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With the deployment of a growing number of smart home IoT devices, privacy leakage has become a growing concern. Prior

work on privacy-invasive device localization, classification, and activity identification have proven the existence of various

privacy leakage risks in smart home environments. However, they only demonstrate limited threats in real world due to

many impractical assumptions, such as having privileged access to the user’s home network. In this paper, we identify a

new end-to-end attack surface using IoTBeholder, a system that performs device localization, classification, and user activity

identification. IoTBeholder can be easily run and replicated on commercial off-the-shelf (COTS) devices such as mobile phones

or personal computers, enabling attackers to infer user’s habitual behaviors from smart home Wi-Fi traffic alone. We set up a

testbed with 23 IoT devices for evaluation in the real world. The result shows that IoTBeholder has good device classification

and device activity identification performance. In addition, IoTBeholder can infer the users’ habitual behaviors and automation

rules with high accuracy and interpretability. It can even accurately predict the users’ future actions, highlighting a significant

threat to user privacy that IoT vendors and users should highly concern.
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1 INTRODUCTION
With the development of the Internet of Things (IoT), an increasing number of smart devices have been deployed

in homes (expected to reach 5 billion devices by 2025 [39]). Among them, WiFi-connected devices represent a

significant fraction of the market [13]. These devices act as sensors and actuators for various household activities

[28, 41], and can usually be operated via a mobile app provided by the vendor. The emergence of automation

platforms like Mijia [1], SmartThings [2] and HomeKit [3] provides further convenience for users to integrate

and control their smart home devices. Specifically, users can customize the interaction rules on the platform

according to their own habits.

Unfortunately, this flexibility comes with privacy risks. Most notably, prior research has revealed the ability to

identify the type of devices (and their activities) by passively sniffing network traffic between devices and the

cloud [40, 42, 58, 64]. This means that an attacker can infer the type and activity of the device (and by proxy the

user’s behavior at home) without requiring user account permissions. Due to the regularity of users’ daily life at

home [25, 45], the leakage of these behaviors can provide attackers with a large amount of information, causing

serious privacy leakage. For example, once the user-defined rules on the automation platform are exposed to the

attacker, it will be possible for event spoofing attacks [15, 18, 26]. The leakage of users’ behavioral habits also

raises the risk of physical attacks such as burglary, e.g., if an attacker can predict when a user will be outside of

the house. Despite this, most existing passive snooping attacks are still far from practical. For example, [24, 40]

requires information at the IP layer and above. However, 97% of users already use encryption methods such

as WPA/WPA2 [61]. Therefore, it is difficult for an attacker to access such information. Other works analyze

common events in smart homes [5, 57], but require prior knowledge of devices and user habits. An alternative

strategy is to pre-deploy snooping devices in the user’s home [16, 33], yet this is difficult without physical access

to the user’s residence.

To overcome these challenges, several other works have (theoretically) analyzed the possibility of leaking user

behavior habits from encrypted traffic [23, 52, 58]. These attempt to mine patterns from flows, without needing to

monitor payloads. Unfortunately, however, these works only focus on each single user action, thus ignoring the

correlation between user behaviors over time (referred to as habitual behavior). For example, a user may adjust

the temperature of the air conditioner and turn off the lights before going to bed, an attacker can infer when a

user is ready to go to sleep from when a bedside light is turned off, but may not be able to obtain a user’s habitual

behavior such as adjusting air conditioner before going to bed. It should be pointed out that the user’s habitual

behavior (i.e., a stable pattern of a device activity) may not be obvious. For example, suppose a user usually turns

on their bed light after turning off the desk light when about to sleep. Initially, one might assume these could be

used to identify the user’s habitual behavior. However, these two actions may not always be adjacent because

the user may sometimes perform other actions between them, e.g., going to the toilet, turning on the heater,

etc. Thus, the sequence and timing of actions may vary on a daily basis. Besides, there may be multiple users

operating the devices at the same time. This means that the attacker must spend a great deal of effort before it is

possible to infer user behavior for their IoT traffic.

Whereas the above focuses on attackers with special permissions and financial resources, we investigate

the case of an attacker with limited technical capabilities and cost. For example, the attacker may not have

any professional equipment, network credentials or physical access to the user’s home. This paper presents

IoTBeholder, a practical and low-cost snooping attack that can infer user habitual behavior from smart device

traffic. As a tool, it can easily be used and spread by an attacker. It only requires the attacker to walk around the

target’s home with a commercial off the shelf (COTS) device, and then deploy the device in a hidden location,

after which IoTBeholder can undermine the privacy of smart home users’ daily behavior habits. Compared

with (pre-)deploying snooping devices (e.g., cameras), IoTBeholder attack has stronger concealment. Audio or

video capable devices need to be deployed near windows or even in the users’ homes where they can be easily
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discovered. In contrast, attackers only need to deploy IoTBeholder near the home. For example, the attacker

could easily deploy IoTBeholder on a Raspberry Pi and place it in any place suitable for hiding near the user’s

home. In addition, as we later show in 9, IoTBeholder can more effectively leak the privacy of users’ behavior

habits without a lot of labor cost. Our ultimate goal is to highlight the privacy threats introduced by smart home

devices. Specifically, IoTBeholder can:

• Obtain the approximate location, type, and ongoing activity of IoT devices deployed in the user’s home

without physical and network access.
• Perceive the user’s potential habitual behaviors in daily life, such as when they finish showering, alongside

the automation rules configured by the user without any prior knowledge of the user.
• Predict the user’s indoor actions (e.g., turning on a light) with high accuracy in advance.

To confirm the efficacy of the IoTBeholder attack, we set up a real-world testbed including 23 popular devices

from 7 different vendors. Our experimental results show that IoTBeholder can identify a wide variety of devices

from different vendors with higher accuracy than prior techniques. To verify the effectiveness of our work on the

perception of user’s personalized habitual behavior, we invite volunteers to live in an apartment with these smart

devices to generate a real-world smart home environment. The result shows that, even in the presence of multiple

users and more than 10 automation rules, IoTBeholder is still able to identify the user’s personalized habitual

behaviors, and deployed automation rules with 100% accuracy. For user indoor action prediction, IoTBeholder

attains over 92% accuracy. Its efficacy reveals the weakness of today’s smart devices with respect to security and

privacy. Our contributions include:

• We propose IoTBeholder, a novel attack that combines various information about smart home devices to

infer users’ habitual behaviors, thereby highlighting the privacy threat introduced by these smart devices

(Section 4).

• We propose a method to identify different IoT devices with high accuracy, while only observing 802.11

headers with coarse attributes. Thus, IoTBeholder does not require access to encrypted data (Section 5).

• We propose a method for efficiently identifying device activity in conjunction with logical corrections to

improve the accuracy of the attack (Section 6).

• We propose a novel user habitual behavior inference scheme based on the use of smart home devices

(Section 7 and 8). The attack requires no prior knowledge about user behavior. To the best of our knowledge,

this is the first attack that combines conventional sequential pattern mining technique and state-of-the-art

deep learning models for user behavior analysis in smart home scenarios.

• We build a smart home testbed with 23 different devices from 7 different vendors and 10 automation rules

from the real world. We evaluate the efficacy of IoTBeholder with the assistance of volunteers (Section 9).

2 RELATED WORK
Prior works have explored the risk of privacy leakage in smart homes from different perspectives. Table 1

summarizes these prior works, alongside a comparison with IoTBeholder.

2.1 RF-based Localization and Tracking
Prior work has confirmed the possibility of coarse-grained localization of signal sources using Radio Frequency (RF)

receiving devices in a Wi-Fi environment. Many works propose practical hidden device recognition technologies

to enable efficient screenings for threats of hidden electronic devices in daily life [4, 36, 54]. Another series of

works propose methods for locating IoT devices in a user’s residence given the floor plan [14, 20, 21, 46]. These

works can leak the users’ privacy to a certain extent, but are only limited to imprecise location of devices in a

user’s home, while the attacker cannot learn further information about the devices.
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Another use of RF signals is for indoor human tracking. They use signal transmitters to actively sense the

location of the entity in the area [7, 8, 63, 66], or passively sniff RF signals to infer the location of the object

[35, 59, 69]. This type of works can be used for user tracking and even for assisting physical crimes like burglary.

However, these methods expose limited user privacy, and cannot be used to predict user actions.

2.2 Household IoT Device Classification
Works on home IoT device classification have been extensively discussed in the networking context [10, 11, 24,

40, 42, 50, 55]. A series of papers propose device fingerprinting systems deployed on gateways [31, 42, 50]. Ma et

al. identify the type of devices using the temporal pattern recognition of traffic [40].

Nevertheless, these approaches make strong assumptions that an attacker is capable of sniffing the TCP/IP

traffic inside the home network or from the home gateway to the wide area network. This is infeasible for

most attackers, considering that most real-world home gateways are secured by Wi-Fi Protected Access (WPA).

Accordingly, this paper only relies on encrypted Wi-Fi packets to reflect a more realistic scenario.

Table 1. Comparing existing works vs. IoTBeholder

Compatible with

Approach

Limited Access

to Network

Limited Access

to Physical

Environment

High-accuracy Device

Classification and

Activity Identification

Perception of User

Behavior without

Prior Knowledge

Action

Prediction

of User

Pre-Deployed

Devices [16, 33]

Human Indoor

Tracking

[7, 8, 59, 60, 63, 69]

Wireless Encrypted

Packets over Air

[4, 5, 23, 37, 52]

Network Traffic at

Router [24, 40, 58]

Prior Work on User

Behavior Analyze

in Smart Home

[12, 34, 57]

IoTBeholder

2.3 IoT Device Activity Identification
Building on device classification research, a large body of work discusses how to use network traffic signatures

to identify device activities [5, 9, 22, 29, 49, 58]. OConnor et al. use the statistics of some attributes in the traffic

between IoT devices and the cloud to identify activities [49]. Trimananda et al. observe the request-and-reply

pairs generated when the device interacts with the cloud, and propose a method named pingpong that uses these

pairs for activity identification. This type of work is relevant to ours because they demonstrate the possibility of

exposing ongoing device activities in smart homes to a third party.

Yet these methods face the same dilemma as previous work, namely the need to obtain information at the IP

layer and above. [58] uses only packet length and direction to identify device activities, but performs poorly
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in unreliable wireless network transmission environments (which we discuss in Section 9). More importantly,

they ignore the correlation between user behaviors over time. Specifically, they do not exploit repeated patterns

to predict what users may do. This limits such works to relatively shallow leakage of users’ habits. Acar et al.

correlate the sequences of device activity with user behaviors [5]. However, they focus on known and simple

user behaviors, and thus lose most of the meanings of privacy leakage.

2.4 User Behavior Analysis in Smart Homes
Research has investigated human behavior in smart homes from various aspects, including movement patterns,

app usage history [34], and event fingerprints [12, 57] for the benefit of elderly care and abnormal behavior

recognition [27, 53]. However, they are not able to work without access to sensor data inside the smart home.

Some works use encrypted traffic to analyze user behavior in smart home scenarios [52, 58]. Sanchez et al.

identify newspaper websites accessed by the smart device over the encrypted network. However, they also ignore

the correlation between user behaviors over time. Due to the unpredictability of certain user behaviors and the

emergence of multi-user scenarios, it may be difficult to obtain these habits through manual analysis (not to

mention the extensive labor required). This also makes it difficult for attackers to use existing technologies to

accurately predict user behavior for physical attacks.

3 PROBLEM SETTING AND THREAT MODEL

Fig. 1. Threat model with the user, the attacker, and the IoT devices in the smart home

In this section, we first describe our threat model. Our setup contains two actors: the users and the attacker.

The users are one or more beneficiaries of smart homes, who have deployed a number of IoT devices. The attacker

can be anyone interested in the living habits of the target user. Attackers want to achieve this without attracting

user attention or paying extra, e.g., getting additional permissions or buying specialized equipment.

Figure 1 shows an overview of key actors and resources. The physical environment refers to the users’ residence,

which can be a room in a hotel, a complex multi-room apartment, etc. The IoT devices in the smart home are

connected to the Internet through a user-controlled 802.11 wireless network. IoT devices could be of various

types, such as cameras, lights, etc. Next, we formulate the capabilities and constraints of the user and attacker,

respectively.

User Capabilities and Constraints: Users live normally in this environment and use IoT devices according

to their own preferences. We make the following assumptions:

• Physical Environment: The users can deploy IoT devices anywhere in the home. Although the users can

remotely operate the IoT devices through the app developed by the vendor, it does not prevent us from

assuming that most of the time the user is in the room where the device being operated is located (based
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on daily experience, people usually focus on changing the environment that they are in), except for device

activities triggered by automation rules.

• IoT Devices: The users can buy and install any type of IoT device. They can operate these devices physically

or through automated platforms. Note, here we assume users cannot alter the fundamental functions of

these devices, such as modifying the firmware or changing wireless transmission. This is similar to previous

work [19, 38, 42, 55]. In addition to controlling the devices via the app, users can physically operate the

device, or deploy rules on the automation platform.

• Wireless Network: The users have an 802.11 wireless network and access point. Users can secure the

Wi-Fi LAN in any way, such as setting access keys, encrypting traffic (e.g., WPA2/WPA3), and deploying

other security tools (e.g., IDS, firewall) to ensure that devices within the LAN are not compromised.

Attacker Capabilities and Constraints: We make the following assumptions about attackers:

• Physical Environment: The attacker has limited access to the physical environment in which the user

lives. We assume an attacker can walk around the user’s residence (e.g., their garden) or deploy COTS

equipment for packet sniffing without being discovered by the users, and can also obtain the floor plan of

the user’s home.

• IoT Devices: The attacker has no prior knowledge of the devices in the user’s home, including where,

how many, and what types of devices are deployed. Infecting any device in a user’s home is considered

impossible due to the limited capabilities of the attacker. This means the attacker cannot interfere with the

normal actions of other devices, nor can they obtain device usage logs.

• Wireless Network: The attacker does not have access to the local area network in the user’s home. An

attacker cannot join the network without the access key. However, an attacker can still put their phone

or laptop in promiscuous mode to sniff encrypted broadcast Wi-Fi 802.11 packets over the air. Given that

most people do not choose to disable broadcasting their SSID [30, 47, 48], and attackers can still obtain the

SSID after deploying this measure [6], we assume that it is usually trivial to determine the SSID of the LAN

in the user’s home.

Based on the above practical assumptions, it is challenging to implement IoTBeholder. First, without physical

access to the user’s home, the attacker cannot deploy any device for snooping in the user’s home (e.g., [16, 33]),

nor know where the IoT devices are deployed. Second, the attacker only has commercial-off-the-shelf (COTS)

equipment (e.g., phone, laptop) and cannot access the wireless network in the user’s home. In this case, information

at the IP layer and above is invisible to the attacker. Third, we assume no prior knowledge about the user. This

means that we cannot get the user’s habitual behaviors in advance (as assumed in [5, 57]). Instead, we must

extract regular user behaviors from the device activity sequences that represent user habitual behaviors. Fourth,

due to the unpredictability of certain user behaviors and the emergence of multi-user scenarios, there is a lot

of noise in the user behavior records obtained by the attacker, which makes it difficult to simply use the deep

learning model to accurately predict the user’s subsequent behavior . Given these constraints, existing methods

are not sufficient in our scenario.

In response to the above observations, IoTBeholder relies on COTS devices, allowing an attacker to obtain

the personalized habitual behavior of smart home users. By sniffing Wi-Fi connected IoT devices, it infers the

user’s personalized habitual behavior and automation rules defined in the platform and predicts the target user’s

subsequent actions. With the aforementioned constraints, the IoTBeholder attack is deployable, practical, low-cost

and highly stealthy.

Definitions: Before proceeding, we highlight the following terms, which are used throughout the paper:

• Device activity (or activity) refers to a specific function of an IoT device, e.g., turning on/off a light, changing

the temperature of an AC, etc. As most smart devices rely on data synchronization with an IoT hub or
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the cloud, we assume that device activities (triggered by any methods, such as apps, physical buttons or

automation rules) will all generate network traffic.

• User action (or action) refers to an operation performed by a user on a device, which subsequently leads a

device activity. User action and device activity are equivalent in this paper. The former is from the perspective

of human, the latter is from the perspective of devices.

• User event (or event) refers to a user’s daily routine events, such as returning home, taking a shower, or

going to bed. In a smart home, a series of smart devices can be utilized to help the user fulfill the event (e.g.

automatically turning on the kettle). Thus, a sequence of device activities may expose that a specific event

is taking place.

• Habitual behavior refers to a user’s (unique) personal habits, made-up of a combination of specific actions

for a given event, such as turning off the desk light and turning on the bedlight before going to bed. Here,

going to bed is the event, whereas the combination of actions represent a habitual behavior. Habitual

behaviors are likely to be different among users, and therefore the leakage of such information may lead to

the exposure of identity or even the future prediction of the user behaviors.

4 SYSTEM OVERVIEW
IoTBeholder is an attack that relies on attacker’s phone or laptop. It first requires the attacker to surround the

target users’ residence for basic device information collection and localization. The attacker can then deploy the

device in the surrounding and continue to sniff encrypted 802.11 packets. The attacker can query the current list

of identified devices and the current state of the devices or ongoing activities (if any). After collecting a sufficient

amount of data, IoTBeholder is able to identify the users’ personalized habitual behaviors and automation rules

that the user has deployed. At any point after this, the attacker can also request IoTBeholder to make predictions

about the user’s indoor actions. Figure 2 shows a high-level architecture overview of IoTBeholder.
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Fig. 2. High-level architecture overview of IoTBeholder

IoTBeholder consists of five main modules:

• Wi-Fi Based Device Localization Module. This module is designed to provide the attacker with the

coarse-grained location of devices in the target user’s home. We use traditional wireless localization

methods [14] to map each device to its room. During this process, IoTBeholder also extracts the MAC

address of the Wi-Fi packet header as the unique identifier of each device. We will not elaborate on this

module in the following, as we use a proven approach.

• Device Classification Module. To address the problem of device classification in feature-poor situations

and the unreliable nature of wireless network transmission, we build a machine learning model which
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processes the raw Wi-Fi packets collected and estimates the most likely type of the device. We discuss the

details of this module in Section 5.

• Device Activity Identification Module. Prior works discuss device activity identification in the IP layer

and above, yet they do not work at the MAC layer [29, 49, 58]. To address this challenge, we design a

method that combines machine learning methods, and a logical correction function, which estimates the

most likely device activity derived via the machine learning model. The details of this are elaborated in

Section 6.

• Habitual Behavior and Automaton Rules Mining Module. This module is based on the device activity

identification module. As an input, it takes the activity sequences of the devices; it then mines the potential

habitual behaviors of users, as well as the automation rules that the users deploy on the automation

platform. We combine a sequential pattern mining algorithm and a hierarchical clustering algorithm based

on edit-distance ratio to address this task. The details are elaborated in Section 6.

• User Action Prediction Module. This module completes the work of predicting the indoor action of the

user. It combines a sequential pattern discovery algorithm with state-of-the-art deep learning methods to

model user behaviors in smart home scenarios. This is elaborated in Section 8.

5 DEVICE CLASSIFICATION MODULE
The purpose of the device localization module is to obtain the coarse location of smart home devices without

requiring physical entry to the user’s home. During the device localization process, we let the attacker move

around the user’s residence with a Wi-Fi signal sniffer (e.g., MacBook), to obtain information about the signals

emitted by the device. We then apply a triangulation algorithm [14] to estimate the approximate location of the

device. IoTBeholder also extracts the MAC address of the Wi-Fi packet header as the unique identifier of each

device during this process. Note, this does not require privileged access to the building and, instead, can easily be

performed from outside.

After that, IoTBeholder’s device classification module works by taking the encrypted 802.11 packets transmitted

by the IoT devices as input. It then groups the collected packets based onMAC addresses and generates fingerprints

through feature engineering. The module classifies the input fingerprints and matches each MAC address with a

device type.

Identifying device types by network traffic has been discussed in both unencrypted and encrypted scenarios

[4, 5]. However, they lack consideration of the difficulty of data collection in practical scenarios. Unlike scenarios

where traffic information can be obtained precisely (for example, port mirroring, sniffing on the gateway, etc),

there is no connection between the man-in-the-middle sniffer and the IoT devices. Considering the unreliable

nature of wireless network transmission, these methods result in low accuracy. To address the issue, this section

presents a machine learning-based framework that combines device traffic characteristics from multiple windows

to accurately classify devices.

In this section, we analyze the properties of encrypted 802.11 packets that are helpful for device classification as

well as the effects of unstable network transmission. Finally, we introduce the classifier used within IoTBeholder.

5.1 Feature Engineering
Encrypted 802.11 packets provide many attributes, even if the sniffer has limited access, such as packet size, packet

type, subtype, QoS control, etc. Figure 3 shows scatter plots of packet lengths obtained by a man-in-the-middle

wireless Wi-Fi sniffer for four IoT devices in the idle state. Here, a device in the idle state is considered to have

not been operated by a user or triggered by an automated rule during this period. Note that the packet length has

positive and negative values. A positive value indicates that the source MAC address of the packet is the device

MAC address, and a negative value is the opposite.
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We make three key observations in Figure 3. The first observation is that the sequence of packet lengths is

still a useful feature to distinguish various devices. Idle traffic bursts from the same device have similar patterns.

Yet, compared with the Xiaodu-audio and Mecury-camera, there are obvious differences in packet lengths. The

second observation is that the traffic generated by devices in the idle state is periodic and varies among devices.

For example, a Mijia-bedlight interacts with the cloud more frequently than an Mijia-AC_plug. The third and

most important observation is that, because the man-in-the-middle sniffer does not establish a reliable connection

with the device, the traffic pattern expected by the device is disrupted sometimes. To make matters worse, it

is not occasional but consistent across the entire data collection. This is a key challenge for model referring

because it means that (in a real wireless environment) the traffic gathered is likely to be incomplete and thus will

bring about loss of information. This phenomenon does not appear to have been addressed in previous device

classification efforts. In Section 9, we analyze the impact of this factor on the classifiers.

a) An example of an unreliable transmission environment. b) Scatter plots of packet length of 4 devices. 

Fig. 3. Illustration of device traffic patterns and unreliable transmission environments.

Next, we introduce the idea of device classification module. We use the definition of traffic burst in [40] to split

traffic and empirically set the minimum interval between two bursts to 0.1s. Based on the first observation, we

keep the length and direction of a burst as part of our selection of features. To embody the periodicity identified

in the second observation, we consider the time interval between each burst of the device as a feature. For up

to ten packets within a burst, we extract their length, direction, subtype, and the interval between the burst to

which it belongs and the end time of the previous burst. For cases where the number of packets is less than 10,

we use 0 to fill in the missing part. However, the issue in the third observation remains unresolved. Common

practice is to use each classifier to infer the feature vector, and the classification of the device is then finalized by

majority voting. However, due to unreliable wireless packet transmission, the feature vectors obtained by the

man-in-the-middle sniffer are distorted. This has a severe impact on the classification performance of the model

(see Section 9). To address this problem, we do not use a single feature vector as the basis for judgment. Instead,

We use the classifiers’ predictions for all bursts over a period of time to get the final classification results. Doing

so combines the inferred knowledge of the classifier over a period, thereby reducing the impact of bias caused by

data corruption in each single burst.

5.2 Model Training and Inference
5.2.1 Model Training. We pick XGBoost as our machine learning model, and train a binary model for each of the

devices shown in Appendix A, except for the lock.

5.2.2 Inference. When the classifier makes inferences, the sniffer first obtains encrypted 802.11 wireless data

packets and aggregates them according to the MAC address in the header. Set 𝑓𝑑,𝑖 represents the 𝑖
𝑡ℎ

feature

vector from device 𝑑 , and 𝑀𝑑 represents the binary classification model whose main device class is 𝑑 . A time
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window, denoted as𝑤𝑖𝑛, is set to combine the inferred knowledge of the classifier over a period, and finally get

the classification result of the device according to formula 1.

IoTBeholder performs this step for each device represented by a MAC address until each MAC address matches

a device type.

Pred = argmax𝑑

∑︁
𝑤𝑖𝑛

𝑀𝑑 (𝑓𝑑,𝑖 ) (1)

6 DEVICE ACTIVITY IDENTIFICATION MODULE
Device activity identification is a further extension of the device classification. This module infers the ongoing

activities based on the packets sent by the smart home devices. We consider it as a binary output problem, i.e., the

appearance of an activity like turning on a light or changing the temperature on a thermostat. We do not attempt

to infer the parameters of these activities (e.g., the exact temperature). Note, prior works discuss device activity

inference in both in-network and wireless scenarios. However, due to the complexity of many IoT devices, it is

impractical to consider only a few activities of a device. For example, most Mijia devices provide users with over

3 modes of operation, with at least 4 different activities.

All 79 device activities operated by volunteers during our experiments are presented in Table 7. In addition,

we select some high function activities of some speaker devices in [51] ( 80○ to 94○) as a supplement to verify

this module. The table highlights that devices can be operated physically by the user, through an app on the

phone, or by the cloud due to predefined automated rules. We generate activity fingerprints using a similar

fingerprinting method to the device classification module (minus the interval). Then, a binary model is trained for

each individual device activity, and a majority vote is used to determine the device activity corresponding to the

input. Unfortunately, we find that many device activities are indistinguishable because the traffic corresponding

to them is exactly the same. This is also observed in [58]. For example, manipulating the AC_plug to adjust the

wind speed and adjust the temperature produces both (-583, 88, 311, -88, 263, -88) packet length sequences.

To address this problem, we introduce a logical correction function to assist the classifier’s inference. We

first divide device activities into conditioning activities and switching activities. Switching activities include the

turning on/off activity. Conditioning activities include the device activities caused by some functional operations

performed on the device (except for turning on and off). For example, a bed light has two conditioning activities:

change mode and change light. We then make three assumptions:

(1) The conditioning activity of the device always occurs after the turn-on activity of the device.

(2) The turn-on and turn-off activity of the device is alternately performed.

(3) The device will not be turned off immediately after being turned on, nor will it be turned on immediately

after being turned off.

Based on these assumptions, we present a formalized representation of our real-time device activity inference.

Assume 𝑃𝑟𝑒𝑑 = argmax𝑑 𝑀𝑑 (𝑓𝑑,𝑖 ) represents the voting result of the classifiers for a certain feature vector, and Δ𝑡
represents the time threshold elapsed from the last switching operation. When the classifiers give the judgment

𝑃𝑟𝑒𝑑 , we first determine the type of the activity. If it is a switching operation, and it has been more than Δ𝑡
seconds since the last switch operation, the specific type of the operation is determined according to the state of

the device at the current moment. Otherwise, we judge it as a possible conditioning activity. If it is a conditioning

activity, the activity type is determined according to the judgment result of the classifier, and the device state is

updated to be on at the same time.

7 HABITUAL BEHAVIOR AND AUTOMATION RULES MINING MODULE
In the previous sections, we have described how to infer the approximate location, type, and ongoing activities of

IoT devices in a smart home from encrypted wireless 802.11 packets. We next present the possibility of mining
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a user’s personalized habitual (regular) behaviors based on this inference. Habitual behavior refers to a user’s

(often unique) personal habits, made-up of a combination of specific device activities for a given event, such as

returning home or showering. Many prior studies [5, 37] ignore this step as they assume the user’s behavior on a

given event is common and easy to know, while we find such information can also leak valuable privacy, such as

identity and preference, considering the distinguishability of personalized behaviors between different users.

Therefore, we build this module to perform the mapping from a sequence of device activities obtained by the

previous modules to an event, which constitutes a profile of a user’s habitual behaviors on this event. The input

to this module are the raw device activity sequences output by the previous modules. The task of this module is

to mine the habitual behaviors of users from the device activity sequences (which are likely to consist of several

days of data).

Two challenges must be overcome to achieve this goal. First, extracting habitual behaviors of a user (i.e., a

stable pattern of a device activity sequence for an event) is not simple. For example, suppose a user usually turns

on their bed light after turning off the desk light when about to sleep. Initially, one might assume these could be

used to identify the user’s habitual behavior. However, these two actions may not always be adjacent because the

user may sometimes perform other actions between them, e.g., going to the toilet. Second, the extracted habitual

behaviors, such as returning home and getting ready to sleep, should be distinguishable. Besides, there may be

multiple users operating the devices at the same time. Thus, the habitual behaviors of the different users must be

distinguished.

Accordingly, we combine a sequential pattern mining algorithm and edit-distance ratio based hierarchical

clustering to address these issues. We formally define the problem and elaborate our solution in the following

two steps.

7.1 User Personalized Habitual Behavior and Automated Rule Mining
Let 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑖 , . . . , 𝑎𝑛} represents the set of all possible device activities. S = {𝑆1, 𝑆2, . . . , 𝑆𝑖 , . . . , 𝑆𝑚} repre-
sents a dataset consisting of non-empty chronologically ordered activity sequences, where 𝑆𝑖 = {(𝑜1, 𝑡1), (𝑜2, 𝑡2), . . .
, (𝑜𝑖 , 𝑡𝑖 ), . . . , (𝑜𝑇 , 𝑡𝑇 )}, 𝑜𝑖 ∈ 𝐴, 𝑡1 < 𝑡2 < . . . < 𝑡𝑖 < . . . < 𝑡𝑇 . We use the sequence identifier (𝑠𝑖𝑑 ) and timestamp (𝑡𝑖𝑑 )

to uniquely identify an atom named X. We define a sequence 𝛼 with k items (k =

∑
𝑗 |𝛼 𝑗 |) as a k-sequence. The set

of frequent k-sequences is denoted as F𝑘 . The support of a sequence, denoted as 𝜎 (𝛼, S), is the total number of

input sequences in the database S that contain 𝛼 . The importance of a sequence, defined as 𝛿 (𝛼, S), is a variable
related to sequence length and support shown in 2. We introduce it to address the fairness-related issues when

comparing a small number of long sequences with a large number of short sequences. Given a user-specified

threshold called the minimum support (denoted as min_sup), we say that a sequence is frequent if it occurs more

than min_sup times. More details of these definitions are elaborated in [56, 65].

𝛿 (𝛼, S) = 𝑙𝑒𝑛(𝛼) ×
√︁
𝜎 (𝛼, S) (2)

Let us associate each atom X in the sequence to its list of identifiers, denoted as L, which is a list containing all

input sequence (𝑠𝑖𝑑 ) and time identifier (𝑡𝑖𝑑 ) pairs for that atom. We define a function 𝑝 : (𝑆, 𝑁 ) → 𝑆 , where 𝑆

is a sequence and 𝑁 is the set of non-negative integers, 𝑝 (𝑋, 𝑘) = 𝑋 [1 : 𝑘]. In other words, 𝑝 (𝑋, 𝑘) returns the
k-length prefix of 𝑋 . We define an equivalence relation \𝑘 on lattice L as follows: ∀𝑋,𝑌 ∈ L, where we say that 𝑋

is related to 𝑌 under \𝑘 , denoted as 𝑋 ≡\𝑘 𝑌 if and only if 𝑝 (𝑋, 𝑘) = 𝑝 (𝑌, 𝑘). That is, two sequences belong to

the same class if they share a common k-length prefix. [𝑋 ]\ is a sequence that collapses all sequences with a

common item prefix into an equivalence class.

Given S as input-sequences and parameters min_sup, min_imp, the problem of mining sequential patterns is to

find all frequent sequences in S. First, we traverse all device activities 𝑎𝑖 with support greater than min_sup in S
to form F1. Then, according to the element in F1, the frequent 2-sequences candidates with support greater than

min_sup are calculated by the temporal join method (see details in [65]). Next, we traverse all [𝑋 ]\ and calculate

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 1, Article 43. Publication date: March 2023.



43:12 • Zou et al.

the support of candidate sequences composed of atoms between them. For a k-sequence 𝑁 which 𝜎 (𝑁, S) is
greater than min_sup and 𝛿 (𝑁, S) is greater than min_imp, if the start timestamp and end timestamp are within

1s, we add it to R𝑘 , otherwise we add it to F𝑘 . For each newly obtained 𝑁 , we repeat the above steps until no new

frequent sequences are generated. Finally, we get F , containing all the frequent sequences, and R, containing all

the automated rules. The pseudocode for this process is shown in Algorithm 1.

7.2 Edit-distance Ratio Based Hierarchical Clustering
After obtaining frequency sequences F = {F1, F2, . . . , F𝑛}, an immediate task is to distinguish sequences repre-

senting different events. We address this problem using hierarchical clustering based on the edit-distance ratio.

The edit-distance ratio between the two sequences is calculated by Formulas 3 and 4. Compared to the general

edit-distance, these formulas consider that when calculating the distance of two sequences composed of the

same activity, their distances are smaller than others. This is due to the potential presence of consecutive device

activities, such as the adjustment of an AC one degree upon a time. Naturally, this should not be separated into

different user events.

Algorithm 1 User Personalized Habitual Behavior Mining

Input: 𝑚𝑖𝑛_𝑠𝑢𝑝 ,𝑚𝑖𝑛_𝑖𝑚𝑝 , 𝑆

Output: F , R
1: F1 ← 𝐺𝑒𝑡_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝐼𝑡𝑒𝑚𝑠𝑒𝑡 (𝑚𝑖𝑛_𝑠𝑢𝑝, 𝑆) ;
2: F2 ← 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝐿𝑖𝑠𝑡_𝐽𝑜𝑖𝑛(𝑚𝑖𝑛_𝑠𝑢𝑝, 𝑆, F1) ;
3: b ← 𝐺𝑒𝑡_𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒1_𝐶𝑙𝑎𝑠𝑠𝑒𝑠 (F1, 𝑆) ;
4: for all [𝑋 ] ∈ b do
5: F ← 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑆𝑒𝑞( [𝑋 ]);
6: end for
7:

8: function Enumerate_Freqent_Seq(𝑆)

9: for all atoms𝑀𝑖 ∈ 𝑆 do
10: 𝑇𝑖 ← ∅;
11: for all atoms𝑀 𝑗 ∈ 𝑆 , with 𝑗 ≥ 𝑖 do
12: 𝑁 = 𝑀𝑖 ∨𝑀 𝑗 ;

13: L(𝑁 ) = L(𝑀𝑖 ) ∩ L(𝑀 𝑗 );
14: if 𝜎 (𝑁 ) ≥ 𝑚𝑖𝑛_𝑠𝑢𝑝 and 𝛿 (𝑁 ) ≥ 𝑚𝑖𝑛_𝑖𝑚𝑝 then
15: 𝑇𝑖 ← 𝑇𝑖 ∪ {𝑁 };
16: if 𝑁𝑙𝑎𝑠𝑡 ≤ 1 then
17: R |𝑁 | ← R |𝑁 | ∪ {𝑁 };
18: else
19: F|𝑁 | ← F|𝑁 | ∪ {𝑁 };
20: end if
21: end if
22: F ,R ← 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒_𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡_𝑆𝑒𝑞(𝑇𝑖 )
23: end for
24: end for
25: end function

An important parameter for the above clustering is dis_thre. Let 𝐸𝑖 , 𝑖 = 1, 2, . . . , 𝑛 denote the clusters (hereinafter

called events) formed by the clustering algorithm. For each F𝑖 , if its edit-distance ratio to any sequence in 𝐸𝑖
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is less than dis_thre, we add it to 𝐸𝑖 . We first set dis_thre to a large value to separate sequences representing

different activities. For the same events, multiple users may perform similarly. Therefore, for the formed clusters,

𝐸𝑖 , we use a smaller dis_thre to distinguish different users. In the end, we get 𝐸 = 𝐸𝑖 , 𝑖 = 1, 2, . . . , 𝑛. According to

our observation, each 𝐸𝑖 represents the habitual behaviors of an event for users, such as the behavior just after

returning home, or after taking a shower. We discuss this interesting observation in detail in Section 9.5.

dis𝑎,𝑏 (𝑖, 𝑗) =



max(𝑖, 𝑗) if min(𝑖, 𝑗) = 0

min



dis𝑎,𝑏 (𝑖 − 1, 𝑗) + 1 if 𝑎𝑖 = 𝑎𝑖−1
dis𝑎,𝑏 (𝑖, 𝑗 − 1) + 1 if 𝑏 𝑗 = 𝑏 𝑗−1
dis𝑎,𝑏 (𝑖 − 1, 𝑗) + 2 o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

dis𝑎,𝑏 (𝑖, 𝑗 − 1) + 2 o𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

dis𝑎,𝑏 (𝑖 − 1, 𝑗 − 1) + 4(𝑎𝑖≠𝑏 𝑗 )

(3)

𝑑𝑖𝑠_𝑟𝑎𝑡𝑖𝑜𝑎,𝑏 =
𝑙𝑒𝑛(𝑎) + 𝑙𝑒𝑛(𝑏) − 𝑑𝑖𝑠𝑎,𝑏

𝑙𝑒𝑛(𝑎) + 𝑙𝑒𝑛(𝑏) (4)

8 USER ACTION PREDICTION MODULE
After extracting the personalized habitual behaviors of users, an attacker may wish to predict a user’s actions.
Here, the action refers to what the user will operate on the devices at a later time. The user action prediction

module predicts the user’s actions by combining the knowledge of user behavior habits obtained by the previous

module. Note, our attack not only predicts the user’s next action but also the user’s subsequent action sequence as

much as possible. This is important as it may allow the attacker to carry out more serious attacks, e.g., burglary.

There are three main challenges that need to be addressed to achieve accurate user action prediction. First,

we need to build a model to learn the temporal correlations of user behavior. For example, a user may always

turn on a certain light before going to bed at the same time each day. However, given that the duration of the

user’s behavior sequence is not fixed, this model also needs to perform well in dealing with long-term temporal

relationships. Second, there might be significant differences in the association between different activities. For

instance, there might be a high correlation between turning off the desk light and adjusting the air conditioner,

because these two behaviors usually occur together before bedtime. Despite this, turning off the desk light has

nothing to do with entering the door. Using simple encoding mechanisms (such as one-hoting encoding or that

listed in Table 7) fails to reflect these complex semantic relationships. Third, recalling what we described in

Section 1, there can be unpredictable events in user action sequences. Further, an action sequence may contain

actions from multiple users. This means that actions that are not strongly correlated may appear in the same

sequence. This will seriously affect the embedding layer in learning the correlation between different user actions.
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Fig. 4. The architecture of IoTBeholder’s user action prediction model.
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We choose an attention-based LSTM [67] to address the first problem due to its ability to model long-term

historical information within temporal sequences. By computing the attention scores of latent representations at

different moments, the attention mechanism can not only capture important information of temporal sequences

but also offer interpretability. For the second problem, we adopt skip-gram-based Word2Vec [43, 44] to learn the

representations of device activities while considering contextual semantic information. For the third problem,

the user habitual behavior and automation rules mining module plays another important role at this time. Since

the user actions in F𝑖 that can be obtained by Algorithm 1 are naturally strongly correlated, we can use F to

train the embedding layer. The user habitual behavior and automation rules mining module thus plays a dual

role: it can not only extract the user behavior habits and automation rules explicitly, but also provide reliable

prior knowledge for the user behavior prediction model. We conduct ablation experiments in Section 9.6 to

demonstrate the necessity of user habitual behavior mining.

Figure 4 shows the architecture of IoTBeholder’s user action prediction model. While training the model, we

first input the raw device activity sequences, into the LSTM. Note that the labels for training come from the

sequence representing the user’s habitual behaviors contained in the corresponding raw sequence, that is, the

output of the previous module.

9 EVALUATION
We proceed to evaluate the efficacy of IoTBeholder. We present our experimental setup, before showing our

results.

9.1 Experimental Setup
Although some existing datasets have been collected on IoT device activities [51, 55], most of them are either

collected at the network layer or do not take user usage of the device into account. This makes them unsuitable

for evaluating IoTBeholder. Next, we describe our experimental setup.

9.1.1 Testbed and Participants. To consider a realistic and functional smart home, we deployed our experimental

platform in an apartment. We invited three volunteers to live in the experimental environment successively.

According to the China Population Census Yearbook 2020, in most cities, the proportion of one-person and

two-person households accounts for more than 60%, and this proportion is increasing [62]. Therefore, we invited

three participants to simulate the life of smart home users and collect their device usage data to verify IoTBeholder

in both single-person and multi-person scenarios. The participants involved in the experiment included two men

and one woman, none of whom are co-authors. In what follows, we refer to the participant as users.

The testbed consists of 23 recent IoT devices covering 7 vendors. It is located in an apartment with a living

room, a bedroom, a kitchen, a bathroom and a hallway. The floor-plan and the device deployment is depicted in

Figure 5. Among them, an LED light is connected to a smart plug, and a smart door lock is connected to a smart

gateway via Bluetooth. The rest of the devices are connected to a wireless access point inside the apartment. A

full list of devices is presented in Appendix A. More than half of the devices are from Xiaomi, as Xiaomi occupies

the largest share of China’s smart home market [68] and it is convenient for users to use the same app to operate

the device and configure automation rules. These devices are configured according to the official instructions and

have not been modified by us. Users can download the official app to operate the device, or physically operate

the device. The automation rules are deployed by the users without any intervention from us.

9.1.2 Data Collection. Wedeploy aMacBook outside the apartment to sniff the encryptedWi-Fi packets generated

by the IoT devices through the wall. The collected data is filtered and aggregated based on MAC address and we

keep only the data frame. For the device classification module, we collect data for 7 days when the devices are in
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Fig. 5. Overview of testbed setup.

an idle state. The total size of the idle data is 12.5 GB. For the device activity identification module, we trigger

each activity in Table 7 150 times and obtain the Wi-Fi packets.

Finally, we collect 10 days of real-life data for user C, whereas 20 days of data is collected for user A and user

B, during which they lived together in the apartment. During this time, the participants undertook their own

habits undisturbed and used the equipment in the testbed. We validate the last two modules of IoTBeholder using

the traffic generated by the device when used by the users. To avoid bias caused by not being used to the new

residence, we let each user live in the experimental environment for at least two weeks before formally collecting

data.

9.1.3 Ethical Concerns. All users have full knowledge of the IoT devices and apps used. After check-in, the

control of all devices is handed over to the users. Participants were informed about the use of laptops to sniff

encrypted Wi-Fi packets. We did not interfere in participants’ lives during the experiment. At the participants’

request, we disabled any devices that might save audio data, such as cameras and speakers, during the experiment.

The collected data is only visible to the authors of this paper. In addition, the privacy of user habitual behaviors

extracted by IoTBeholder, are presented in this paper with the consent of the participants. The entire experiment

is consistent with their local governing laws and regulations.

9.2 Performance of Device Classification
We first evaluate the classifier performance of IoTBeholder. We implement some prior work and compare them

with our method under an unreliable wirlesss network environment.

9.2.1 Evaluation Metrics. We use precision, recall, and F1 score to evaluate the performance of the device classifi-

cation. In our experiments, the <Type, Vendor> pair was used to uniquely identify a device. Precision is defined as

the number of correctly classified samples divided by the total number of samples classified as the device, and

recall is defined as the number of correctly classified samples divided by the total number of samples for the

device. The F1 score is the harmonic mean of the two, to measure the performance of the classifier on a macro

scale.

9.2.2 Evaluation Design and Dataset Division. We filter and group the data using MAC addresses, and then

segment it into bursts as mentioned in 5.1. Each burst generates a fingerprint for training or testing. During the

training phase, we manually label each burst. In the testing phase, we mark a label for all bursts in a window.

We choose the Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN) algorithms and Fisher’s Least Square

Linear Discriminant (LDA) as our baselines. MLP is a classical deep learning method. KNN is a standard machine

learning method, which is reported to achieve high accuracy [5]. LDA is another machine learning method
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which is reported to achieve high accuracy on the task of classifying encrypted traffic generated when users visit

different websites [52].
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Fig. 6. Device classification confusion matrix using different win parameters (window size).

9.2.3 Evaluation Result. Figure 6 shows the confusion matrix for devices with different values of win (see

Section 5.2). An obvious observation is that, aswin increases, the performance of the classifier increases accordingly.

This is intuitive because when the classifier only makes a judgment based on one burst, there is a high probability

of an irregular deviation due to the unreliable network environment. The information loss caused by this factor

makes the classifier unable to correctly use the learned knowledge for classification. With the increase of win, the
confidence of the classifier corresponding to the labeling device will increase, because the occurrence of normal

bursts will increase over time. When win is 50, we see that IoTBeholder achieves a high accuracy.
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Fig. 7. Device classification confusion matrix using different win parameters (window size) of dataset US.

Another important observation is that devices belonging to the same vendor are more likely to be misclassified.

For example, device 1 (mijia-AC_Plug) and device 2 (mijia-aircleaner) are easily misclassified as device 7 (mijia-

curtains) when win takes a small value. To validate this observation, we repeat the experiment with other devices

from the same vendor in the US dataset published in [51]. In order to simulate the impact of an unreliable

transmission environment, we randomly delete a portion of packets, and then adapt it to the specific Wi-Fi

encryption (WPA2) by simply compensating according to the method in [52]. The result in Figure 7 again confirms

our observations. Among these 8 devices, two devices (20-21) from TP-LINK are easily distinguishable. The three

devices (22-24) from Amazon are easily confused with each other. Yet this problem is gradually eased as win
increases. The two devices (26-27) from Xiaomi are almost indistinguishable from each other. It shows that, for

some vendors, their devices are more difficult to distinguish from each other by traffic analysis. This phenomenon

can also be observed in the confusion matrix obtained by the authors’ method [32, 42]. This confusion may be due

to devices from the same vendor sharing some of the same interfaces, or developers sharing the same Software

Development Kit (SDK). We believe that this deserves attention in the follow-up work of device classification.
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Fig. 8. Comparison of our device classification
method with baselines.
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Fig. 9. Comparison of our activity identification
method with baselines.

Finally, Figure 8 shows the comparison of our method with other device classification schemes. We see that

IoTBeholder has the best performance on precision, recall, and F1 score. Among them, LDA is the worst. The

method adopted in [5] (KNN) achieves better performance, but it is still not enough to solve the challenges

brought about by the unreliable network environment.

9.3 Performance of Device Activity Identification
This section evaluates the device activity identification module. We compare state-of-the-art device activity

identification methods working in 802.11 scenarios and evaluate our need for logical correction.

Table 2. Average precision, recall, and F1 score of the activities from different devices.

Device Precision Recall F1 F1 (ours w/o lc) Device Precision Recall F1 F1 (ours w/o lc)

1 0.758 0.879 0.814 0.554 15 0.809 0.913 0.858 0.570

2 0.976 0.994 0.985 0.638 16 0.990 0.999 0.994 0.545

4 0.802 0.903 0.849 0.611 18 0.803 0.998 0.890 0.612

5 1 1 1 0.478 19 0.693 0.883 0.776 0.484

7 0.968 0.999 0.982 0.473 20 0.627 0.623 0.625 0.625

8 1 1 1 0.575 22 0.970 0.970 0.968 0.968

10 0.883 0.864 0.874 0.578 23 0.836 0.838 0.833 0.792

11 0.770 0.947 0.849 0.525 24 0.896 0.887 0.890 0.890

12 0.990 0.999 0.994 0.545

13 0.999 0.928 0.962 0.962 Avg. 0.897 0.945 0.919 0.635

9.3.1 Evaluation Design and Dataset Division. We again use precision, recall and F1 score to evaluate the per-

formance of device activity identification. Bursts are manually labeled with the corresponding activity. Data

collected by the device classification module is labeled with others. We split the train and test set in an 8:2 manner.

Note, thanks to the device classification module, we only need to distinguish the different activities of a device.

We choose MLP, Random Forest (RF), and the method in [58] as our baselines. MLP and RF are common

deep learning and machine learning based methods [5, 42], respectively. [58] presents a rule-based method that

requires only packet length and direction as features for device activity identification.

9.3.2 Evaluation Result. Table 2 shows the average precision, recall, and F1 score of the activities of different
devices, as well as the F1 score without logic correction. We also conduct experiments using dataset US published

in [51] containing device activities. The data processing procedure is the same as in the device identification

part. IoTBeholder identifies device activities with an average of 89.7% precision and 94.5% recall. This confirms

the worrying efficacy of the attack. Our logic correction plays a significant role in this process. Without logic
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correction, the average F1-score across all devices drops by 28.4%. This is largely due to assumption 2 (see

Section 6), because almost all switching operations belonging to the same operating method of a device are

indistinguishable by the classifier alone, which is also observed in [58]. Assumptions 1 and 3 contribute to devices

in which switching and conditioning operations are indistinguishable.

Figure 9 shows the comparison of our method with other device activity identification schemes. MLP and

RF perform similarly in this case, while [58] attains poor performance. We believe this is another effect of an

unreliable network environment. Although [58] claims to be able to work in a wireless network environment, its

method is based on packet pairs. But in the scenario we set, packet pairs are likely to be corrupted. This again

illustrates the worrying robustness of IoTBeholder.

9.4 Performance of Habitual Behavior and Automaton Rules Mining

Table 3. Habitual Behaviors Obtained and Confidence Score

User Event Activity sequence of event Score Event Activity sequence of event Score

A

&

B

1 20○→ 28○→ 12○→ 13○→ 26○→ 27○→ 17○(→ 1○) ✓ 2 43○/ 45○→ 7○→ 69○ ✓
3 12○→ 13○→ 26○→ 27○(→ 4○)(→ 4○) ✓ 4 42○→ 70○→ 8○ ✓
5 17○/ 21○→ 29○→ 4○→ 37○→ 51○ ✓ 6 66○→ 50○→ 20○(→ 21○) ✓
7 13○→ 15○→ 28○→ 29○→ 32○ ✓ 8 38○→ 65○→ 44○ ✓✗
9 51○→ 19○→ 31○→ 47○→ 68○→ 38○ ✓ 10 29○→ 12○→ 14○ ✓✗
11 57○→ 6○→ 78○→ 31○ ✓ 12 69○→ 33○→ 16○ ✓
13 57○→ 67○→ 30○→ 79○ ✓ 14 51○→ 19○→ 31○→ 47○→ 68○ ✓
15 20○/ 16○→ 65○→ 58○→ 17○→ 1○ ✓ 16 12○→ 13○→ 64○→ 44○ ✓
17 51○→65○→ 42○(→ 3○)→ 12○→ 13○ ✓ 18 66○→ 16○→ 50○→ 17○ ✓
19 32○→ 2○→ 69○→ 55○→ 6○→ 12○→ 14○ ✓ 20 13○→ 15○→ 20○→ 43○→ 66○ ✓
21 57○→ 6○→ 78○→ 31○ ✓✗ 22 57○→ 67○→ 30○→ 79○ ✓

C

23 13○→ 15○(→ 26○→ 27○)→ 69○→ 34○→ 16○ ✓ 24 12○→ 13○→ 64○→ 44○ ✓
25 51○→ 65○→ 42○→ 3○→ 12○→ 13○ ✓ 26 66○→ 16○→ 50○→ 17○ ✓
27 32○→ 2○→ 69○→ 55○→ 6○→ 12○→ 14○ ✓ 28 26○→ 27○→ 44○→ 1○ ✓
29 13○→ 15○→ 20○→ 43○→ 66○ ✓ 30 12○→ 13○→ 4○ ✓✗
31 20○→ 65○→ 12○→ 13○→ 17○ ✓ 32 44○→ 1○→ 29○ ✓✗
33 12○→ 13○→ 28○→ 26○→ 27○→ 1○ ✓ 34 45○→ 16○→ 50○→ 76○ ✓
35 17○→ 53○→ 57○→ 68○→ 19○→ 47○→ 6○ ✓✗ 36 12○→ 14○→ 2○ ✓
37 57○→ 46○→ 67○→ 5○→ 42○→ 4○(→ 4○) ✓ 38 50○→ 1○→ 70○ ✓
39 57○→ 46○→ 67○→ 5○→ 43○(→ 7○)(→ 58○) ✓ 40 12○→ 13○(→ 2○)→ 17○ ✓
41 12○→ 13○→ 42○→ 4○(→ 4○)→ 59○→ 8○ ✓ 42 20○→ 65○→ 58○→ 17○→ 1○ ✓
43 12○→ 13○→ 29○→ 43○→ 66○→ 51○/ 53○ ✓

9.4.1 Evaluation Design. For the collected data, we use the device activity identification module to process bursts

one-by-one to determine which type of device activity they represent (or nothing at all). If there is no device

activity within 10 minutes after a burst, we intercept and save the currently recorded device activities as a raw

sequence. Each occurrence of a burst (representing a device activity) resets the waiting time. The raw sequences

obtained in this step are used as the input of Algorithm 1, and then the edit-distance ratio based hierarchical

clustering. The data in the single-user scenario and the multi-user scenario are verified separately.
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9.4.2 Evaluation Metrics. An important evaluation criterion we set is the user’s subjective evaluation, since

the users have the clearest understanding of their habitual behaviors. In addition, we also objectively test the

effectiveness of the algorithm based on the ground truth records of device activity on the automation platform. We

combine the subjective and objective evaluations to rate a confidence score of each user’s personalized habitual

behaviors extracted by IoTBeholder. If both users and records indicate that this activity sequence is frequent,

we rate it as high confidence (✓). If only one of the evaluations considers this activity sequence to be frequent,

we rate it as medium confidence (✓✗). Otherwise, we rate it as low confidence (✗). For user-defined automation

rules, we check the records on the automation platform to determine whether the automation rules obtained by

IoTBeholder are indeed deployed.

9.4.3 Evaluation Results. Table 3 shows all the device activity sequences obtained by IoTBeholder and each of

them implies a potential user event. For the single-user scenario, we have mined a total of 21 events of user C.

Items with "()" represent the device activities that can either be present or not present in the sequence. Items like

"a/b" mean either the activity 𝑎 or activity 𝑏 is present in the sequence.

We see from the confidence scores that most of the obtained device activity sequences are sufficiently rep-

resentative for a user event. Further, for the multi-user scenario, we find a total of 22 habitual behaviors from

user A and user B. This confirms the ability of IoTBeholder to profile a user’s habitual behaviors. We make an

illustration of these sequences in Section 9.5. We therefore confirm that Algorithm 1 is able to mitigate the issue

of multiple users. Though the activity sequence of a single user may be included as a subsequence in this case,

IoTBeholder can still mine the high-frequency subsequences hidden in long sequences.

Note that all automation rules set by the users are correctly identified according to the device usage records on

the automation platform, as shown in Table 4. Although some automated rules often appear in the device activity

sequence, these rules are properly separated by IoTBeholder via Algorithm 1.

Table 4. Automation rules used by the users.

User Index Smart app rules

A&B R1 If locker is unlocked outside, turn on LED, open curtains and sweeper returns to charge.

A&B R2 If locker is unlocked inside, turn off LED and AC, close curtains and begin sweeping.

A&B R3 If fan is turned off, turn off bedlight, curtains, LED and desklight.

A&B R4 If fan is turned on, turn on AC and deerma humidifier.

A&B R5 If mijia humidifier is turned on, turn on deerma humidifier and close dehumidifier.

A&B R6 If standheater is turned on, turn off fan and AC.

A&B R7 If mijia humidifier is turned off, turn off deerma humidifier.

C R8 If locker is unlocked outside, turn on desklight, AC and LED.

C R9 If locker is unlocked inside, turn off AC, bedlight and desklight.

C R10 If standheater is turned on, turn on dehumidifier.

9.5 Privacy Analysis
In this section, we illustrate the user privacy that IoTBeholder can reveal. IoTBeholder’s leakage of user privacy

is divided into multiple stages. The device location module and device classification module can reveal the

approximate location and type of IoT devices deployed in the user’s home. The device activity identification

module provides real-time detection of the status and ongoing activity of IoT devices. However, we emphasize

that IoTBeholder can extract the potential behavior patterns of users from the sequences of device activities and

predict user actions. Importantly, this is done without any prior knowledge. Next, we focus on analyzing the

specific meaning of the events obtained by the IoTBeholder attack and the risk of privacy leakage.
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Figure 10 shows four of the events obtained by IoTBeholder representing user habitual behaviors. Among

them, event 31 and event 39 come from the data collected from user C. Event 31 probably corresponds to the

behavior of user C when getting up. User C first turns on the bedlight, then the LED in the living room through

the app and enters the living room. Later, user C turns on the light of the bath heater and starts to wash. After

that, user C turns off the light of the bath heater and walks out. An interesting observation is that user C tends to

turn off the bed light via the app after washing up. Event 39 probably represents a sequence of actions just after

returning to the residence. At the beginning of the event, user C unlocks the door from the outside. The desk

light, LED, and AC_plug are turned on due to automation rules. Subsequently, the user enters the living room

and turns off the desk light. At the end of the event, user C turns on the air cleaner and humidifier to adjust the

air quality in the living room.

a) Illustration of event 31

b) Illustration of event 39

Fig. 10. Illustration of obtained events.

Event 7 and event 20 are classified as an event in the first step of hierarchical clustering, but are distinguished

as generated by different users in the second step. In this case, the meaning of the two events is that both users

will produce a series of actions after the bath. After one of the users finishes bathing, he first turns off the lighting

and ventilation functions of the bath heater and then opens the curtains (user A explained that he was drying

clothes afterward). Thereafter, he closes the curtains and turns on the dehumidifier. Another user, who was

later confirmed to be user B, goes straight back to the bedroom after walking out of the bathroom and operates

different from user A. Attackers can analyze the differences in the habitual behaviors of each user in the smart

home based on these subtle differences.

Note, we may not be able to assign a clear meaning to all events, such as event 24 and event 41. However, these

unnamed events often represent the user’s personalized habitual behaviors. This further proves the seriousness of

the privacy leak caused by IoTBeholder. IoTBeholder combines information from multiple dimensions to provide

attackers with a comprehensive description of user behaviors and establish user portraits. The attacker can

restore the details of every event based on the information provided by IoTBeholder.

9.6 Performance of User Action Prediction
This section evaluates IoTBeholder’s user action prediction module and verifies the effectiveness of the personal-

ized habitual behavior mining algorithm.
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9.6.1 Evaluation Design. We train the LSTM model as defined in Section 8. The purpose of the model is to predict

as many of the user’s next actions as possible. Note that we do not require the model to strictly predict the

next action in the sequence. When the prediction given by the model is a sub-sequence of the sequence that

appears later, we consider the prediction to be correct. This also holds in the ablation experiment. We divide the

train and test set in a ratio of 8:2. Single-user scenarios and multi-user scenarios are verified separately. For the

ablation experiment, we train the LSTM without using the embedding layer, using the raw sequence to train the

embedding layer, and using F to train the embedding layer. It should be noted that for the second case, the labels

used come from raw sequences because F is unknown to it.
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Fig. 12. Visualization of embedding layer.

9.6.2 Performance. Figure 11 shows the prediction performance of IoTBeholder on user actions. We see that the

model maintains high accuracy of action prediction in both single-user and multi-user scenarios. For multi-user

scenarios, the model performs slightly worse. This may be due to more similar activity sequences generated by

users. Naturally, as the number of predicted steps increases, the accuracy of the model prediction will gradually

decrease, but it remains above 92%. This shows the effectiveness of IoTBeholder in user action prediction.

9.6.3 Visualization of Embedding. We visualize the embedding layer of the model in Figure 12. The values in the

embedding matrix represent the degree of association between two activities. It can be found that activity pairs

with higher correlations appear frequently in the results of the user’s personalized habitual behavior mining

algorithm. Take activities in event 37 as an example: activity 46, 67 and 5 are highly ed because of the automation

rules R8. Besides, there is also a high ion index between activity 42 and 4 because turning off the desk light is

often followed by adjusting the air conditioner in some events. Although the embedding cannot represent the

sequential relation, the association between activities reflects confirms the effective mining of users’ personalized

behaviors of IoTBeholder.

9.6.4 Ablation Experiment. We conclude by inspecting the three variations of our model. Table 5 presents the

performance of the model predictions in the three cases. We see that the model performs the worst using the raw

sequence to train the embedding layer. This shows that the embedding layer trained using F better learns the

relations between device activities and provide better information for LSTM. However, the embedding obtained

by training with raw sequences is disturbed by irregular data, which affects the prediction accuracy of the model.

The standard attention-based LSTM achieves 0.509 and 0.693 accuracy in single-user and multi-user scenarios,

respectively, but there is a clear gap with our method. This illustrates the effectiveness of frequent pattern mining

algorithms combined with attention-based LSTM and the necessity of the habitual behavior and automaton rule

mining module.
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Table 5. Ablation Experiment.

Without embedding Raw sequences for embedding Ours

Accuracy

Single-user 0.509 0.255 0.981

Multi-user 0.693 0.286 0.951

10 CONCLUSION AND COUNTERMEASURES
This paper has delineated IoTBeholder, an attack that can identify the personalized habitual behaviors of users

in smart homes without requiring special permissions or prior knowledge. We have implemented the various

modules of IoTBeholder on a COTS laptop and built a testbed to evaluate it in the real world. The results

demonstrate worryingly high accuracy on user habitual behaviors mining and action prediction. Our work

confirms that, even in the real world, where attackers are severely restricted, smart homes still face considerable

privacy risks.

Our ultimate goal is to improve the security and privacy of smart home users. The IoTBeholder attack relies

on being able to sniff wireless Wi-Fi packets. Thus, it cannot be mitigated by wireless access point filtering or

obfuscating egress traffic. One solution would be for devices to customize installed applications using the open

source environment [17] to introduce fake packets (note, traffic shaping is now enabled for users of the Samsung

SmartThings platform). Another possible countermeasure is for access points to inject miscellaneous traffic using

the spoofed MAC addresses of device as the source. Although effective, these countermeasures introduce notable

overhead. Our future work will therefore involve further refinement of these solutions.
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A DEVICE INFORMATION

Table 6. IoT device information

No. Device name Category Vendor No. Device name Category Vendor

1 AC_Plug Plug Xiaomi 16 deerma-humidifier Appliance Deerma

2 aircleaner Appliance Xiaomi 17 honyar-outlet Appliance Honyar

3 audio Speaker Baidu 18 plug-LED Appliance Xiaomi

4 bedlight Appliance Xiaomi 19 standheater Appliance Xiaomi

5 bathheater Appliance Xiaomi 20 sweeper Appliance Xiaomi

6 camera-battery Camera Hichip Vision 21 mercury-camera Camera Mercury

7 curtains Appliance Xiaomi 22 echodot Speaker Echo

8 water-cooler Appliance Xiaomi 23 echoplus Speaker Echo

9 skyworth-camera Camera Skyworth 24 echospot Speaker Echo

10 deerma-dehumidifier Appliance Deerma 25 bulb Appliance TP-LINK

11 desklight Appliance Xiaomi 26 tp-link_plug Plug TP-LINK

12 fan Appliance Xiaomi 27 xiaomi-hub Hub Xiaomi

13 gateway-locker Gateway Xiaomi 28 ricecooker Appliance Xiaomi

14 aqara-gateway Gateway Aqara 29 strip Appliance Xiaomi

15 mijia-humidifier Appliance Xiaomi
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B DEVICE ACTIVITY INFORMATION

Table 7. Common activities of devices from the mijia platform

Device Via app Physically Via automation rules

AC_Plug

1○/ 2○ turn on/off,

3○ change temperature,

4○ change speed.

\ 5○/ 6○ turn on/off.

fan

7○/ 8○ turn on/off,

9○ change mode.

10○/ 11○ turn on/off. 12○/ 13○ turn on/off.

water-cooler \ 14○/ 15○ turn on/off. \

mijia-gateway-locker \ 16○ open. \

bedlight

17○/ 18○ turn on/off ,

19○/ 20○ change light/mode,

21○/ 22○ turn on/off,

23○/ 24○ change light/mode.

25○/ 26○ turn on/off.

mijia-humidifier

27○/ 28○ turn on/off,

29○ adjust gear.

30○/ 31○ turn on/off. 32○/ 33○ turn on/off.

bathheater

34○/ 35○ turn light on/off,

36○/ 37○ turn ventilation on/off.

\ \

deerma-humidifier

38○/ 39○ turn on/off,

40○ change mode.

\ 41○/ 42○ turn on/off.

curtains 43○/ 44○ open/close. \ 45○/ 46○ open/close.

plug-LED 47○/ 48○ turn on/off. \ 49○/ 50○ turn on/off.

aircleaner

51○/ 52○ turn on/off ,

53○ change mode.

\ 54○/ 55○ turn on/off.

standheater

56○/ 57○ turn on/off,

58○ change mode.

59○/ 60○ turn on/off. 61○/ 62○ turn on/off.

dehumidifier

63○/ 64○ turn on/off,

65○ change mode.

\ 66○/ 67○ turn on/off.

sweeper 68○/ 69○ sweep/return. \ 70○/ 71○ sweep/return.

desklight

72○/ 73○ turn on/off ,

74○ change mode.

75○/ 76○ turn on/off,

77○ change light.

78○/ 79○ turn on/off.

echodot

80○ audio,

81○ voice

82○/ 83○ power. \

echoplus

84○/ 85○ turn on/off,

86○ audio,

87○ dim.

88○ voice,

89○ volume,

90○ power.

\

echospot 91○ audio.

92○ voice,

93○ volume,

94○ power.

\
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