
this paper consent for others to use this data. Further, the policies
studied do not work on a per-user granularity and, thus, we cannot
infer anything about individual users. All data is anonymized before
usage, and it is stored within a secure silo.

4 EXPLORING POLICY CONFIGURATIONS
Policy Footprint. We first quantify the presence of policies across
instances. In total, we observe 49 unique policy types. From our
1.74k Pleroma instances, we retrieve policy information from 93.2%
of instances (the remainder do not expose their policies). These
cover 94.2% of the total users and 94.5% of all posts. Figure 1 shows
the distribution of the top 15 policy types enabled by the administra-
tors across instances and the percentage of users signed up within
those instances as well as the posts on the instances. We see a wide
range of policies with diverse functionalities and varying cover-
age based on which metric is considered. For instance, whereas
the ObjectAgePolicy (which performs an action on a post once it
reaches a certain age) is installed on 74.8% of instances, this only
covers 52.4% of the users. In contrast, the KeyWordPolicy (which
performs an action on any posts containing a given keyword) cov-
ers 18.8% of users, but just 3% instances. Critically, there is a highly
uneven distribution of policies, with the the top-5 covering 92.3%
of all instances, 73.6% of users and 88.8% of the posts.
Default Policies. Default policies come auto-enabled with new
installations. Prior to version 2.3.0 in March, 2021, only the
ObjectAgepolicy and NoOpPolicy are enabled by default. Since
version 2.3.0, the TagPolicy and HashtagPolicy are also enabled
with a new installation (or upgrade). 66.9% of instances only have
these default policies running. Relying solely on default policies

3<instance.uri>/api/v1/timelines/public?local=true

may indicate several things. For example, administrators maybe
unaware of management and moderation functionalities, unable
to use them or simply not have sufficient time. Alternatively, they
may actively choose not to use them.

Note, while the TagPolicy allows tagging user posts as sensitive
(default: nsfw), the Hashtagpolicy allows the tagging of hashtags
(e.g. nsfw sensitive). We find 54.6% and 34.3% of instances enabling
these policies respectively. The other Pleroma default policy is the
NoOpPolicy. This allows any content to be imported. This describes
the default state of a new instance. Interestingly, we see adminis-
trators paying more attention to this policy: 89.7% of the instances
have actively disabled it.4 This suggests that administrators are
aware and concerned about importing undesirable content.
Non-Default Policies. Non-default policies are those that instance
administrators have to actively enable. Instances with these policies
may indicate a more proactive administrator.We find 45 non-default
policies during our data collection period.

The most powerful policy available is the SimplePolicy, en-
abled on 28.8% of instances. This policy allows administrators to ap-
ply a wide range of actions against specific instances (e.g. gab.com).
The most impactful and common is the reject action.5 56.9% of
instance that enable the SimplePolicy employ the reject action.
Interestingly, although we see only 28.8% of instances with the
SimplePolicy enabled, its application affects 85.4% of users and
90.3% of the posts on the Pleroma platform. We see noteworthy
instances being amongst the top targets of this policy (e.g. kiwi-
farms.cc and anime.website), which are all commonly understood to
share controversial material. Interestingly, only 18.5% of instances
with the SimplePolicy applied against them are from the Pleroma
platform (the most are from Mastodon [39]). This means that 81.5%
of the recipients are from federated instances outside of Pleroma.
Policy Growth. We next look at how the use of policies has
changed over time. We conjecture that the longer administrators
run their instances, the more experienced they become. As such, we
expect to see greater application of policies. Here we focus on the
5 most popular policies as they account for 92.3% of the instances,
73.6% of users and 88.8% of the posts. For completeness, we include
the sum of the other less popular policies too. Figure 2 presents the
percentage of instances that activate each policy over time. Across
our measurement period, we observe a growth of 40% in the total
number of policies used. This suggests that the use of policies is
becoming more common. 28.5% of these policies are introduced
by new instances coming online, with newly installed default poli-
cies, e.g. ObjectAgepolicy, TagPolicy and HashtagPolicy. The
remainder are instantiated by pre-existing instance administrators
that update their policies, suggesting a relatively active subset of
administrators.

We also inspect the growth on individual instances. Overall, 42%
of instances add policies during our measurement period. Of these
instances, 52.3% enable only one extra policy andwe see only a small
minority (1.9%) enabling in excess of 5 new policies (e.g. chaos.is
enables 13 and poa.st 12). A closer look at these instances show
they mostly add common policies. However, we also see a wide
range of other less common policies (e.g. KeywordPolicy).

4Note, this is overridden if a user enabled any other policy.
5This blocks all connections from a given instance

3

<instance.uri>/api/v1/timelines/public?local=true

WWW ’23, May 1–5, 2023, Austin, TX, USA Anaobi et al.

20
20

-12

20
21

-01

20
21

-02

20
21

-03

20
21

-04

20
21

-05

20
21

-06

20
21

-07

20
21

-08

20
21

-09

20
21

-10

20
21

-11
0

10

20

30

40

%
 o

f I
ns

ta
nc

es

ObjectAgePolicy
TagPolicy
HashtagPolicy
SimplePolicy
NoOpPolicy
Others

Figure 2: Time series showing the percentage of instances
(Y-axis) that use the 5 most popular Pleroma policies. We
include the sum of all the remaining policies as “Others”.

In contrast, the use of the SimplePolicy, with the most flexible
range of moderation actions, has remained relatively stable. Ac-
tions under the SimplePolicy have instance-wide effect and can
effectively control instance federation. Overall, we only see 28.8%
of instances enabling this policy, without much growth across the
measurement period (as seen in Figure 2). This could imply that
administrators are unaware of this policy, do not have time to mod-
erate their instances at this level or maybe find this policy too blunt
(not fine-grained enough). The latter could lead to other issues,
which administrators seek to avoid (e.g. collateral damage [22]).
It is also worth noting that the SimplePolicy is one of the most
complex, and administrators potentially shy away from these more
labour-intensive policies. We argue that the diversity of policies
could potentially overwhelm (volunteer) instance administrators
(see Section 5). This suggest that they require further support to
automate this process (see Section 6).

5 CHARACTERISING ADMINISTRATORS
5.1 Distribution of Administrators
Number of Administrators Per-Instance. We observe a total of
2,111 unique administrators from 1,633 instances (93.8% of 1.74k).6
Figure 3 presents the distribution of the number of administrators
per instance. Although a majority of instances (71.6%) are managed
by a single administrator, we also see some instances with a larger
number of administrators (e.g. rakket.app: 16 and poa.st: 13).
Administrator Workload. We next test if the number of adminis-
trators increases proportionately to the number of posts. We treat
this as a rudimentary proxy for how much moderation must take
place on an instance. Figure 4 presents the distribution of posts on
instances vs. the number of administrators. Generally, we find that
instances with more posts do have more administrators on average,
e.g. instances with multiple administrators have more posts, with a
ratio of 6:1. However, this is driven by a few instances (e.g. poa.st).

Table 3 summarizes the top 10 instances that see the largest
growth in administrators. Many of them are small instances with
under 1000 users, and a proportionately small number of posts. This
6The remaining instances do not publish their administrator(s) information.

1 2 3 4 5 6 7 8 12 13 16
of Administrators

0

10

20

30

40

50

60

70

%
 o

f i
ns

ta
nc

es

Figure 3: Instances (%) by number of administrators.

1 2 3 4 5 6 7 8 12 13 16
of Administrators

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Po
st

s

Figure 4: Box plot of the number of posts per instances with
different number of administrators.

suggests that administrator growth does not necessarily occur on
the instances that need it the most. To test if the number of ad-
ministrators grow proportionately to the number of posts, Figure 5
plots the growth of administrators vs. the growth of posts on each
individual instance during our data collection period. We see that
a growth in posts on a given instance does not necessarily corre-
spond to the recruitment of new administrators. In fact, only 6.9%
of instances record a growth in administrators during this period.
Overall, there is a weak correlation (Spearman coefficient of 0.19
for the number of posts vs. number of administrators). In total, we
see a 60.3% increase in the number of posts, but just a 35.6% growth
in administrators. Unsurprisingly, instances that grow their admin-
istrator pool do become more active. On average, instances with
a growing number of administrators have 1.5x more policies than
other instances. Specifically, looking at the policy with the most
impact (reject), these instances apply it 1.8x more than others. In-
terestingly, instances with an increasing number of administrators
also have 4x more policies applied against them.

5.2 Administrators’ Response Lag
The previous section has shown that administrators face a grow-
ing moderation workload. To study this workload, we now look at
how long it takes administrators to apply polices against particular

4

Will Admins Cope? Decentralized Moderation in the Fediverse WWW ’23, May 1–5, 2023, Austin, TX, USA

0 200 400 600 800 1000 1200 1400 1600
Instances

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Po
st

 G
ro

w
th

Post growth

0

1

2

3

4

5

6

A
dm

in
 G

ro
w

th

Admin growth

Figure 5: Per instance growth in the number of administra-
tors (Y2-axis) and posts (Y1-axis). Individual instances are on
the X-axis, sorted by the number of posts.

0 50 100 150 200 250
of Days

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

All moderated
Top10 moderated
Bottom10 moderated

Figure 6: CDF showing the distribution of days from federa-
tion tomoderation for all moderated instances. We also show
results for the top 10 and bottom 10 instances, based on the
number of policies applied against them.

instances. We focus on the SimplePolicy as this is clearly geared
towards moderation, has instance-wide targeting, and lists the tar-
get instances. For each SimplePolicy against a given instance, we
compute the lag between the date of the implementation of the
policy and the date when the targeted instance was first federated
with. This is a rudimentary proxy for how long it took an admin-
istrator to identify the problem. We temper our analysis with the
fact that there could be many reasons for this delay, which we have
limited vantage on.
Policy Creation Delay. Figure 6 presents the distribution of delays
(as defined above). Note, we exclude the 55% of federations that
occurred before the beginning of our data collection (as we cannot
know their timestamp). We plot the delay distributions for applying
policies against: (i) All instances; (ii) “Controversial” instances with
the most policies applied against them (top 10); and (iii) “Benign”
instances with the fewest policies against them (bottom 10).

It takes administrators an average of 82.3 days to apply any form
of policy against other instances. Although, on average, it takes
more time for a policy to be applied on the “bottom 10” instances
than the "top 10" instances (74.7 and 59.5 days respectively), we

ne
ck

be
ar

d.
xy

z

an
im

e.
w

eb
si

te

ba
ra

ag
.n

et

pa
w

oo
.n

et

si
nb

lr.
co

m

sw
itt

er
.a

t

ki
w

ifa
rm

s.
cc

hu
m

bl
r.s

oc
ia

l
fre

es
pe

ec
he

xt
re

m
is

t.c
om

ga
b.

co
m

0

50

100

150

200

250

300

of

 d
ay

s

Figure 7: Box plot showing the distribution of the number
of days from federation to the imposition of policies for the
top 10 instances with the most policies applied against them.

see that there is a noticeable lag (almost 3 months) between federa-
tion occurring and policies being imposed. This may suggest that
administrators find it difficult to keep-up with the need to rapidly
identify instances that justify policy imposition.
Delay for Controversial Instances. We next extract the top 10
instances that receive the most policies targeted against them. For
each one, Figure 7 plots the distribution of delays (i.e. how long
it takes other instances to impose a policy against them). In-line
with expectations, we see that administrators take less time to
apply policies against instances like gab.com, known for its right-
wing stance (average of 19 days). However, we see much longer
delays for other controversial instances that are less well-known
(e.g. neckbeard.xyz), averaging up to 98.4 days. These instances
are quite active, with significant growth in posts during our mea-
surement period (e.g. neckbeard.xyz: 789.4k and kiwifarms.cc:
469.2k). With other instances such as anime.website posting “loli-
con” (suggestive art depicting prepubescent females), it is expected
that policies would be swift, however, we see a very wide breadth of
delays. The diverse nature of these administrator reactions indicates
that any future automated moderation tools should be specialized
to the preferences of individual administrators.

5.3 Administrators & Moderators
Moderation Delegation. As administrators are responsible for
a wide range of activities, they can delegate the task of content
moderation to select individuals. These accounts are referred to
asmoderators. Of our 1.74k instances, 47% of them (819) expose
information in our dataset. From these, only 12% (98) of instances
have assigned the role of moderator to any other accounts. Of these,
73.5% (72) of the instances have the administrator also doubling
as a moderator, while 29.6% (29) of the instances assign the entire
moderator role to an account that is not the administrator. This im-
plies that only 3.5% of instances have dedicated account(s) assigned
the role of moderator.
Are moderators helpful? We conjecture that instances with ded-
icated moderators outside of their administrator team might be
swifter in the application of policies. Figure 8 shows the percentage
of instances that enable the 15 most popular policies (Figure 1). We

5

WWW ’23, May 1–5, 2023, Austin, TX, USA Anaobi et al.
O

bj
ec

tA
ge

Po
lic

y
Ta

gP
ol

ic
y

H
as

ht
ag

Po
lic

y
Si

m
pl

eP
ol

ic
y

N
oO

pP
ol

ic
y

H
el

lth
re

ad
Po

lic
y

St
ea

lE
m

oj
iP

ol
ic

y
An

tiF
ol

lo
w

bo
tP

ol
ic

y
M

ed
ia

Pr
ox

yW
ar

m
in

gP
ol

ic
y

Ke
yw

or
dP

ol
ic

y
An

tiL
in

kS
pa

m
Po

lic
y

Fo
rc

eB
ot

U
nl

is
te

dP
ol

ic
y

Ac
tiv

ity
Ex

pi
ra

tio
nP

ol
ic

y
En

su
re

R
eP

re
pe

nd
ed

N
or

m
al

iz
eM

ar
ku

p

Policies

0
5

10
15
20
25

%
 o

f I
ns

ta
nc

es No additional moderators
Additional moderators

Figure 8: The percentage of instances that enable the top 15
most popular policies.We separate instances into two groups:
(i) Instanceswithout additionalmoderators; and (ii) instances
with additional moderators outside of the administrator set.

present two bars for each policy: (i) Instances with additional mod-
erators (who are not an administrator); and (ii) Instances without
additional moderators. There is a broadly similar distribution across
these two groups. However, we notice that instances without addi-
tional moderators have approximately 3x more of the NoOpPolicy
configured. Recall, this is the default state of an instance and allows
any content to be imported. This begins to suggest that instances
with additional moderators do pay greater attention to policies.

We expand this analysis in Figure 9, where we show the num-
ber of SimplePolicy actions and the delay to apply a policy after
federation (in days) for instances in the two groups. We use the
SimplePolicy for this analysis as it is the only moderation pol-
icy with instance-wide targeting and a list of targeted instance
domains. The plot shows that instances with moderators take less
time (average 103 days) to impose a SimplePolicy after federation,
compared to instances without dedicated moderators (average 111
days). The figure also shows a marked difference in the number of
instances that apply the SimplePolicy. Only 38% of the instances
with dedicated moderators apply no SimplePolicy actions, com-
pared to 70% for those without. This confirms that instances with
additional moderators are more proactively moderated.

6 WATCHGEN: AUTOMATING MODERATION
Our results indicate that moderation is labor-intensive. We now ex-
plore techniques to assist administrators. We propose WatchGen,7
a tool that recommends to administrators a “watchlist” of instances
that may require federated moderation. This watchlist must be on
a per-instance basis, as different administrators may have varying
views on what is considered appropriate for the instance they man-
age. WatchGen, helps administrators to more proactively identify
instances requiring attention with regards to content moderation.
We build WatchGen by compiling a large feature set for each in-
stance, and experimenting with a number of classification models
to flag instances that are more likely to require attention.
Feature Selection. We first extract features for each instance.
These features include information about user (e.g. number of users)
7https://github.com/anaobi/WatchGen.git

10
0

10
1

10
2

of SimplePolicy actions

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Additional moderators(policy)
Additional moderators(days)

10
0

10
1

10
2

of Days

No additional moderators(policy)
No additional moderators(days)

Figure 9: CDF of the number of SimplePolicy actions per in-
stance (X1-axis) and the lag (in days) for instances to impose
a policy after federation (X2-axis).We separate instances into
(i) those with dedicated moderators; and (ii) those without
dedicated moderators.

and administrator activities with respect to moderation (e.g. number
of rejected instances). We also extract features from post content
(e.g. number of hate words in posts). We experiment with a total
of 38 features (see Table 5). Through extensive manual experimen-
tation, we distil this down to the 16 most determinant features
(highlighted in Table 5).
Model Training. Next, we train multiple machine learning models
using the sklearn library, and GridSearchCV within 5-fold cross-
validation to find the optimal hyper-parameter settings. We detail
below the hyperparameters for each model.
Logistic Regression (LR). We only tune the C hyperparameter.
This regularization parameter controls how closely the model fits
to the training data. We test for best value of "C" using the values
{0.001, 0.01, 0.1, 1, 10, 100, 1000}.
Multilayer Perceptron (MLP). We tune three hyperparameters:
(i) hidden layer-size: dictates the number of hidden layers and nodes
in each layer. We use a single hidden layer with varying hidden
layer-sizes {10, 50, 100}; (ii) activation function: determines the type
of non-linearity introduced into the model. We employ 3 activation
functions {relu, tanh, logistic}; and (iii) learning rate: we tune how
the initial learning rate parameter changes in finding the optimal
model using {constant, invscaling, adaptive}.
Random Forest (RF). We tune 2 hyperparameters. (i) n_estimators:
the number of independent trees (estimators). We test using 3 values
{5, 50, 250}; and (ii) max_depth: the depth of the trees. We test for
best result using 6 different depths {2, 4, 8, 16, 32, None}.
Gradient Boosted Trees (GB). We tune three hyperparameters.
(i) n_estimators: The number of independent trees (estimators). We
test with 4 value {5, 50, 250, 500}; (ii) max_depth: The depth of the
trees. We test with 5 values {1, 3, 5, 7, 9}. (iii) Learning rate: This
impacts the speed and granularity of the model training. We test 5
values {0.01, 0.1, 1, 10, 100}.

6

https://github.com/anaobi/WatchGen.git

Will Admins Cope? Decentralized Moderation in the Fediverse WWW ’23, May 1–5, 2023, Austin, TX, USA

mon
th1

mon
th2

mon
th3

mon
th4

mon
th5

mon
th6

mon
th7

mon
th8

mon
th9

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f1
-s

co
re

LR
MLP
RF
GB

Figure 10: Time series of f1-scores for the Logistic Regres-
sion, Multi-Layer Perceptron, Random Forest and Gradient
Boosted Trees models. Note that we exempt month 10 as this
leaves insufficient test data.

6.1 Generating a Global Watchlist
Task. We first assume a WatchGen central broker that compiles a
global pool of training data, collected from all instances through
their public APIs (similar to us in Section 3). We use this global pool
of training data, with an 80:20 split, to predict if a given instance will
be subject to any policy (by any other instance). We then produce
a ‘watchlist’ of instances that may be worthy of attention.

To investigate how long it would take to garner sufficient data to
train WatchGen, we also train several models on datasets covering
increasing time windows. We first train on one month of data
and increase the training dataset by one month at a time (up to 9
months). For our test dataset, we use the data remaining after the
training snapshot.
Results. Table 1 summarizes the result with the global pool of
training data (80:20 split) with Random Forest being the best per-
forming model (f1=0.77). Recall, that we also run experiments with
a training set based on varying time windows. Figure 10 presents
the f1 scores based on the size (duration) of the training set. We
observe that it takes at least 5 months for a model to achieve its best
score (e.g. Gradient Boosted Trees is month 5 and Random Forest
in month 7). Note that the training sets are different from Table 1
and hence the scores differ.
Feature Importance. We next inspect which features are most
important. This sheds insight into which characteristics are most
related to triggering policies. We use the in-built functions for
feature importance. Figure 11 presents the feature importance for
the explainable models. We see that the top 3 features (transformed
post, average number of mentions in a post, and number of posts
on an instance) are all related to the number of posts on an instance.
This suggests that the likelihood of an instance having a policy
applied against it is closely related to the amount of content its
users post. In other words, the more users and posts on an instance,
the higher the probability of having a policy applied against it. This
is expected as such instances are likely to attract more attention.

Features such as the number of mentions and hate words in the
posts also play an important role. This is in-line with prior work

Algorithm Acc. Prec. Recall f1 score
Logistic Regression 0.86 0.85 0.34 0.49
Multi-Layer Perceptron 0.57 0.34 0.42 0.53
Random Forest 0.92 0.88 0.68 0.77
Gradient Boosted Trees 0.89 071 0.71 0.71

Table 1: WatchGen performance results when using global
training pool and the full feature set.

that observed how mentions and quote retweets result in more
attention [17]. To better understand the importance of these sec-
ondary metrics, we retrain the model without the two top features
(number of posts and transformed posts). We show the results in
Table 4. Confirming our prior assertion, we retain relatively good
performance. For Random Forest, we attain an f1 of 0.62 (vs. 0.77
with the full feature set in Table 5). This confirms that these other
factors play an important role in determining if an instance has
a policy applied against it. In other words, in addition to the size
of an instance, other features are required to obtain a fairly good
prediction of instances being subject to any policy.

6.2 Generating a Local Watchlist
Task. Our prior WatchGen models assume a central pool of train-
ing data, aggregated from all instances. This may be infeasible in
practice due to the decentralized nature of the Fediverse. Hence, we
next investigate howwell our best model (Random Forest) performs
when decentralizing the training process. For each instance, we
extract its federated peers and exclusively build a local training set
from their data (using the features highlighted in Table 5). For each
pair of instances, we tag whether or not a directed policy is imposed,
i.e. each instance only considers the policies it locally sees. Finally,
each instance trains its own local model using the first 8 months of
data (and tests on the last 2). This creates one independent model
per-instance. Based on this, WatchGen predicts whether a policy
will be applied against the instance.
Results. Figure 12 presents the distribution of performance met-
rics per-instance. As expected, we observe an overall performance
drop compared to the prior task based on a global model. Instances
attain an average f1 score of 0.55. This is largely due to the signifi-
cant reduction in per-instance training data. That said, we observe
a wide array of performances across the instances: 42.6% of in-
stances achieve above 0.6 f1, with a tail of 8.3% attaining below
0.4 f1. We find that performance is impacted by the training set
size. Instances that perform relatively well (>=0.6 f1), tend to be
larger (i.e. more posts and users). For example, 65.4% of the best
performing instances (>=0.6 f1) have a local post count of over 50k
(e.g. neckbeard.xyz and freespeechextremist.com). In contrast,
only 4.4% of instances that perform poorly (<0.6 f1) have over 50k
posts (e.g. princess.cat and sleepy.cafe). This implies that as
instances grow, their local performance will improve. The above
experiments show that instances can use these locally trained mod-
els to generate a personalized watchlist of instances they peer with.
Thus, we argue that these automatically compiled lists can helps
administrator pay attention to these instances.

7

WWW ’23, May 1–5, 2023, Austin, TX, USA Anaobi et al.

0.00 0.05 0.10 0.15 0.20 0.25
Importance

reject_deletes
hashtag_avg
quaran_inst

fed_time_rem
mentions_count

nsfw
hate_avg

media_removal
url_count

url_avg
users
posts

mentions_avg
posts_tr

Fe
at

ur
es

Logistic Regression

(a) Logistic Regression

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Importance

reject_deletes
quaran_inst

media_removal
nsfw

fed_time_rem
hashtag_avg

hate_avg
url_count

url_avg
mentions_count

users
mentions_avg

posts_tr
posts

Fe
at

ur
es

(b) Random Forest

0.00 0.05 0.10 0.15 0.20 0.25
Importance

reject_deletes
nsfw

media_removal
quaran_inst

hate_avg
hashtag_avg

fed_time_rem
url_count

mentions_count
url_avg

users
posts_tr

posts
mentions_avg

Fe
at

ur
es

(c) Gradient Boosted Trees

Figure 11: Feature importance for our explainable models.

0.0 0.2 0.4 0.6 0.8 1.0
Scores

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Accuracy
precision
recall
f1

Figure 12: CDF of per-instance performance for Random
Forest trained on data from local and federated instances.

7 RELATEDWORK
Social Network Studies. Extensive work has been carried out in
the area of online social networks. However, most of these are on
centralized social networks (e.g. Facebook and Twitter) [3, 19, 28, 29,
31, 36]. A number of these look at the anatomy of social graphs [23]
and moderation challenges [20]. Others look into areas ranging
from the evolution of user activities to demographics [32, 45]. In
contrast to Pleroma, these social networking platforms tend to rely
on central (commercial) administrators and moderators [48].
Fediverse and Decentralized Web. Only a small set of studies
have focused on the Fediverse or Decentralized Web applications.
Raman et al. looked at the challenges in the Fediverse, with a par-
ticular focus on the infrastructure and resilience of Mastodon [39].
Trautwein et al. studied the Inter Planetary File System (IPFS), a
decentralized storage solution [44]. Guidi et al. and Datta et al.
studied the structure, data management, and privacy aspects of
decentralized social networks [1, 7]. Recent works have examined
the standardization of related protocols [27, 35]. Bielenberg et al.
analyzed the growth, topology and server reliability of Diaspora (a
decentralized social network) [4]. Similarly, Zignani et al. studied
the evolution of the Mastodon social graph [55]. Our work differs
in that we focus on exploring administrator actions within the
Fediverse.
Online Moderation. Prior work has investigated the roles that vol-
unteer moderators play in platforms like Twitch [51]. Text-based
content classification and filtering has been extensively studied

too. These include computational techniques to detect cyberbully-
ing [10, 12, 49], anti-social posting [25, 42, 43, 52], and hate speech
[9, 21, 24, 40, 46, 47, 50]. These models have proven effective in
reducing the workload of human moderators. For example, Cheng
et. al. [25] use random forest and logistic regression classifiers to
predict whether a user will be banned, reducing the manual load
on moderators. Similarly, Zia et al. [53] look at detecting the spread
of toxic posts specifically in Pleroma (although not administrator
reactions). In our prior work, we also studied the use of federation
policies [22]. Here, we build on this, with a focus on the actions
undertaken by administrators. We further propose WatchGen to
assist administrators. To the best of our knowledge, this is the first
large-scale study of administrator activities in the Fediverse. We
hope that this can further contribute to the wider understanding of
moderation in other platforms.

8 CONCLUSION AND DISCUSSION
We have studied instance administrators in a popular Fediverse
platform, Pleroma. Although 66.9% of instances are still running
on default policies, we observe an uptake of more sophisticated
management functions. We find evidence that some administra-
tors may become overwhelmed with the growing number of posts
and users they must manage. For instance, it takes an average of
82.3 days for administrators to apply any policy against a newly
federated instance. Another sign of the overhead is that just 3.5%
of instances share the load across multiple moderators. This lack
of moderators may come with challenges: instances with fewer
moderators tend to employ less sophisticated policy strategies (e.g.
70% of them apply no SimplePolicy actions). To alleviate this, we
have proposed WatchGen, a tool that identifies instances in need
of closer attention. We show that WatchGen can predict which
instances will later have a policy imposed (f1 = 0.77).

Our study opens up a number of lines of future work. First,
we wish to expand our work to cover other Fediverse platforms,
e.g. Mastodon or PeerTube. Second, we plan to experiment with
alternate feature sets that can better identify instances that will
later require policy attention. Through this we hope to improve
WatchGen and pilot its deployment. Last, we want to perform a
qualitative study to better understand the subjective opinions of
administrators that underlie these trends. We conjecture that such
qualitative insights might be invaluable for improving WatchGen.

8

Will Admins Cope? Decentralized Moderation in the Fediverse WWW ’23, May 1–5, 2023, Austin, TX, USA

ACKNOWLEDGEMENTS
This research was supported by EPSRC grants EP/S033564/1,
EP/W032473/1, UKRI DSNmod (REPHRAIN EP/V011189/1), and
EU Horizon Framework grant agreement 101093006 (TaRDIS).

REFERENCES
[1] Datta A, Buchegger S, Vu L-H, Strufe T, and Rzadca K. 2010. Decentralized online

social networks. In: Furht B (ed) Handbook of social network technologies and
applications. In Springer. 349–378.

[2] ActivityPub. 2018. https://www.w3.org/TR/activitypub/.
[3] Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong.

2007. Analysis of topological characteristics of huge online social networking
services. In In Proceedings of the 16th international conference on World Wide Web.
835–844.

[4] Bielenberg Ames, Helm Lara, Gentilucci Anthony, Stefanescu Dan, and Zhang
Honggang. 2012. The growth of Diaspora – A decentralized online social network
in the wild. In INFOCOM Workshops.

[5] Naomi A Arnold, Benjamin Steer, Imane Hafnaoui, Hugo A Parada G, Raul J
Mondragón, Félix Cuadrado, and Richard G Clegg. 2021. Moving with the Times:
Investigating the Alt-Right Network Gab with Temporal Interaction Graphs.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (2021), 1–17.

[6] Rajadesingan Ashwin, Resnick Paul, and Budak Ceren. 2020. Quick, community-
specific learning: How distinctive toxicity norms are maintained in political
subreddits. In Proceedings of the 14th International AAAI Conference on Web and
Social Media, ICWSM 2020. 557–568.

[7] Guidi B, Conti M, Passarella A, and Ricci L. 2018. Managing social contents in
decentralized online social networks: a survey. In Online Social Networks and
Media, Vol. 7. 12–29.

[8] Haris Bin Zia, Jiahui HE, Aravindh Raman, Ignacio Castro, Nishanth Sastry, and
Gareth Tyson. 2023. Flocking to Mastodon: Tracking the Great Twitter Migration.
In Arxiv.

[9] Peter Burnap and Matthew LeightonWilliams. 2014. Hate speech, machine classi-
fication and statistical modelling of information flows on Twitter: Interpretation
and communication for policy decision making. In In Internet, Policy and Politics
Conference, Oxford, United Kingdom.

[10] Ziems C, Vigfusson Y, and Morstatter F. 2020. Aggressive, repetitive, intentional,
visible, and imbalanced: Refining representations for cyberbullying classification.
In In Proceedings of the 14th International AAAI Conference on Web and Social
Media, ICWSM 2020. 808–819.

[11] Joseph Cox. 2022. 30,000 New Users Signed Up for Mastodon After Elon
Musk Bought Twitter. https://www.vice.com/en/article/n7npd7/30000-new-users-
signed-up-for-mastodon-after-elon-musk-bought-twitter.

[12] Karthik Dinakar, Roi Reichart, and Henry Lieberman. 2011. Modeling the detec-
tion of Textual Cyberbullying. In In The Social Mobile Web. 11–17.

[13] Trinh Viet Doan, Tat Dat Pham, Markus Oberprieler, and Vaibhav Bajpai. 2020.
Measuring Decentralized Video Streaming: A Case Study of DTube. In IFIP Net-
working 2020. 118–126.

[14] Chandrasekharan Eshwar, Samory Mattia, Srinivasan Anirudh, and Gilbert Eric.
2017. The Bag of Communities. In Advances in Neural Information Processing
Systems. 3175–3187.

[15] Megan Farokhmanesh. 2017. A beginner’s guide to Mastodon, the hot new open-
source Twitter clone. https://www.theverge.com/2017/4/7/15183128/mastodon-
open-source-twitter-clone-how-to-use.

[16] The Federation. 2019. https://the-federation.info/.
[17] Kiran Garimella, Ingmar Weber, and Munmun De Choudhury. 2016. Quote RTs

on Twitter: Usage of the new feature for political discourse. In Proceedings of the
8th ACM Conference on Web Science. 200–204.

[18] Barbara Guidi, Marco Conti, Andrea Passarella, and Laura Ricci. 2018. Managing
social contents in Decentralized Online Social Networks: A survey. Online Social
Networks and Media (2018).

[19] Kwak H., C. Lee, H. Park, , and Moon S. 2010. What is twitter, a social network
or a news media?. In In Proceedings of the 19th International Conference on World
wide web, WWW ’10. 591– 600.

[20] Damilola Ibosiola, Ignacio Castro, Gianluca Stringhini, Steve Uhlig, and Gareth
Tyson. 2019. Who watches the watchmen: Exploring complaints on the web. In
The World Wide Web Conference. 729–738.

[21] Waleed Iqbal, Muhammad Haseeb Arshad, Gareth Tyson, and Ignacio Castro.
2022. Exploring Crowdsourced Content Moderation Through Lens of Reddit
during COVID-19. In Proceedings of the 17th Asian Internet Engineering Conference.
26–35.

[22] Hassan Anaobi Ishaku, Raman Aravindh, Castro Ignacio, Zia Haris Bin, De Cristo-
faro Emiliano, Sastry Nishanth, and Tyson Gareth. 2021. Exploring content mod-
eration in the decentralised web: The pleroma case. In CoNEXT 2021 - Proceedings
of the 17th International Conference on emerging Networking EXperiments and
Technologies. 328–335.

[23] Ugander J., Karrer B., Backstrom L., and C. Marlow. 2011. The anatomy of the
facebook social graph. In arXiv preprint arXiv:1111.4503.

[24] R Tallal Javed, Mirza Elaaf Shuja, Muhammad Usama, Junaid Qadir, Waleed
Iqbal, Gareth Tyson, Ignacio Castro, and Kiran Garimella. 2020. A first look at
COVID-19 messages on WhatsApp in Pakistan. In 2020 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE,
118–125.

[25] Cheng Justin, Danescu-Niculescu-Mizil Cristian, and Leskovec Jure. 2015. An-
tisocial behavior in online discussion communities. In Proceedings of the 9th
International Conference on Web and Social Media, ICWSM 2015. 61–70.

[26] Lou Jing Kai, Chen Kuan Ta, and Lei Chin Laung. 2016. A collusion-resistant
automation scheme for social moderation systems. In Conference on Human
Factors in Computing Systems-Proceedings. 1157–1162.

[27] Prashant Khare, Mladen Karan, Stephen McQuistin, Colin Perkins, Gareth Tyson,
Matthew Purver, Patrick Healey, and Ignacio Castro. 2022. The Web We Weave:
Untangling the Social Graph of the IETF. In Proceedings of the International AAAI
Conference on Web and Social Media, Vol. 16. 500–511.

[28] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2010. Structure and evolution
of online social networks. In In Link mining: models, algorithms, and applications.
Springer. 337–357.

[29] Traud A. L., Mucha P. J., and Porter M. A. 2012. Social structure of facebook
networks. In Physica A: Statistical Mechanics and its Applications. 4165–4180.

[30] La Cava Lucio, Greco Sergio, and Tagarelli Andrea. 2021. Understanding the
growth of the Fediverse through the lens of Mastodon. In Applied Network Science,
Vol. 6. Issue 1.

[31] Cha M., Haddadi H., Benevenuto F., and Gummadi P. K. 2010. Measuring user
influence in twitter: The million follower fallacy. In In Proceedings of the 5th
International Conference on Web and Social Media, ICWSM ’10.

[32] Lydia Manikonda, Yuheng Hu, and Subbarao Kambhampati. 2014. Analyzing user
activities, demographics, social network structure and user-generated content
on Instagram. In arXiv preprint arXiv:1410.8099 (2014).

[33] Mastodon. 2016. https://joinmastodon.org.
[34] Zignani Matteo, Quadri Christian, Galdeman Alessia, Gaito Sabrina, and

Rossi Gian Paolo. 2019. Mastodon content warnings: Inappropriate contents in a
microblogging platform. In Proceedings of the 13th International Conference on
Web and Social Media, ICWSM 2019. 639–645. Issue Icwsm.

[35] Stephen McQuistin, Mladen Karan, Prashant Khare, Colin Perkins, Gareth Tyson,
Matthew Purver, Patrick Healey, Waleed Iqbal, Junaid Qadir, and Ignacio Castro.
2021. Characterising the IETF through the lens of RFC deployment. In Proceedings
of the 21st ACM Internet Measurement Conference. 137–149.

[36] Seth A Myers, Aneesh Sharma, Pankaj Gupta, and Jimmy Lin. 2014. Information
network or social network? The structure of the Twitter follow graph. In In
Proceedings of the 23rd International Conference on World Wide Web. 493–498.

[37] PeerTube. 2018. https://joinpeertube.org.
[38] Pleroma. 2018. https://pleroma.social/.
[39] Aravindh Raman, Sagar Joglekar, Emiliano De Cristofaro, Nishanth Sastry, and

Gareth Tyson. 2019. Challenges in the Decentralised Web: The Mastodon Case.
In ACM IMC. 217–229.

[40] Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan Matwin. 2010. Offensive
language detection using multi-level classification. In In Canadian Conference on
Artificial Intelligence. Springer. 16–27.

[41] Lorenz Schwittmann, Christopher Boelmann, Matthaus Wander, and Torben
Weis. 2013. SoNet–Privacy and Replication in Federated Online Social Networks.
In Distributed Computing Systems Workshops.

[42] Sara Owsley Sood, Elizabeth F Churchill, and Judd Antin. 2012. Automatic
identification of personal insults on social news sites. In Journal of the American
Society for Information Science and Technology. 270–285.

[43] Chancellor Stevie, Lin Zhiyuan, and De ChoudhuryMunmun. 2009. This post will
just get taken down": Characterizing removed pro-eating disorder Social media
content. In 2009 6th IEEE Consumer Communications and Networking Conference,
CCNC 2009. 1157–1162.

[44] Dennis Trautwein, Aravindh Raman, Gareth Tyson, Ignacio Castro, Will Scott,
Moritz Schubotz, Bela Gipp, and Yiannis Psaras. 2022. Design and evaluation
of IPFS: a storage layer for the decentralized web. In Proceedings of the ACM
SIGCOMM 2022 Conference. 739–752.

[45] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. 2010.
On the evolution of user interaction in facebook. In In Proceedings of the 2nd
ACM workshop on Online social networks. 37–42.

[46] William Warner and Julia Hirschberg. 2014. Detecting hate speech on the world
wide web. In In Proceedings of the Second Workshop on Language in Social Media.
Association for Computational Linguistics. 19–26.

[47] Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols or hateful people? predic-
tive features for hate speech detection on twitter. In In Proceedings of the North
American Chapter of the Association for Computational Linguistics (NAACL-HLT).
88–93.

[48] EllenWauters, Verónica Donoso, and Eva Lievens. 2014. Optimizing transparency
for users in social networking sites. info (2014).

[49] Jun-Ming Xu, Benjamin Burchfiel, Xiaojin Zhu, and Amy Bellmore. 2011. An
Examination of Regret in Bullying Tweets. In In Proceedings of the North American9

https://www.w3.org/TR/activitypub/
https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-twitter-clone-how-to-use
https://www.theverge.com/2017/4/7/15183128/mastodon-open-source-twitter-clone-how-to-use
https://the-federation.info/
https://joinmastodon.org
https://joinpeertube.org
https://pleroma.social/

WWW ’23, May 1–5, 2023, Austin, TX, USA Anaobi et al.

Chapter ofthe Association for Computational Linguistics (NAACL-HLT). 697–702.
[50] Zhi Xu and Sencun Zhu. 2010. Filtering offensive language in online communities

using grammatical relations. In In Proceedings of the Seventh Annual Collaboration,
Electronic Messaging, Anti-Abuse and Spam Conference. 1–10.

[51] WohnDonghee Yvette. 2013. VolunteerModerators in TwitchMicro Communities.
1–13.

[52] Haris Bin Zia, Ignacio Castro, and Gareth Tyson. 2021. Racist or sexist meme?
classifying memes beyond hateful. In Proceedings of the 5th Workshop on Online
Abuse and Harms (WOAH 2021). 215–219.

[53] Haris Bin Zia, Aravindh Raman, Ignacio Castro, Ishaku Hassan Anaobi, Emil-
iano De Cristofaro, Nishanth Sastry, and Gareth Tyson. 2022. Toxicity in the

Decentralized Web and the Potential for Model Sharing. ACM SIGMETRICS
(2022).

[54] Matteo Zignani, Sabrina Gaito, andGian Paolo Rossi. 2018. Follow the “Mastodon”:
Structure and Evolution of a Decentralized Online Social Network. In ICWSM.

[55] Matteo Zignani, Sabrina Galto, and Gian Paolo Rossi. 2018. Follow the "Mastodon":
Structure and evolution of a decentralized online social media. In ICWSM. 541–
550.

A APPENDIX

10

Will Admins Cope? Decentralized Moderation in the Fediverse WWW ’23, May 1–5, 2023, Austin, TX, USA

Policy Description % Instances % Users % Posts Growth in Inst. % Growth in Inst

ObjectAgePolicy Applies action based on post age 74.80 57.00 65.30 352 73.50%
TagPolicy Applies policies to individual users based on tags 58.50 39.40 31.30 509 707.40%
HashtagPolicy List of hashtags to apply actions against 36.40 16.20 21.20 479 15,833.00%
SimplePolicy Wide range of actions applied against instances 28.80 39.70 36.30 83 30.70%
NoOpPolicy Default state of an instance 11.50 5.90 3.70 -98 -63.70%
StealEmojiPolicy List of hosts to steal emojis from 7.00 6.10 5.40 29 80.50%
HellthreadPolicy Performs action when a threshold of mentions is reached 6.50 10.90 19.80 21 42.80%
AntiFollowbotPolicy Stops bots from following users on the instance 4.50 6.20 6.90 13 40.60%
MediaProxyWarmingPolicy Crawls attachments using their MediaProxy URLs 3.60 7.00 8.30 16 72.70%
KeywordPolicy Matches a pattern in a post for an action to be taken 23.00 19.40 10.00 9 36.00%
ForceBotUnlistedPolicy Makes all bot posts to disappear from public timelines 2.70 7.00 5.50 27 675.00%
AntiLinkSpamPolicy Rejects posts from likely spambots by rejecting posts from new users that contain links 2.70 6.70 6.80 12 85.70%
ActivityExpirationPolicy Sets a default expiration on all posts made by users of the local instance. 1.30 1.20 0.73 11 366.60%
EnsureRePrepended Rewrites posts to ensure that replies to posts with subjects do not have an identical subject 1.30 0.40 1.80 6 66.60%
NormalizeMarkup processes messages through an alternate pipeline 0.9 4.2 1.4 6 150%

Table 2: The top 15 policies applied by administrators with the percentage of instances applying the policies. It shows the
percentage of users and posts on the instances applying them, and their growth during our measurement period.

Instances Admin
growth # Admins Users User

Growth Posts Post
Growth

Hate
count

URL
count

Mentions
Count

Hashtag
Count nsfw Media

Removal

Federated
Timeline
Removal

Reject Quaran
-tined

disqordia.space 6 8 53 33 55.5k 5.1k NA NA NA NA 3 2 15 71 17
poa.st 5 13 9.7k 9.46k 1.14m 453.3k 78.2k 19.5k 60.8k 20.1k 4 3 2 1 0
pleroma.nobodyhasthe.biz 5 6 128 79 20.5k 1.12k 42.8k 2.6k 42.2k 2.2k 0 1 0 2 0
pleroma.pt 4 7 450 448 24.9k 1.8k 449 75 246 29 8 5 0 1
pleroma.foxarmy.ml 4 5 8 7 40 7 NA NA NA NA 0 0 0 0 0
varishangout.net 4 7 924 856 98.5k 2.6k 4 1 0.0 3 0 3 9 6 0
mindset.rage.lol 3 5 10 8 635 444 NA NA NA NA 0 0 0 0 0
neckbeard.xyz 3 13 2k 1.22k 1.34m 789.4k 883 136 607 177 0 0 0 2 0
fedi.absturztau.be 2 4 900 463 775.8k 327k 12.9k 1.9k 9.5k 2.4k 3 0 0 14 12
childpawn.shop 2 3 183 176 3.8k 441 NA NA NA NA 0 0 0 0 0

Table 3: Top 10 Instances with the largest increase in number of administrators during our measurement period.

Algorithm Acc. Prec. Recall F1 score
Logistic Regression 0.73 0.24 0.20 0.21
Multi-Layer Perceptron 0.81 0.00 0.05 0.10
Random Forest 0.87 0.69 0.57 0.62
Gradient Boosted Trees 0.87 0.73 0.54 0.62

Table 4:WatchGen performance results using global training pool and excluding post features (number of posts and transformed
posts).

11

WWW ’23, May 1–5, 2023, Austin, TX, USA Anaobi et al.

Feature #Description #Representation Number
Users Number of users registered on an instance Count 133.8k
posts Number of posts by users on an instance Count 29.9m
hate_count Number of hate words on an instance from hatebase.org Count 36m
url_count Number of URLs in user posts on an instance Count 4.8m
reject Number of instances to completely reject any flow of material from Count 8.7k
nsfw Number of instances to tag all user posts as "Not Safe For Work" Count 934
media removal Number of instances to remove media from " Count 630
federated timeline removal Number of instances to un-list all user posts from the federated timeline Count 2.4k
posts_tr Transformed number of posts using Box Cox transformation Count 2.8k
reject_deletes Number of instances to remove all banners from Count 158
quaran_inst Number of instances where private (DMs, followers-only) activities will not be sent Count 1k
mentions_count Number of mentions in user posts on an instance Count 24m
hate_avg Average number of hate words on an instance from hatebase.org Count 1.5
url_avg Average number of URLs in user posts on an instance Count 0.2
hashtags_avg Average number of hashtags in user posts on an instance Count 0.3
mentions_avg Average number of mentions in user posts on an instance Count 0.8
hashtags_count Number of hashtags in user posts on an instance Count 7m
hate_percent Average percentage of hate words in a post from hatebase.org Percentage 2.2%
url_percent Average percentage of URLs in user posts on an instance Percentage 8.4%
hashtags_percent Average percentage of hashtags in user posts on an instance Percentage 6.6%
mentions_percent Average percentage of mentions in user posts on an instance Percentage 2.5%
followers Number of followers of users on an instance Count 169k
following Number of remote users that users on an instance follow Count 8.9k
reblogs_count Number of reblogs by users on an instance Count 7.2k
replies_count Number of posts replied by users on an instance Count 24.5k
users_tr Transformed number of users using Box Cox transformation Count 1.3k
hate_tr Transformed number of hate_count using Box Cox transformation Count 4.3k
url_tr Transformed number of url_count using Box Cox transformation Count 3k
accept Number of instances to accept all material from Count 635
report removal Number of instances to remove all reports from Count 91
avatar removal Number of instances to remove all avatars from Count 266
banner removal Number of instances to remove all banners from Count 291
followers_only Number of instances that user posts are only seen by their followers Count 99
active_halfyear Number of active users in half a year Count 9
active_month Number of active users in a month Count 7
hash_ftr Number of hashtags to remove activities from the federated timeline Count 7
hash_rej Number of of hashtags to reject activities from Count 6
hash_sen Number of hashtags to mark activities as sensitive Count 365

Table 5: Summary of all extracted features used for model training.

12

hatebase.org
hatebase.org
hatebase.org

	Abstract
	1 Introduction
	2 Pleroma: Overview
	3 Data Collection
	4 Exploring Policy Configurations
	5 Characterising Administrators
	5.1 Distribution of Administrators
	5.2 Administrators' Response Lag
	5.3 Administrators & Moderators

	6 WatchGen: Automating Moderation
	6.1 Generating a Global Watchlist
	6.2 Generating a Local Watchlist

	7 Related Work
	8 Conclusion and Discussion
	References
	A Appendix

