Modeling and Optimizing the Scaling Performance in
Distributed Deep Learning Training

Ting Liu%", Tianhao Miao%?%, Qinghua Wul3, Zhenyu Lil3, Guangxin Hel?
Jiaoren Wu*, Shengzhuo Zhang*, Xingwu Yang?, Gareth Tyson>®, Gaogang Xie?’
!Institute of Computing Technology, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China, >Purple Mountain Laboratories, China
*Kuaishou, China, "Hong Kong University of Science and Technology, Hong Kong
®Queen Mary University of London, UK., 7Computer Network Information Center, Chinese Academy of Sciences, China
{liuting19g, miaotianhao18z,wugqinghua,zyli}@ict.ac.cn,heguangxin17@mails.ucas.ac.cn
{wujiaoren,zhangshengzhuo03,yangxingwu}@kuaishou.com,g.tyson@qmul.ac.uk,xie@cnic.cn

ABSTRACT

Distributed Deep Learning (DDL) is widely used to accelerate deep
neural network training for various Web applications. In each iter-
ation of DDL training, each worker synchronizes neural network
gradients with other workers. This introduces communication over-
head and degrades the scaling performance. In this paper, we pro-
pose a recursive model, OSF (Scaling Factor considering Overlap),
for estimating the scaling performance of DDL training of neural
network models, given the settings of the DDL system. OSF cap-
tures two main characteristics of DDL training: the overlap between
computation and communication, and the tensor fusion for batch-
ing updates. Measurements on a real-world DDL system show that
OSF obtains a low estimation error (ranging from 0.5% to 8.4% for
different models). Using OSF, we identify the factors that degrade
the scaling performance, and propose solutions to effectively miti-
gate their impacts. Specifically, the proposed adaptive tensor fusion
improves the scaling performance by 32.2%~150% compared to the
constant tensor fusion buffer size.

CCS CONCEPTS

+ Computing methodologies — Machine learning; Distributed
computing methodologies; « Networks — Network measure-
ment.

KEYWORDS

distributed deep learning, scaling performance, performance mod-
eling, tensor fusion

ACM Reference Format:

Ting Liu"?, Tianhao Miao?', Qinghua Wu'?, Zhenyu Li'?, Guangxin
He'? and Jiaoren Wu*, Shengzhuo Zhang?, Xingwu Yang?, Gareth Tyson™>®,
Gaogang Xie®’. 2022. Modeling and Optimizing the Scaling Performance
in Distributed Deep Learning Training. In Proceedings of the ACM Web

*Co-first authors.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW 22, April 25-29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9096-5/22/04.
https://doi.org/10.1145/3485447.3511981

1764

Conference 2022 (WWW °22), April 25-29, 2022, Virtual Event, Lyon, France.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3485447.3511981

1 INTRODUCTION

The Web unremittingly produces quintillions of bytes of data every
single day. These data are fed to deep learning models to greatly
improve the performance of Web applications, e.g., precision of
image recognition [19, 46], speech recognition [17] and language
translation [12]. With the ever-increasing sizes of Web data and
larger deep learning model sizes, it imposes great challenges to
model training on a single machine. For example, Google applies
BERT models [12] to Search services, while the BERT-base model
has 110 million parameters and needs about two weeks of training
on a single TPUv2 card. Extremely long model training time sig-
nificantly impedes the progress of web application development.
There is a trend that Distributed Deep Learning (DDL) is used to
accelerate such model training.

In DDL training, each worker trains a copy of the deep neural
network locally, and synchronizes the model gradients with other
workers at the end of the iteration [25, 27, 33]. Naturally, as a DDL
system scales up, the communication overhead between these work-
ers increases, affecting the performance of the training process [34].
There are two key architectures employed in DDL: the Parameter
Server [29] and the All-Reduce [15] architecture. In the Parameter
Server architecture, all training workers connect to each shared
parameter server and upload their model gradients at the end of
each iteration. The servers then update the gradients and broad-
casts them back to all training workers before the next iteration.
If a large number of workers exist, the servers may become a bot-
tleneck [36]. In the All-Reduce architecture, each training worker
communicates with its adjacent workers in a logical topology (ei-
ther ring or tree). This is done in an All-Reduce [35] manner, which
eliminates the bottleneck of the centralized server. Compared with
the Parameter Server approach, the All-Reduce architecture is more
commonly used in DDL systems for its better utilization of network
bandwidth [15, 22, 44]. In this paper, we therefore focus on the
All-Reduce architecture.

There are many works on improving the scaling performance of
All-Reduce DDL training. Here, we define scaling performance as
the incremental speedup of introducing an extra worker. For exam-
ple, gradient quantization[3, 40] and sparsification [2, 23, 31] reduce

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485447.3511981
https://doi.org/10.1145/3485447.3511981

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

the communication overhead by decreasing the amount of trans-
ferred gradients, at the cost of increased computation overhead and
the accuracy loss. Large Batch Training [53, 54] and Asynchronous
SGD [20, 52, 56] reduce the frequency of gradient synchronization
to save communication overhead, which may slow down the con-
vergence of the model. As there are multiple neural network layers
of gradients, the communication of these gradients can also be
scheduled via tensor fusion [41], tensor partition [18, 24], or accord-
ing to the computation time of the gradients [38, 55], to alleviate
the impact of communication overhead.

Despite these efforts, to date, we lack a comprehensive under-
standing of how key factors affect the scaling performance of DDL
training, and how they can be alleviated. In this paper, we first
build a recursive model, OSF (Scaling Factor considering Overlap),
to depict the scaling factor of training, given the parameters of the
neural network model and the settings of the DDL system. The
OSF grasps two main characteristics in distributed training: the
overlap between computation and communication, and batching
multiple small All-Reduce operations into one. We build one DDL
testbed and use it to evaluate the accuracy of OSF at predicting
the scaling performance of various neural network models and to
measure the impact of tensor fusion on the scaling performance.
Last, to mitigate the impact of communication time on the scaling
performance, we propose replacing the communication-intensive
layers with alternative model blocks to improve the scaling per-
formance without reducing the accuracy. We propose an adaptive
tensor fusion strategy to determine whether to fuse tensors accord-
ing to the FLOPs and parameter size of each layer of the model. To
summarize, the contributions of this paper are as follows:

e We propose the OSF model (§2) to estimate the scaling perfor-
mance of DDL training, given the settings of the DDL system
and the parameters of neural network (NN) models. The estima-
tion error of OSF is as low as 0.5%~8.4% for different NN models,
which is over 83.8% lower than that of the C2C (communication-
to-computation)-based estimation method.

e We measure the scaling performance of typical NN models (§3)
with breakdown analysis of the communication time and find:
(1) the efficiency of communication scheduling (e.g., overlap-
ping communication and computation, tensor fusion) depends
on the internal attributes of NN layers (e.g., number of tensors,
tensor size); (2) the inappropriate setting of buffer size in tensor
fusion can lead to either long ALLREDUCE time, or increased
WAIT time, and thus degenerate the scaling performance.

e We propose two optimizations (§4): (1) layer replacement that
mitigates the impact of communication intensive layers, im-
proves the scaling performance from 0.25 to 0.75 (when using
32 GPUs); (2) adaptive tensor fusion (adaFusion) that determines
whether to fuse tensors according to the FLOPs and parame-
ter size of individual layers of the model. With adaFusion, the
scaling factor is 32.2%-150.0% higher than that using constant
tensor fusion buffer size, and is also 9.0%-19.6% higher than
MG-MFBP [43].

2 MODELING THE SCALING FACTOR

In this section we model the scaling performance of neural networks
in DDL training. Throughout this paper, all neural network models

1765

T. Liu, et al.

E] . layer iin Forward III : layer iin Backward E] : layer i in Update-gradients

time

|
Backward |

]
Forward |

Computation [1[..[n[n] na [.. J2] 1]
|

Overlap |

: Update-gradients

L]
|<— one iteration of training —-I

Figure 1: The computation, communication and their over-
lap in DDL training

Communication

are trained in the All-Reduce architecture. We use the scaling factor
to represent the scaling performance of neural network models in
DDL training. Scaling factor (SF) is defined by Equation 1:
— LB

T In-N’

where T; represents the execution time by one training worker for
a training job with preset datasets, models, and training targets. Tnr
denotes the execution time of the system with N workers when
dealing with the same training job. For example, for a given training
job, imagine 1 worker consumes 9 hours to complete the job, and 8
workers consume 1.25 hours to complete it. The scaling factor of
the system with 8 workers would be 9/(1.25*8) = 0.9. The higher
the scaling factor, the higher the performance of the training.

SF

)

2.1 Scaling Factor Considering Overlap (OSF)

The DDL training time consists of roughly two parts: computation
on individual workers and communication between workers. Ex-
isting work [44] has proposed the communication to computation
(C2C) Ratio to depict the scalability of a neural network model. The
higher the C2C ratio, the less scalable the model is. The C2C-based
Scaling Factor (CSF) in the All-Reduce architecture is then deduced
as in Equation 2, where T¢omy is the computation time of a model
in one iteration of training, Tcomm is the communication time in
one iteration of training, and C2C is the ratio of communication
time over computation time.

Tcomp 1

CSF = =
Teomp + Tcomm 1+ C2C

@)

As the deep neural network model is composed of multiple layers,
in the backward pass, the communication of one layer can start
as soon as its computation completes, and the computation of the
upper layer can also start simultaneously. Thus there exists overlap
between computation and communication, which C2C and CSF
omit and thus fail to predict the scaling performance.

Defining overlap: The overlap between computation and com-
munication is exemplified in Figure 1. From the figure, one iteration
of training in the DDL system consists of three components: forward,
backward and update-gradients operations. Each GPU computes the
gradients locally during the forward and backward stages, where
forward pass refers to the calculation of intermediate variables and
outputs for a model in the order from input layer to output layer,
and backward pass refers the calculation of the gradient of model
parameters which traverses the network in reverse order. It then ex-
ecutes gradient synchronization and SGD optimization during the
update-gradients operation, which constitutes a communications
overhead. When the computation thread initiates the backward

Modeling and Optimizing the Scaling Performance in Distributed Deep Learning Training

Table 1: Variables in modeling Scaling Factor

Variable | Meaning

N the number of workers (i.e., GPUs)
the network bandwidth between adjacent GPUs in the
B topology
s the communication overhead, determined by the latency
between GPUs and the scale of the topology
n number of layers in the model
DD the size of parameters of layer i in the model
M the size of a mini-batch with SGD
o) the number of float-point operations a mini-batch needs
to compute in an iteration of forward pass for layer i
" the peak computation capacity of the computing platform
(in FLOPS)
c the coefficient that gradient operations of a model can

utilize GPU
the number of bytes of memory occupied by one
float-point parameter

operation, the communication thread checks whether there are gra-
dients ready for transfer. Once they are ready, the communication
thread synchronizes them with other GPUs in an all-reduce way.

Ideally, the backward and update-gradients operations should run
in parallel to improve the scaling performance. This is because the
less non-overlapped communication time there is, the less impact
that it will have on the scaling performance. From Figure 1, when
layer n of a neural network model completes the backward, layer
n — 1 starts its backward operation and layer n starts the update-
gradients simultaneously. For layer i (n — 1 > i > 1), the beginning
of its update-gradients is constrained by both the completion of the
backward of layer i and the completion of the update-gradients of
layer i + 1.

With the above insights in mind, we next propose the Scaling
Factor considering Overlap (OSF) metric. Shown in Equation 3, OSF
is defined as the ratio of computation time Tcomp vs the sum of the
computation time and the communication time T;,,44¢,, minus the
overlap time, Ty er1qp- It is worth noting that the Tyyp g4 in OSF
is not equal to the Tcomm in CSF, as Ty;pgqse contains the idle time
between the communication of adjacent layers, as illustrated in
Figure 1. We next define Teomp, Typdatre and Toperiap respectively.
All the variables involved are listed in Table 1.

T,
OSF: comp

3
overlap
Defining Tcomp: Tcomp can be calculated as the computational
operations required divided by the computation capacity of one
worker. Here we assume that gradients are the same size as pa-
rameters, according to [44]. The time complexity of a backward
operation is twice that of a forward operation [10, 42]. Thus the
computation time is described as:

Teomp + Tupdate

Tcomp = Tforward + Toackward =3 Tforward 4)

The training platform uses different algorithms (e.g., GEMM,
Winograd [26]) for different models to speed up the convolution
operations, according to their attributes (e.g., filter size, batch size),
and thus have different coefficients of GPU utilization (c), which
can be determined through measurement in real DDL system. In all,
Tcomp can be expressed as Equation 5, where M represents the size

of a mini-batch with SGD, C(¥) represents the number of float-point

1766

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

operations a mini-batch of data requires to compute in one iteration
of forward pass for layer i, and M - € is the time of computation
during forward pass in a mini-batch for layer i [16, 29].

n .
3M - CD
Tcamp =3 Tforward = Z Py (5)
1
(@

Defining T, pgqse: Let ty)
layer i, defined in Equation 6.

d denote the backward time of

(0 =2.¢¥ M ct (6)
backward forward e
Moreover, let t,pqq¢c(D) denote the update-gradients time of
layer or tensors with size D, defined in Equation 7.
2AN - 1) (N - 1)
-D+ -D+6 , 7

BN N-7-s @)
where D represents the size of parameters in of the layer or tensors,
AND .y represents the transmission time of gradients with (N —1)

p-N
Scatter-Reduce iterations and (N — 1) AllGather iterations, &,N—;[lz -D

signifies the computation time of gradients aggregation in (N — 1)
Scatter-Reduce iterations, s represents the number of bytes each float
point parameter occupies, and J is the communication overhead in
each All-Reduce operation, which can be measured directly given
the DDL system.

We use 7(!) to denote the start time of update-gradients of layer
i, which is defined in a recursive way. For layer n, the start time of

tupdate(D) =

update-gradients (™ is 0. For layer i (n > i > 1), the start time of
update-gradients 7 is no earlier than the end of update-gradients
of layer i + 1 (denoted as (I*1) 4 tupda,e(D(i+1))) as well as the
accumulated backward time from layer n — 1 to layer i (denoted

as Y71 £9)). The recursive definition of (@ is shown in
i “backward
Equation 8.
0, ifi=n

£ —

. . n-1 ..
max(z) + typgare (DY), 5 1Y)) , otherwise
i

backward
®)
Finally, according to the definition, we have:
Tupdate = T(l) + tupdate(D(l)) -)

Defining Toyer1ap: For the update-gradients of one iteration,
the beginning cannot be earlier than the completion of backward
of layer n. Further, the completion cannot be earlier than the com-
pletion of backward of layer 1. Considering that the backward op-
eration of one iteration is executed continuously, the overlap time
Toverlap is estimated to be the sum of the backward time of layers
from n—1to 1, as shown in Equation 10. This gives us an estimate of
the scaling performance, with the overlap taken into consideration.

n-1

XO)

backward

Toverlap = (10)

By replacing the Tcomp, Tupdates and Toperiap in Equation 3
with Equation 5, 9, 10 respectively, the scaling factor of any neu-
ral network model given the settings of the DDL system can be
estimated with our OSF model.

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

2.2 OSF under Tensor Fusion

|I| Tensor i (There may be multiple tensors in one layer.)

buffer size = 2 tensors time
Backward ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘
{ 4 [3]f 2 [1]
| |
All-Reduce w/ Fusion }—-‘ Fuse(4,3) ‘ :‘—-{ Fuse(2,1) ‘
Wait Wait

Figure 2: Example of tensor fusion in DDL training

The OSF defined above only considers the scenario in which
All-Reduce operations take place immediately after the gradients
of a layer have been calculated. During DDL training, the com-
munication scheduler could also batch multiple small All-Reduce
operations into one to reduce communication overhead. This is
called tensor fusion, as illustrated in Figure 2. The buffer size deter-
mines how many tensors should be fused together for one iteration
of All-Reduce communication. In the example, the buffer size is set
to 2 tensors for ease of illustration. For Tensor 4 and Tensor 3, if
they are fused together, the total communication time is reduced,
because the saved time in one iteration of All-Reduce is larger than
the WAIT time. However, for Tensor 2 and Tensor 1, if they are
fused together, the total communication time is increased because
the WAIT time is longer than the saved ALLREDUCE time by fusion.
Thus, we next model the impact of tensor fusion on the scaling
performance, as shown in Equation 11:

Tcomp

OSFfusion = s (11)

usion
Teomp + Tupdale

where Teomp and Toperiap have the same definition as those in

Sfusion
Tupd ate
under tensor fusion to model its impact on the scaling performance.

There are two main parameters in tensor fusion which impact
the performance of distributed training: fusion buffer size Q, which
is the maximum amount of tensors transmitted in one all-reduce
communication, and timeout timeout, which is the longest time
to wait for the tensors of the upper layer. For each layer, after its
backward pass completes, the tensors are put into the buffer for
fused transmission. When the buffer is full or a timeout occurs, the
tensors in the buffer are transferred in an all-reduce manner and
the buffer is cleared. The computation time and overlap time in
DDL training are not affected by tensor fusion.

For each layer i, after its backward pass completes, the com-
munication scheduler tries to put the tensors of this layer in the
fusion buffer as long as the buffer capacity allows. Thus, the size
of buffered tensors after putting tensors of layer i in the buffer,
denoted as B(i), is defined in Equation 12.

- Toverlap

Equation 3. Next, we formulate the communication time

D& | ifi=nor B + DO > Qor Ny

backward Z timeout

B(i) —
BU+D 4 p@) otherwise
(12)
When the tensors of layer i are buffered for fusion, the commu-
nication scheduler decides to transfer the buffered tensors, if one

of the following conditions satisfies:

e This is layer 1, meaning there are no more layers in this
iteration;

1767

T. Liu, et al.

e A timeout occurs before the backward pass of layer i — 1
completes;
e The buffer does not have enough space to store the tensors
of layer i — 1.
Otherwise, the tensors of the current layer are stored in the buffer.

Let F()) denote the size of transferred tensors after the completion
of backward pass of layer i, which is defined in Equation 13.

B , ifi=1or t(i> > timeout or B + pti-1) > Q

F(i) _ backward
0, otherwise

(13)

For layer i, when the communication scheduler decides to transfer

the tensors (up to layer i) in the buffer, the tensors of layer i may

@)

have been buffered for a short duration, denoted as taits which is
defined in Equation 14.
. . (i-1) .
timeout , if i > 1and tbackward > timeout
i _ i—1 o i i
tait = t;;aczcward R elseif i > 1and B) + DD > O
0, otherwise
(14)

For layer i, given the amount of transferred tensors F (), the wait
(@)
wait

the start time of tensor transfer is no earlier than the

time before transmission ¢ and the duration of backward pass
o)
backward’
end time of tensor transfer of layer i + 1 as well as the completion
time of backward pass of layer i. Thus, the start time of the ten-
sor transfer of layer i, denoted as T(i), is defined in Equation 15,
where t,5qqre(F (i+1)) is the time required for all-reduce operation
of buffered tensors FU+1),
0, ifi=n
L) =
), otherwise
(15)
Summing up the above, the overall communication time under
tensor fusion is defined in Equation 16:

; i+1 i (S0,
maX(T(Hl) + ZLi‘llai)t + t“Pd“te(F(Hl))’ Z tl(;lgckward
L

5:;:;2 =zW4 tupdate(F(l)) (16)
By replacing the Tl{ :;;‘;z in Equation 11 with Equation 16, we

can calculate the scaling factor of any neural network model, given
the settings of the DDL system, as well as the parameters of tensor
fusion.

3 MEASURING SCALING PERFORMANCE

In this section, we examine the accuracy of OSF in estimating the
scaling performance and evaluate the impact of various factors
on the scaling performance of DDL training. To this end, we first
build a DDL system which is representative of the specification and
configuration of DDL systems used by web applications [4, 5, 7].

3.1 Measurement Setup

Hardware: We conduct our experiments on a cluster of 4 machines
connected with 25Gbps. Each machine is equipped with 8 Nvidia
GeForce RTX 2080 Ti GPU and 1 Mellanox ConnectX-4 Lx NIC.

Modeling and Optimizing the Scaling Performance in Distributed Deep Learning Training

B CSF [SF mEm OSF

356% 34.5% 51.9%

VGG16 VGG19 ResNet50 ResNet101ResNet152

Figure 3: The CSF, SF and OSF of different models

Each GPU has 11 GB of memory and connected via PCle 3.0 x16 in
a machine.

Software: TensorFlow is used for training the model locally,
and Horovod, a widely used platform for distributed deep learn-
ing training, is used for the synchronization of model gradients
among workers. The communication across training workers is
organized in a ring All-Reduce architecture, which is supported by
communication library NVIDIA NCCL. The software version used
in experiments are Horovod 0.20.0, TensorFlow 2.3.0, NCCL 2.8.4.
Docker with images horovod/horovod:0.20.0-tf2.3.0-py3.7-cuda10.1
is used for the quick deployment of the software system.

We select five representative neural network models: ResNet50,
ResNet101, ResNet152 [19], VGG16 [46] and VGG19. The param-
eters and related information of the models are listed in Table 2.
We adopt synthetic dataset, which is more suitable than real-world
dataset when measuring the scaling performance, as random gen-
erated samples and labels eliminate the elements which are irrele-
vant to the measurements. In the Synthetic dataset, images with
size 224x224x3 (the same as that in ImageNet [11] and classifica-
tion labels are generated randomly, according to the guideline of
Horovod [21].

Table 2: Benchmark Models

Name GFLOPs Parameter Size (MB) # Layers # Tensors
ResNet50 4 98 50 176
ResNet101 8 170 101 346
ResNet152 12 230 152 516

VGG16 16 528 16 22

VGG19 20 549 19 24

3.2 Measuring the Accuracy of OSF

We first evaluate the accuracy of the proposed OSF model. Figure 3
shows the SF, CSF and OSF for different models trained on our
testbed. Here, we fix the number of GPUs at 32 and the tensor
fusion is turned off. In the figure, the number on each bar of SF
represents the measured scaling factor; the number on each bar
of CSF and OSF represents their estimation error relative to SF,
respectively. We see that the estimation error of OSF ranges from
0.5% to 8.4%, much low than that by CSF (ranging from 8% to 51.9%).
Specifically, in comparison with CSF, OSF reduces the estimation
error by over 83.8%. The results demonstrate that the efficiency of
OSF modeling in estimating the scaling performance given neural
network models and DDL system settings.

Another interesting observation is that the CSF value of ResNet
models is higher than OSF and SF values, indicating that the over-
lap between communication and computation (captured by OSF)

1768

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

degenerates the scaling performance of ResNet models. Comparing
CSF and OSF, all tensors in CSF are transferred in one All-Reduce
operation to eliminate the communication overhead (), all tensors
in one layer is transferred immediately after the backward pass
completes, which eliminates the Wait time for the backward pass
of layer 1. From Table 2, ResNet models have many tiny layers and
tensors. For such models, the “communication after all computa-
tion” (on which CSF is built) has higher communication efficiency
than the “communication immediately after one computation” (on
which OSF is built). It also demonstrates the usefulness of tensor
fusion, which will be investigated later in this section.

EEE CSF [SF EEE OSFpusion 3 EEm CSF [SF B OSFiysion
06%

16.1%

1KB 1MB 100MB 1GB : 1KB 1MB 100MB 1GB
Tensor Fusion Buffer Size Tensor Fusion Buffer Size

(a) ResNet101 (b) VGG16

Figure 4: The CSF, SF and OSFfy;0, of models under differ-
ent tensor fusion buffer sizes

Next, we evaluate the accuracy of our OSF model when tensor
fusion is turned on. Figure 4 shows the CSF, SF and OSFf 50, val-
ues of ResNet101 and VGG16 under different tensor fusion buffer
sizes. For ResNet101 in Figure 4a, we see OSFfysion obtains a maxi-
mum estimation error (3.2%), much lower than that by CSF (16.1%),
which demonstrates the accuracy of OSFgs;0, on modeling the
scaling performance under tensor fusion. Note that in this set of
experiments, CSF fuses all tensors into one All-Reduce operation.
When the buffer size is 1KB or 1MB, the CSF value is higher than
that of SF and OSFfy;0n; but when the buffer size is 100MB or
1GB, the CSF value is lower than that of SF and OSFfs;op- This
observation indicates that the fusion buffer size needs to carefully
tuned for better scaling performance, which will be investigated in
the following section.

For VGG16 in Figure 4b, the estimation error of CSF is compa-
rable with that of OSFfs;0n, meaning that the overlap between
computation and communication has little impact on the scaling
performance. Moreover, when the tensor fusion buffer size is less
than 1GB, the SF and OSFyy;0n values keep nearly unchanged,
meaning that tensor fusion has a negligible impact on its scaling
performance. These two phenomena can be explained by that one
single fully-connected layer of VGG16 occupy about 74.2% of the
total communication time, which is not affected by the overlap
between computation and communication or tensor fusion. When
the buffer size is set to 1GB, the SF and OSFf5;op, values decrease
slightly, due to the increased WAIT time by tensor fusion, which will
be investigated next. Nevertheless, OSFgs;0n can always estimate
the SF value under tensor fusion with pretty low error.

3.3 Measuring the Impact of Tensor Fusion

The rationale of tensor fusion is to batch multiple small All-Reduce
operations into one to decrease the ALLREDUCE time, at the cost of
increasing WAIT time. To investigate the impact of tensor fusion on

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France

the scaling performance, we first break down the communication
time into different constituents.

Decomposing Communication Time: The communication
time in DDL training is composed of four parts, namely NEGOTI-
ATE, ALLREDUCE, WAIT and MISC. During training, the compu-
tation graph executed by TensorFlow results in different orders of
tensor transfer among multiple GPUs. Thus, there is one GPU as the
master (which is responsible for tensor ordering). Once gradients
of one layer are ready in backward, the GPU sends the tensor infor-
mation to the master. The master determines the order of tensors
for transfer and reports the order to workers. The stage used for
determining the order of tensor transfers among GPUs is called
NEGOTIATE.

Following this, all involved GPUs synchronize the tensors (i.e.,
gradients) via All-Reduce communication. This phase is named
ALLREDUCE. If tensor fusion is enabled, after receiving the re-
sponse from master, each GPU can also wait (buffer) for the fusion
with other tensors before transmission. This phase is named WAIT.
There is also the MISC phase (including memory copy, waiting
for computation), which occupies a relatively small and constant
communication time.

323 NEGOTIATE EEE ALLREDUCE
Bl WAIT 3 MmIisC

323 NEGOTIATE EEE ALLREDUCE
Bl WAIT 3 MmIsC

8 16 24 32 4 8 16 24 32
Number of GPUs Number of GPUs

(a) ResNet101 (b) VGG16

Figure 5: Breakdown of communication time of ResNet101
and VGG16 under different number of GPUs

Next, we measure the proportion of each phase, to investigate
how the scaling performance is affected by the four constituents of
the communication time. Figure 5 shows the breakdown of commu-
nication time of ResNet101 and VGG16. For ResNet101 in Figure 5a,
when increasing the number of GPUs, ALLREDUCE occupies 88%
of communication time under 32 GPUs. Compared with ResNet101,
VGG16 always has a higher proportion of ALLREDUCE and a lower
proportion of MISC. This is due to the larger parameter size of
the (communication intensive) VGG16 model. We also see that,
for these models, the NEGOTIATE time among multiple GPUs is
negligible, contradicting prior observations in [39], where long
spin waits [6] in NEGOTIATE causes significant slowdown. In our
DDL system, the equal computing capacity of GPUs and the use
of synthetic datasets eliminates the imbalance of computing and
workload respectively, leading to relatively short NEGOTIATE time.
From this, we conclude that GPUs with equal computing capacity
improve distributed training, as the NEGOTIATE time (as well as
the scaling performance) is determined by the slowest worker.

Measuring impact of tensor fusion buffer size: We start by
measuring the number of All-Reduce operations in one iteration
of training and the scaling factor of ResNet101 and VGG16 with
various buffer sizes running on 32 GPUs, as shown in Figure 6. For
ResNet101, there are a number of small tensors in the convolution
layers. When the buffer size increases from 0 to 100MB, the number

1769

T. Liu, et al.

400
gaso —— ResNet101 —— VGG16 BB ResNet101 HEEE VGG16
S 300
o}
§250 -
w
200 \.
o 150
w
gwo

50
$. . -

0 1KB 1MB 100MB 1GB : 0 1KB _ 1MB_ 100MB 1GB

Tensor Fusion Buffer Size

Tensor Fusion Buffer Size

(a) #(All-Reduce operations) (b) scaling performance

Figure 6: The impact of tensor fusion buffer size

of All-Reduce operations drops dramatically in Figure 6a. This
leads to the growth of scaling factor in Figure 6b. When the buffer
size increases to 1GB, the scaling factor of ResNet101 starts to
decrease (although still 40% more than that without tensor fusion).
In contrast, for VGG16, the scaling factor remains almost unchanged
when the buffer size increases from 0 to 100MB. Since VGG16 has
fewer layers, the number of All-Reduce operations is also relatively
small, shown in Figure 6a. When the buffer size is set to 1GB,
the scaling factor of VGG16 decreases by 9%, compared with that
without tensor fusion.

573 NEGOTIATE [EEE ALLREDUCE
El WAIT 3 misc

373 NEGOTIATE [EEE ALLREDUCE
El WAIT 3 misc

0 1KB 1MB 100MB 1GB 0 1KB 1MB 100MB 1GB
Tensor Fusion Buffer Size Tensor Fusion Buffer Size

(a) ResNet101 (b) VGG16

Figure 7: Breakdown of communication time of ResNet101
and VGG16 with tensor fusion

The difference of scaling factor when varying the buffer size
comes from the fact that the tensor fusion has an impact on the
tradeoff between ALLREDUCE time and WAIT time. Next, we pro-
file the communication time of ResNet101 and VGG16 with various
buffer sizes and investigate its impact, as shown in Figure 7. For
ResNet101 in Figure 7a, the communication time decreases when
the buffer size increases from 0 to 100MB, since the fusion of tiny
tensors effectively reduces the ALLREDUCE time. As the buffer size
continues to increase, the WAIT time increases correspondingly,
which degrades the scaling factor. In contrast, for VGG16 in Fig-
ure 7b, when the buffer size increases to 100MB, the ALLREDUCE
time is nearly unchanged, and the WAIT time is almost 0. When
the buffer size is increased to 1GB, the largest tensor could be fused
with other tensors, which saves ALLREDUCE time, at the cost of
greatly increased WAIT time, which makes the communication
time 8% more than that without tensor fusion.

3.4 Summary of Results

The proposed OSF model has much lower estimation error than
the C2C-deduced CSF model on modeling the scaling performance
of DDL training, as our OSF model precisely capture the overlap
between computation and communication, and batching update.
The OSF model can be leveraged by system and neural network
model designers to estimate and improve the scaling performance
of DDL systems.

Modeling and Optimizing the Scaling Performance in Distributed Deep Learning Training

Table 3: The related layers of VGG16 and VGG16 with layer
replacement

Parameter
Model Layer Structure Size (MB)
Fully Connected Layer 1 4096 392
VGG16 Fully Connected Layer 2 4096 64
Fully Connected Layer 3 1000 15.6
VGG16 Convolution Layer 1 (1,1,512) 1
w/ layer Convolution Layer 2 (1,1,1000) 1.95
replacement Global Average Pooling Layer ~ Pooling 0

We use this to better understand scaling performance. We find
that for neural network models with many tiny tensors (e.g., ResNet101),
overlapping computation and communication may result in worse
scaling performance than the “Communication after all computa-
tion" strategy. Besides, for neural network models with one single
large tensor (e.g., VGG16), tensor fusion has a negligible impact on
its scaling performance. Moreover, the inappropriate setting (e.g.,
using default values) of buffer size in tensor fusion can further lead
to either a long ALLREDUCE time, or increased WAIT time.

4 IMPROVING SCALING PERFORMANCE

Motivated by our analysis in the previous section, we improve the
scaling performance by using two mechanisms. The first mecha-
nism (called layer replacement) aims at mitigating the impact of
communication intensive layers (with large parameter sizes) on
the scaling performance. The second mechanism (called adaptive
tensor fusion, adaFusion) enables appropriate setting of buffer size
in tensor fusion.

4.1 Layer Replacement

Motivated by the network-in-network method in [30], we propose
to replace the fully connected layers with convolution layers and a
global average pooling layer. Table 3 illustrates the replacement for
VGG16.

We measure the efficacy of this approach, and present the scaling
performance in Figure 8. We train VGG16 and VGG16 with layer
replacement with ImageNet dataset [11], and find that the scaling
factor after layer replacement is much improved. When training
with 32 GPUs, the scaling factor is increased from 0.25 to 0.72.
We therefore confirm that layer replacement offers an effective
strategy for improving scaling performance for communication
heavy layers. Moreover, the training loss of VGG16 and VGG16
with layer replacement are respectively 1.82 and 1.39 after 120
epochs, as shown in Figure 9, indicating that layer replacement
does not hurt model accuracy during training.

4.2 Adaptive Tensor Fusion

Based on the measurement in Section 3.3, the constant tensor fu-
sion strategy fails to obtain optimal results for different models
and tensors. Smaller buffer sizes introduce extra communication
overhead, while larger ones might result in long wait times. Thus,
we present an adaptive tensor fusion (adaFusion) strategy, which
dynamically determines whether to fuse tensors during distributed
training. The rationale of adaFusion is that we only fuse the tensor

1770

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

1.0 Em VGG16
Bl VGG16 w/ layer replacement

0.0 4

8 16 24 32
Number of GPUs

Figure 8: Scaling factor of VGG16 and VGG16 with layer re-
placement under different number of GPUs

1 == VGG16
=== \/GG16 W/ layer replacement

—e.
. =%
Ny N
K K@ @ — e @ —
\x_z_a‘g g:.

T T T T T T T
0 20 40 60 80 100 120
Eooch

Figure 9: Training loss of VGG16 and VGG16 with layer re-
placement

when the sum of the waiting time and communication time of fused
tensors are smaller than the communication time of transferring
the tensors separately. That is, tensors of layer i is fused only when

tupdate(B(Hl)“’D(i))'*'tx) < tupdate(B(i+l))+tupdate(D(i)) - (A7)

ait

Estimating Communication Time: adaFusion relies on the
accurate estimation of ALLREDUCE time. Traditional methods [43]
estimate the communication time by assuming that it has linear
relationship with data size given constant bandwidth. This assump-
tion is only reasonable when the dataset is large enough to saturate
the bandwidth, which always underestimates the communication
time of the pervasive small tensors in DDL training.

Considering the impact of slow (re-)start in RDMA [32], we
adopt a piecewise function to estimate the communication time
of different parameter sizes. For a large parameter size, where the
communication time is relatively longer and mostly associated
with stable bandwidth, a linear function is used to fit the data. For
a small parameter size, a logarithmic function is adopted to mimic
the behavior of the increasing window during slow start.

Consequently, the communication time given data size is ex-
pressed as:

ay xlogy(D) + by ,if D < Drpresh
(D) = (18)
ay XD+ by, otherwise

’

tupdate

The value of D7p,yesp i set to the Bandwidth-Delay Product (BDP)
of the link in DDL system, denoting the maximum amount of data
that senders could transmit in unit time (one RTT).

To evaluate the precision of our communication time prediction
model, we measure the communication time of tensors in different
models among 32 GPUs with constant tensor fusion on Horovod.
Our measurements show that 53.1% of tensors are smaller than the

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France

0.30
I linear
025 I piecewise
0.20
2015
o

0.10

0.05

0.00

0 1KB 1MB 100MB 1GB
Tensor Fusion Buffer Size

Figure 10: Prediction error of piecewise and linear

BDP (45KB in our experiment), and it confirms that accurate esti-
mation of small tensors communication is necessary for predicting
total communication time.

We select different buffer size configurations in constant tensor
fusion to evaluate prediction performance in a wide range of data

size. The prediction error of the estimated communication time is
defined as: Testimated=Tmeasure

measure

The prediction error of piecewise and linear functions for the
communication time of tensors in ResNet101 is shown in Figure 10.
ResNet101 has multiple layers with small tensors, whose communi-
cation time is heavily affected by tensor fusion strategy. Therefore,
estimation of its communication time is useful for evaluating preci-
sion of communication models. From the figure, as expected, the
piecewise model has a much lower prediction error than the linear
method, especially for the tensors are small.

Given the DDL system and the training model, the computation
time of an individual layer can be calculated directly by Equation 5,
the communication time of each layer and the communication time
if the tensors are fused can be estimated by Equation 18 with higher
accuracy. adaFusion decides whether to fuse the tensors of each
layer, according to the result of Equation 17.

Figure 11 shows the scaling performance of different fusion
strategies. In the figure, the buffer size of constant tensor fusion
strategy is set to 100MB, under which all the five models have
the highest scaling factor. MG-WFBP [43] simply decides whether
to fuse the tensors of layer i by comparing the time required for
backward pass of layer i — 1 with the communication time of tensors
of layer i plus a small value which represents the communication
overhead of one All-Reduction operation. We can observe from
the figure that for all the considered models, the scaling factor
with our proposed adaFusion is 32.2%-150% higher than that with
constant tensor fusion size, and is 9.0%-19.6% higher than that
with MG-MFBP. The advantage of adaFusion comes from that
adaFusion can estimate the communication time of fused tensors
with higher accuracy while MG-WFBP always underestimates the
communication time of small tensors.

5 RELATED WORK

Modeling and Measurement of DDL training: Previous works [9,
45, 49, 50, 57] theoretically analyze the communication overhead
introduced by the All-Reduce topology. The communication-to-
computation (C2C) ratio [51] heavily affects the scalability of DDL
systems, and a higher C2C ratio results in lower scaling efficiency [43].
Shi et al. [44] defined model intensity, and found a higher inten-
sity and lower C2C ratio make the model easier to be parallelized.

1771

T. Liu, et al.

no fusion
0.8 [ZA constant buffer

B MG-WFBP
B adaFusion

VGG16 VGG19 ResNet50 ResNet101ResNet152

Figure 11: Scaling performance of different fusion strategies

Nathan et al. [47] characterized model workloads by activations
and parameters, then designed controllable computation and com-
munication intensities in ResNet models. Some works have men-
tioned the significance of overlap in the analysis of the scaling
factor [18, 38, 43, 45, 57], especially in the Parameter Server ar-
chitecture [28].Recently pipeline parallelism [34] is proposed to
partition model layers into multiple stages. In contrast to the works
above that treat neural network models as a whole, our proposed
OSF captures the impact of the internal attributes of the model as
well as the settings of the DDL system on the scaling performance.
Optimizing the communication performance in DDL train-
ing: There are a number of communication libraries that are de-
signed to develop and optimize DDL, including Message Passing
Interface (MPI) [48], NVIDIA’s NCCL [35], and Facebook Gloo [13].
Horovod [41] is a DDL framework that relies on the above com-
munication libraries, and is easier to inter-operate with many DL
frameworks, e.g., TensorFlow [1], PyTorch [37] and MXNet [8].
There are some limitations which degrade the scaling performance
in practice though. Pumma et al. [39] found that TensorFlow and
Horovod have resource contention, resulting in load imbalance and
longer training times. For inter-node communication, Wang et al.
[50] focus on the impact of network topology on DML performance
and Geng et al. [14] propose a server-centric network topology
to better utilize bandwidth among servers. Different from these
works, we perform breakdown analysis of communication time and
identify several opportunities that can be leveraged to improve the
scaling performance of DDL training.

6 CONCLUSION

We have proposed the OSF model to capture the impact of various
elements on the scaling performance of DDL training, as well as
proposed solutions that can mitigate the issues observed. These
solutions can be leveraged for better model design and improved
DDL training performance in web applications. We emphasize that
this work explores only a subset of the challenges. Hence, our fu-
ture work will involve measuring other factors, such as the impact
of dataset characteristics. We further intend to implement our pro-
posed solutions to evaluate the potential for improving scaling
performance in-the-wild.

ACKNOWLEDGMENTS

This work was partially supported by National Key R&D Program of
China (2019YFB1802800), the Informatization Plan of Chinese Acad-
emy of Sciences (CAS-WX2021SF-0506), National Natural Science
Foundation of China (U20A20180, 62072437) and Beijing Natural

Modeling and Optimizing the Scaling Performance in Distributed Deep Learning Training

Science Foundation (JQ20024). Corresponding authors: Qinghua
Wu & Zhenyu Li.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
symposium on operating systems design and implementation ({ OSDI} 16). 265-283.
Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for dis-
tributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-efficient SGD via gradient quantization and encoding.
Advances in Neural Information Processing Systems 30 (2017), 1709-1720.

Mario Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I Venieris, and
Nicholas D Lane. 2019. EmBench: Quantifying performance variations of deep
neural networks across modern commodity devices. In The 3rd international
workshop on deep learning for mobile systems and applications. 1-6.

Cody] Blakeney, Xiaomin Li, Yan Yan, and Ziliang Zong. 2020. Parallel Blockwise
Knowledge Distillation for Deep Neural Network Compression. IEEE Transactions
on Parallel and Distributed Systems (2020).

Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz. 2003. Busy wait
analysis. In International Conference on Reliable Software Technologies. Springer,
142-152.

Tianyi Chen, Ziye Guo, Yuejiao Sun, and Wotao Yin. 2021. CADA:
Communication-Adaptive Distributed Adam. In International Conference on Arti-
ficial Intelligence and Statistics. PMLR, 613-621.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Minsik Cho, Ulrich Finkler, Mauricio Serrano, David Kung, and Hillery Hunter.
2019. Blueconnect: Decomposing all-reduce for deep learning on heterogeneous
network hierarchy. IBM Journal of Research and Development 63, 6 (2019), 1-1.
Danny Hernandez Dario Amodei. [n.d.]. Al and Compute. [EB/OL]. https:
//openai.com/blog/ai-and-compute/ Accessed May 1, 2021.

[11] JiaDeng, WeiDong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).
FaceBook. [n.d.]. Gloo. https://github.com/facebookincubator/gloo

[14] Jinkun Geng, Dan Li, Yang Cheng, Shuai Wang, and Junfeng Li. 2018. HiPS: Hier-

archical parameter synchronization in large-scale distributed machine learning.
In Proceedings of the 2018 Workshop on Network Meets Al & ML. 1-7.

Andrew Gibiansky. 2017. Bringing HPC techniques to deep learning. https:
//andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yanggqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech
recognition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing. leee, 6645-6649.

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. 2018. Tictac:
Accelerating distributed deep learning with communication scheduling. arXiv
preprint arXiv:1803.03288 (2018).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Qirong Ho, James Cipar, Henggang Cui, Jin Kyu Kim, Seunghak Lee, Phillip B
Gibbons, Garth A Gibson, Gregory R Ganger, and Eric P Xing. 2013. More effective
distributed ml via a stale synchronous parallel parameter server. Advances in
neural information processing systems 2013 (2013), 1223.

Horovod. 2018. Horovod Synthetic Benchmark. https://github.com/horovod/
horovod/tree/master/examples/tensorflow?2

Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. 2016.
Firecaffe: near-linear acceleration of deep neural network training on compute
clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2592-2600.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and
Raman Arora. 2019. Communication-efficient distributed SGD with sketching.
arXiv preprint arXiv:1903.04488 (2019).

Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based parameter propagation for distributed DNN
training. arXiv preprint arXiv:1905.03960 (2019).

1772

[25

[26]

[27

(28]

[29

[30

[31

[32

®
3

[34

(35]

[36

(37]

&
&,

[39

[40

[41

=
)

[43

[44

[45

[46

N
)

(48

[49

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Ligiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. 2018. Highly scalable
deep learning training system with mixed-precision: Training imagenet in four
minutes. arXiv preprint arXiv:1807.11205 (2018).

Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4013-4021.

Mu Li. 2017. Scaling distributed machine learning with system and algorithm
co-design. Ph. D. Dissertation. PhD thesis, Intel.

Mu Li, David G Andersen, Jun Woo Park, Alexander] Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
distributed machine learning with the parameter server. In 11th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI} 14). 583-598.
Mu Li, Tong Zhang, Yuqiang Chen, and Alexander] Smola. 2014. Efficient mini-
batch training for stochastic optimization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 661-670.

Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network in network. arXiv
preprint arXiv:1312.4400 (2013).

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
gradient compression: Reducing the communication bandwidth for distributed
training. arXiv preprint arXiv:1712.01887 (2017).

Mellanox. 2021. How to Enable Disable Lossy RoCE Accelerations.
https://community.mellanox.com/s/article/How-to- Enable-Disable-Lossy-
RoCE- Accelerations

Hiroaki Mikami, Hisahiro Suganuma, Yoshiki Tanaka, Yuichi Kageyama, et al.
2018. Massively distributed SGD: ImageNet/ResNet-50 training in a flash. arXiv
preprint arXiv:1811.05233 (2018).

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1-15.
NVIDIA. 2017. NVIDIA collective communications library (NCCL).
//developer.nvidia.com/nccl/

Heng Pan, Zhenyu Li, JianBo Dong, Zheng Cao, Tao Lan, Di Zhang, Gareth Tyson,
and Gaogang Xie. 2020. Dissecting the Communication Latency in Distributed
Deep Sparse Learning. In Proceedings of the ACM Internet Measurement Conference.
528-534.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A generic communication scheduler for dis-
tributed dnn training acceleration. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles. 16-29.

Sarunya Pumma, Daniele Buono, Fabio Checconi, Xinyu Que, and Wu-chun
Feng. 2020. Alleviating Load Imbalance in Data Processing for Large-Scale Deep
Learning. In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID). IEEE, 262-271.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
dnns. In Fifteenth Annual Conference of the International Speech Communication
Association.

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).
Serebryakov Sergey. 2019. Neural network runtime characteristics. https://github.
com/sergey-serebryakov/nns.

Shaohuai Shi, Xiaowen Chu, and Bo Li. 2021. MG-WFBP: Merging Gradients
Wisely for Efficient Communication in Distributed Deep Learning. IEEE Transac-
tions on Parallel and Distributed Systems 32, 8 (2021), 1903-1917.

Shaohuai Shi, Zhenheng Tang, Xiaowen Chu, Chengjian Liu, Wei Wang, and Bo Li.
2020. Communication-Efficient Distributed Deep Learning: Survey, Evaluation,
and Challenges. arXiv preprint arXiv:2005.13247 (2020).

Shaohuai Shi, Zhenheng Tang, Xiaowen Chu, Chengjian Liu, Wei Wang, and Bo
Li. 2020. A Quantitative Survey of Communication Optimizations in Distributed
Deep Learning. IEEE Network (2020).

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Nathan R Tallent, Nitin A Gawande, Charles Siegel, Abhinav Vishnu, and Adolfy
Hoisie. 2017. Evaluating on-node gpu interconnects for deep learning workloads.
In International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems. Springer, 3-21.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49-66.

Yuichiro Ueno and Rio Yokota. 2019. Exhaustive study of hierarchical allreduce
patterns for large messages between GPUs. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 430-439.

https:

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://github.com/facebookincubator/gloo
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://github.com/horovod/horovod/tree/master/examples/tensorflow2
https://github.com/horovod/horovod/tree/master/examples/tensorflow2
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations
https://community.mellanox.com/s/article/How-to-Enable-Disable-Lossy-RoCE-Accelerations
https://developer.nvidia.com/nccl/
https://developer.nvidia.com/nccl/
https://github.com/sergey-serebryakov/nns
https://github.com/sergey-serebryakov/nns

WWW ’22; April 25-29, 2022, Virtual Event, Lyon, France

[50] Shuai Wang, Dan Li, Jinkun Geng, Yue Gu, and Yang Cheng. 2019. Impact of
network topology on the performance of DML: Theoretical analysis and practical
factors. In IEEE INFOCOM 2019-IEEE conference on computer communications.
IEEE, 1729-1737.

[51] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai
Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. arXiv preprint arXiv:1705.07878 (2017).

[52] Yemao Xu, Dezun Dong, Yawei Zhao, Weixia Xu, and Xiangke Liao. 2020. OD-
SGD: One-Step Delay Stochastic Gradient Descent for Distributed Training. ACM
Transactions on Architecture and Code Optimization (TACO) 17, 4 (2020), 1-26.

[53] Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling sgd batch size to 32k
for imagenet training. arXiv preprint arXiv:1708.03888 6 (2017), 12.

1773

(54

[55

[56

[57

T. Liu, et al.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2018.
Imagenet training in minutes. In Proceedings of the 47th International Conference
on Parallel Processing. 1-10.

Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017. Poseidon: An efficient
communication architecture for distributed deep learning on {GPU} clusters. In
2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17). 181-193.
Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2015. Staleness-aware async-
sgd for distributed deep learning. arXiv preprint arXiv:1511.05950 (2015).

Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin
Jin. 2020. Is network the bottleneck of distributed training?. In Proceedings of the
Workshop on Network Meets AI & ML. 8-13.

	Abstract
	1 Introduction
	2 Modeling the Scaling Factor
	2.1 Scaling Factor Considering Overlap (OSF)
	2.2 OSF under Tensor Fusion

	3 Measuring scaling performance
	3.1 Measurement Setup
	3.2 Measuring the Accuracy of OSF
	3.3 Measuring the Impact of Tensor Fusion
	3.4 Summary of Results

	4 Improving scaling performance
	4.1 Layer Replacement
	4.2 Adaptive Tensor Fusion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

